首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Remotely forced variability in the tropical Atlantic Ocean   总被引:1,自引:1,他引:1  
An ensemble of eight hindcasts has been conducted using an ocean-atmosphere general circulation model fully coupled only within the Atlantic basin, with prescribed observational sea surface temperature (SST) for 1950–1998 in the global ocean outside the Atlantic basin. The purpose of these experiments is to understand the influence of the external SST anomalies on the interannual variability in the tropical Atlantic Ocean. Statistical methods, including empirical orthogonal function analysis with maximized signal-to-noise ratio, have been used to extract the remotely forced Atlantic signals from the ensemble of simulations. It is found that the leading external source on the interannual time scales is the El Niño/Southern Oscillation (ENSO) in the Pacific Ocean. The ENSO signal in the tropical Atlantic shows a distinct progression from season to season. During the boreal winter of a maturing El Niño event, the model shows a major warm center in the southern subtropical Atlantic together with warm anomalies in the northern subtropical Atlantic. The southern subtropical SST anomalies is caused by a weakening of the southeast trade winds, which are partly associated with the influence of an atmospheric wave train generated in the western Pacific Ocean and propagating into the Atlantic basin in the Southern Hemisphere during boreal fall. In the boreal spring, the northern tropical Atlantic Ocean is warmed up by a weakening of the northeast trade winds, which is also associated with a wave train generated in the central tropical Pacific during the winter season of an El Niño event. Apart from the atmospheric planetary waves, these SST anomalies are also related to the sea level pressure (SLP) increase in the eastern tropical Atlantic due to the global adjustment to the maturing El Niño in the tropical Pacific. The tropical SLP anomalies are further enhanced in boreal spring, which induce anomalous easterlies on and to the south of the equator and lead to a dynamical oceanic response that causes cold SST anomalies in the eastern and equatorial Atlantic from boreal spring to summer. Most of these SST anomalies persist into the boreal fall season.
B. HuangEmail:
  相似文献   

2.
Summary The impact of pronounced positive and negative sea surface temperature (STT) anomalies in the tropical Pacific associated with the El Niño/Southern Oscillation (ENSO) phenomenon on the atmospheric circulation in the Northern Hemisphere extratropics during the boreal winter season is investigated. This includes both the impact on the seasonal mean flow and on the intraseasonal variability on synoptic time scales. Moreover, the interaction between the transient fluctuations on these times scales and the mean circulation is examined. Both data from an ensemble of five simulations with the ECHAM3 atmospheric general circulation model at a horizontal resolution of T42 each covering the period from 1979 through 1992 and operational analyses from ECMWF for the corresponding period are examined. In each of the simulations observed SSTs for the period of investigation are given as lower boundary forcing, but different atmospheric initial conditions are prescribed.The simulations with ECHAM3 reveal a distinct impact of the pronounced SST-anomalies in the tropical Pacific on the atmospheric circulation in the Northern Hemisphere extratropics during El Niño as well as during La Niña events. These changes in the atmospheric circulation, which are found to be highly significant in the Pacific/North American as well as in the Atlantic/European region, are consistent with the essential results obtained from the analyses. The pronounced SST-anomalies in the tropical Pacific lead to changes in the mean circulation, which are characterized by typical circulation patterns. These changes in the mean circulation are accompanied by marked variations of the activity of the transient fluctuations on synoptic time scales, that are changes in both the kinetic energy on these time scales and the atmospheric transports of momentum and heat accomplished by the short baroclinic waves. The synoptic disturbances, on the other hand, play also an important role in controlling the changes in the mean circulation associated with the ENSO phenomenon. They maintain these typical circulation patterns via barotropic, but counteract them via baroclinic processes.The hypothesis of an impact of the ENSO phenomenon in the Atlantic/European region can be supported. As the determining factor the intensification (reduction) of the Aleutian low and the simultaneous reduction (intensification) of the Icelandic low during El Niño and during La Niña events respectively, is identified. The changes in the intensity of the Aleutian low during the ENSO-events are accompanied by an alteration of the transport of momentum caused by the short baroclinic waves over the North American continent in such a way that the changes in the intensity of the Icelandic low during El Niño as well as during La Niña events are maintained.With 16 Figures  相似文献   

3.
The frequent coincidence of volcanic forcing with El Niño events disables the clear assignment of climate anomalies to either volcanic or El Niño forcing. In order to select the signals, a set of four different perpetual January GCM experiments was performed (control, volcano case, El Niño case and combined volcano/El Niño case) and studied with advanced statistical methods for the Northern Hemisphere winter. The results were compared with observations. The signals for the different forcings are discussed for three variables (temperature, zonal wind and geopotential height) and five levels (surface, 850 hPa, 500 hPa, 200 hPa and 50 hPa). The global El Niño signal can be selected more clearly in the troposphere than in the stratosphere. In contrast, the global volcano signal is strongest in the stratospheric temperature field. The amplitude of the perturbation for the volcano case is largest in the Atlantic region. The observed effect of local cooling due to the volcanic reduction of shortwave radiation over large land areas (like Asia) in subtropical regions, the observed advective warming over Eurasia and the advective cooling over Greenland are well simulated in the model. The radiative cooling near the surface is important for the volcano signal in the subtropics, but it is weak in high latitudes during winter. A statistically significant tropospheric signal of El Niño forcing occurs in the subtropics and in the midlatitudes of the North Pacific. The local anomalies in the El Niño forcing region in the tropics, and the warming over North America in middle and high latitudes are simulated as observed. The combined signal is different from a simple linear combination of the separate signals. It leads to a climate perturbation stronger than for forcing with El Niño or stratospheric aerosol alone and to a somewhat modified pattern.  相似文献   

4.
利用1979—2012年日本气象厅次表层海温资料和NCEP/NCAR再分析资料,分析了前期冬季热带太平洋次表层海温与东亚夏季风的关系,并讨论了其可能机制。结果表明,前期冬季热带太平洋次表层海温与后期东亚夏季风强弱有显著的相关关系。冬季次表层海温呈现东正西负的类El Nio分布型时,夏季副热带高压偏强,西北太平洋地区受反气旋型环流控制,能将大量的水汽输送到长江和淮河流域,有利于水汽在该区域辐合,为夏季降水偏多创造了条件,此时东亚夏季风活动整体偏弱,反之亦然。但类El Nio分布型对东亚夏季气候变化的影响较类La Nia分布型更显著。此外,冬季热带太平洋次表层海温可能通过其自身能够持续性地影响东亚—太平洋地区的大气环流异常,次表层海温随季节变化有明显的发展和移动趋势:冬季西太平洋暖池次表层冷(暖)海温不断堆积,沿温跃层向东传播使得中东太平洋次表层海温逐渐变冷(暖),冷(暖)海温上翻加强使得海表温度异常,进一步影响到西太平洋副热带高压的位置和强度,并在东亚地区形成经向遥相关波列,通过西北太平洋地区异常反气旋(气旋)环流的作用,影响东亚地区大气环流以及气候变化。  相似文献   

5.
An analysis on the physical process of the influence of AO on ENSO   总被引:4,自引:1,他引:3  
The influence of the spring AO on ENSO has been demonstrated in several recent studies. This analysis further explores the physical process of the influence of AO on ENSO using the NCEP/NCAR reanalysis data over the period 1958–2010. We focus on the formation of the westerly wind burst in the tropical western Pacific, and examine the evolution and formation of the atmospheric circulation, atmospheric heating, and SST anomalies in association with the spring AO variability. The spring AO variability is found to be independent from the East Asian winter monsoon activity. The spring AO associated circulation anomalies are supported by the interaction between synoptic-scale eddies and the mean-flow and its associated vorticity transportation. Surface wind changes may affect surface heat fluxes and the oceanic heat transport, resulting in the SST change. The AO associated warming in the equatorial SSTs results primarily from the ocean heat transport in the face of net surface heat flux damping. The tropical SST warming is accompanied by anomalous atmospheric heating in the subtropical north and south Pacific, which sustains the anomalous westerly wind in the equatorial western Pacific through a Gill-like atmospheric response from spring to summer. The anomalous westerly excites an eastward propagating and downwelling equatorial Kelvin wave, leading to SST warming in the tropical central-eastern Pacific in summer-fall. The tropical SST, atmospheric heating, and atmospheric circulation anomalies sustain and develop through the Bjerknes feedback mechanism, which eventually result in an El Niño-like warming in the tropical eastern Pacific in winter.  相似文献   

6.
张雯  董啸  薛峰 《大气科学》2020,44(2):390-406
基于1957~2017年观测和再分析资料,合成分析了北太平洋年代际振荡(Pacific decadal oscillation,PDO)不同位相下El Ni?o发展年和La Nina年东亚夏季风的环流、降水特征及季节内变化。结果表明,PDO正、负位相作为背景场,分别对El Ni?o发展年、La Nina年东亚夏季风及夏季降水具有加强作用。PDO正位相一方面可增强El Ni?o发展年夏季热带中东太平洋暖海温异常信号,另一方面通过冷海温状态加强中高纬东亚大陆与西北太平洋的环流异常,从而在一定程度上增强了东亚夏季风环流的异常程度;反之,PDO负位相则增强了La Nina年热带海气相互作用以及中高纬环流(如东北亚反气旋)的异常。在季节内变化方面,El Ni?o发展年6月贝湖以东反气旋性环流为东亚地区带来稳定的北风异常,东北亚位势高度减弱;7月开始,环流形势发生调整,日本以东洋面出现气旋性异常,东亚大陆偏北风及位势高度负异常均得到加强;8月,随着东亚夏季风季节进程和El Ni?o发展,西太平洋出现气旋性环流异常,东亚副热带位势高度进一步降低,西北太平洋副热带高压(简称副高)明显东退。La Nina年6月异常较弱,主要环流差异自7月西北太平洋为大范围气旋性异常控制开始,东亚-太平洋遥相关型显著,副高于季节内始终偏弱偏东。上述两种情况下,均造成东亚地区夏季降水总体上偏少,尤其是中国北方降水显著偏少。  相似文献   

7.
Summary This paper presents the results of the Florida State University atmospheric general circulation model that addresses the impact of sea surface temperature anomalies on an El Niño year. Northern Hemisphere winter season simulation. Specifically, our interest is in the simulation of seasonal winter monsoonal rainfall, the planetary scale divergent motions and the westerly wind anomalies of an El Niño year.The El Niño episode of 1982–1983 was interesting due to its higher than average amplitude and its overall evolution. By late 1982 the anomalous circulations associated with the sea surface temperature forcing had begun to take shape even though the anomalies did not attain their peak amplitude until February 1983. The atmosphere-ocean teleconnections set up a strong pattern of geopotential height anomalies during the Northern Hemisphere winter that coincides with El Niño conditions in the tropical Pacific Ocean.Wallace and Gutzler (1981) defined a Pacific North American (PNA) teleconnection pattern index based on data from within this region. The El Niño episode of 1982–1983 has been shown to be strong via the PNA Index and illustrates an importance for climate models to correctly simulate these teleconnections. The importance of the forced anomalies can be seen in the long-range forecasting of conditions over North America as well as the winter monsoon intensity and location.In this study, we utilize a general circulation model with a resolution of triangular truncation at 42 waves to investigate the effects of prescribed sea surface temperature anomalies. We are able to simulate the majority of the large-scale atmospheric response although on regional climatic scales some phase shifts seem apparent.With 7 Figures  相似文献   

8.
The authors have developed an integral view of the inter-decadal variability of July–August(JA)tro- pospheric temperature across the entire subtropical Northern Hemisphere.Using reanalysis data and com- plementary balloon-borne measurements,the authors identify one major mode of variability for the period 1958–2001 which exhibits a significant cooling center over East Asia and warming centers over the North Atlantic and North Pacific.The cooling(warming)signals barotropically penetrate through the troposphe...  相似文献   

9.
利用全国160站逐月降水资料、74项环流指数、HadISST月平均海温资料以及NCEP/NCAR月平均再分析资料,对比分析了两类ENSO事件衰减阶段中国东部夏季降水及相应大气环流的差异,并探讨其可能成因。结果表明:1)EP型El Ni?o(La Ni?a)事件次年夏季,中国东部降水由北至南呈正负正(负正负)的三极型反相分布;CP型El Ni?o(La Ni?a)事件次年夏季,中国东部降水由北至南呈正负(负正)的偶极型反相分布;2)El Ni?o事件次年夏季,西北太平洋副热带高压(以下简称西太副高)及南亚高压均偏强,EP型西太副高偏西、南亚高压偏东,CP型西太副高范围更大、强度更强;La Ni?a事件次年夏季,西太副高及南亚高压强度偏弱,CP型强于EP型但弱于气候平均;3)El Ni?o事件期间西北太平洋上存在异常反气旋,EP型位置偏南,强度更强,持续时间更长,CP型位置偏北,范围更大;La Ni?a事件期间,西北太平洋区域至中国东南部存在异常气旋,EP型异常气旋的强度及范围均不及CP型;4)两类El Ni?o事件期间异常反气旋的差异可能与印度洋海盆增暖及太平洋海温持续性偏冷有关;两类La Ni?a事件期间异常气旋的差异可能由赤道西太平洋海温持续偏暖造成。  相似文献   

10.
夏季亚洲—太平洋涛动与大气环流和季风降水   总被引:19,自引:4,他引:15  
利用ERA-40再分析资料和数值模拟,分析了在亚洲-太平洋区域的大气遥相关以及与亚洲季风降水和西北太平洋热带气旋活动气候特征的关系,探讨了青藏高原加热和太平洋海表温度(SST)对遥相关的影响,结果表明:亚洲-太平洋涛动(Asian-Pacific Oscillation,APO)是夏季对流层扰动温度在亚洲与太平洋中纬度之间的一种"跷跷板"现象,当亚洲大陆中纬度对流层偏冷时,中、东太平洋中纬度对流层偏暖,反之亦然;这种遥相关也出现在平流层中,只是其位相与对流层的相反.APO为研究亚洲与太平洋大气环流相互作用提供了一个途径.APO指数也是亚洲-太平洋对流层热力差异指数,它具有年际和年代际的多时间尺度变化特征,在1958-2001年亚洲与太平洋之间的对流层热力差异呈现出减弱趋势,同时也有显著的5.5 a周期.APO形成可能与太阳辐射在亚洲陆地和太平洋的加热差异所造成的纬向垂直环流有关,数值模拟进一步表明:夏季青藏高原加热可以造成高原附近对流层温度升高、上升运动加强,太平洋下沉运动加强、温度下降,从而形成APO现象;而太平洋年代际涛动和赤道东太平洋的厄尔尼若现象对APO的影响可能较小.当夏季APO异常时,南亚高压、欧亚中纬度西风急流、南亚热带东风急流以及太平洋上空的副热带高压都出现显著变化,并伴随着亚洲季风降水及西北太平洋热带气旋活动异常.过去40多年来的长江中上游地区夏季变冷与APO有关,可能是全球大气环流年代际变化在该区域的一种反映.APO异常信号可以传播到南、北两极.此外,亚洲-太平洋之间的这种遥相关型也出现在其他季节.  相似文献   

11.
两类ENSO对中国北方冬季平均气温和极端低温的不同影响   总被引:2,自引:0,他引:2  
汪子琪  张文君  耿新 《气象学报》2017,75(4):564-580
利用1961-2012年观测、再分析资料以及全球大气环流模式数值试验,探讨了中国北方冬季平均气温对于不同类型(即东部型和中部型)ENSO事件的气候响应,并分析了不同类型ENSO对极端低温事件的可能影响,重点关注了北大西洋涛动(NAO)在其中的桥梁作用。结果表明,ENSO信号能通过调制北大西洋地区的大气环流改变欧亚中高纬度地区的纬向温度平流输送和西伯利亚高压的强度,进而影响中国北方冬季气温,由于不同类型ENSO事件海温分布的差异,这种影响具有明显的非线性特征。在两类厄尔尼诺和东部型拉尼娜事件冬季,北大西洋涛动均呈现负位相,不利于北大西洋的暖湿空气向欧亚大陆输送,西伯利亚高压偏强,因而中国北方地区较气候态偏冷。中部型厄尔尼诺和东部型拉尼娜事件冬季气温负异常的显著区域分别位于东北大范围地区、内蒙古河套附近;东部型厄尔尼诺事件冬季显著的冷异常信号仅局限于黑龙江北部与大兴安岭地区;而中部型拉尼娜事件冬季虽伴随北大西洋涛动正位相,但其空间结构向西偏移,对下游中国北方地区气温的直接影响并不显著,可能受局地信号干扰较大。数值试验再现了北大西洋涛动以及中国北方冬季气温对不同类型ENSO的响应,进一步佐证了上述结论。此外,两类厄尔尼诺事件冬季中国东北地区日平均气温容易偏低,极端低温事件的发生频次增多;而两类拉尼娜事件对极端低温的影响较弱。   相似文献   

12.
In this modelling study, the teleconnections of ENSO are studied using an atmospheric general circulation model (AGCM), HadAM3. The influence of sea surface temperature anomalies (SSTAs) remote from the tropical Pacific but teleconnected with ENSO is investigated. Composite cycles of El Niño and La Niña SSTs are created and imposed on HadAM3. These SSTs are imposed in different areas, with climatological SSTs elsewhere, in order to find the influences of SSTs in different regions. It is found that most of the reproducible response to ENSO is forced directly from the tropical Pacific before the peak of the event. However, during the peak and decay of ENSO, remote SSTs become increasingly influential throughout the tropics (at the 98% significance level). This could lead to extended ENSO-related predictability due to the memory of the remote oceans. The Indian Ocean and Maritime Continent SSTs are found to be particularly influential. Indian Ocean SSTAs dampen the teleconnections from the tropical Pacific and force the atmosphere above the tropical Atlantic. More generally, when a tropical SSTA is imposed, atmospheric anomalies are forced locally with anomalies of the opposite sign to the west. Some of the reproducible response to ENSO in the tropical Atlantic is forced, not directly from the tropical Pacific but from the Indian ocean, which in turn is forced by the tropical Pacific. Subsequently, delayed SSTAs in the tropical Atlantic damp the local response and force the atmosphere above the tropical Pacific in the opposite manner.  相似文献   

13.
周群  陈文 《大气科学》2012,36(4):851-862
本文利用美国NCEP/NCAR再分析资料、海温、降水和反映太阳活动强弱的太阳10.7 cm射电流量资料,研究了1952~2010年太阳活动11年周期对ENSO年海温异常演变以及与之相联系的东亚降水的影响,在此基础上着重分析了ENSO发展期秋季东亚地区降水异常对太阳射电流量高(HS)/低(LS)的不同响应以及相关的物理过...  相似文献   

14.
基于1979~2013年多种再分析资料,合成分析了El Ni?o发展年和La Ni?a年东亚夏季风的季节内变化。结果表明,东亚夏季风在两种情况下呈现出不同的季节内变化特征。在El Ni?o发展年,初夏期间高纬度地区出现偏北风异常,造成东亚地区位势高度场偏低,西太平洋副热带高压偏东,但均不显著。盛夏期间,El Ni?o强迫造成中太平洋对流增强,副热带西太平洋出现气旋异常,位势高度显著降低,副热带高压明显偏东。与此不同的是,La Ni?a年春季暖池海温偏高,造成夏季对流偏强,西太平洋地区位势高度场偏低,副热带高压减弱东退。此外,La Ni?a年东亚夏季风的季节内变化较为复杂,6月异常较弱,7月达到最强,8月又开始减弱。因此,虽然El Ni?o发展年和La Ni?a年夏季平均副高异常有一定的相似性,但季节内变化则有很大差异,其成因也完全不同。  相似文献   

15.
Observations indicated that for the El Niño/Southern Oscillation (ENSO) there have been eastward displacements of the zonal wind stress (WS) anomalies and surface heat flux (short wave heat flux and latent heat flux) anomalies during El Niño episodes in the 1981–1995 regime relative to the earlier regime of 1961–1975 (without corresponding displacements during La Niña episodes). Our numerical experiments with the Zebiak–Cane coupled model generally reproduced such displacements when the model climatological fields were replaced by the observed climatologies [of sea surface temperature (SST), surface WS and surface wind atmospheric divergence] and simulated climatologies (of oceanic surface layer currents and associated upwelling) for the 1981–1995 regime. Sensitivity tests indicated that the background atmospheric state played a much more important role than the background ocean state in producing the displacements, which enhanced the asymmetry between El Niño and La Niña in the later regime. The later regime climatology state resulted in the eastward shifts in the ENSO system (WS and SST) only during El Niño, through the eastward shift of the atmosphere convergence heating rate in the coupled model. The ENSO period and ENSO predictability were also enhanced in the coupled model under the later regime climatology. That the change in the mean state of the tropical Pacific atmosphere and ocean after the mid 1970s could have produced the observed changes in ENSO properties is consistent with our findings.  相似文献   

16.
利用1958—2001年NCEP/NCAR再分析资料,探讨了热带太平洋(100°E~60°W,10°S~10°N)10 m风场的时空变化特征及其与东亚大气环流的可能联系。结果表明:1)热带太平洋风场异常存在两种主模态,第一模态对应中西太平洋一致的西(东)风异常,关于赤道呈准对称分布,与ENSO(El Nio-Southern Oscillation)暖(冷)位相时风场的分布对应;第二模态则关于赤道呈反对称分布,西北太平洋存在显著的反气旋(气旋)式环流,中太平洋异常西风不再位于赤道上,而是南移到了10°S左右,对应ENSO暖(冷)位相向相反位相转换时的风场分布特征。2)两模态时间系数的主振荡周期不同,与ENSO循环的位相关系也不同。研究发现,当两模态呈正(负)位相分布时,贝加尔湖南侧(South to Lake Baikal,SLB)容易发生持续的高压(低压)异常环流。3)两模态与SLB异常环流的联系途径不同。第一模态正位相对应热带中东太平洋大范围暖海温引起的二极型Walker环流异常,SLB异常高压不仅能通过东亚沿岸北风和南海低槽的作用促进第一模态的前期发展,还对其后期维持起重要作用。负位相时,情况相反。该环流系统既与热带中东太平洋大范围垂直运动有关,还与邻近的中国东南沿海低层异常辐合有关;第二模态则对应热带西太平洋及东印度洋为主、大西洋为辅的暖海温引起的热带四极型Walker环流异常。此时热带西太平洋到东印度洋局地偏强的经圈Hadley环流可能是SLB异常环流维持的主要原因。  相似文献   

17.
Sea surface temperature associations with the late Indian summer monsoon   总被引:1,自引:1,他引:0  
Recent gridded and historical data are used in order to assess the relationships between interannual variability of the Indian summer monsoon (ISM) and sea surface temperature (SST) anomaly patterns over the Indian and Pacific oceans. Interannual variability of ISM rainfall and dynamical indices for the traditional summer monsoon season (June–September) are strongly influenced by rainfall and circulation anomalies observed during August and September, or the late Indian summer monsoon (LISM). Anomalous monsoons are linked to well-defined LISM rainfall and large-scale circulation anomalies. The east-west Walker and local Hadley circulations fluctuate during the LISM of anomalous ISM years. LISM circulation is weakened and shifted eastward during weak ISM years. Therefore, we focus on the predictability of the LISM. Strong (weak) (L)ISMs are preceded by significant positive (negative) SST anomalies in the southeastern subtropical Indian Ocean, off Australia, during boreal winter. These SST anomalies are mainly linked to south Indian Ocean dipole events, studied by Besera and Yamagata (2001) and to the El Niño-Southern Oscillation (ENSO) phenomenon. These SST anomalies are highly persistent and affect the northwestward translation of the Mascarene High from austral to boreal summer. The southeastward (northwestward) shift of this subtropical high associated with cold (warm) SST anomalies off Australia causes a weakening (strengthening) of the whole monsoon circulation through a modulation of the local Hadley cell during the LISM. Furthermore, it is suggested that the Mascarene High interacts with the underlying SST anomalies through a positive dynamical feedback mechanism, maintaining its anomalous position during the LISM. Our results also explain why a strong ISM is preceded by a transition in boreal spring from an El Niño to a La Niña state in the Pacific and vice versa. An El Niño event and the associated warm SST anomalies over the southeastern Indian Ocean during boreal winter may play a key role in the development of a strong ISM by strengthening the local Hadley circulation during the LISM. On the other hand, a developing La Niña event in boreal spring and summer may also enhance the east–west Walker circulation and the monsoon as demonstrated in many previous studies.  相似文献   

18.
During El Niño events when positive sea surface temperature (SST) anomalies form in the equatorial Pacific, SST anomalies also tend to develop in the North Pacific. This study attempts to model and explain the large-scale features of the observed SST anomaly field in the North Pacific during the fall and winter of the El Niño year. The experiment design consists of a mixed layer ocean model of the North Pacific which is forced by atmospheric surface fields from two sets of Community Climate Model (CCM) integrations: the El Niño set with prescribed positive SST anomalies in the tropical Pacific; and the control set which is obtained from an extended CCM integration with prescribed climatological SSTs. The response of the midlatitude ocean to atmospheric surface fields associated with El Niño is obtained by compositing each set of model integrations (El Niño and Control) and then taking the difference between the composites. The ocean model is able to reproduce the general features of the observed midlatitude SST anomaly pattern: warm water in the northeast Pacific and an elliptically shaped cold pool in the central Pacific. In these regions, a large fraction of the temperature anomalies are significant at the 95% level as indicated by a two tailed t-test. The ocean temperature anomalies simulated by the model are primarily caused by changes in the sensible and latent heat flux and to a lesser extent the longwave radiation flux. Entrainment of cold water from below the mixed layer also influences ocean temperatures. However, the entrainment anomaly pattern has a complex spatial structure which does not always coincide with the simulated mixed layer temperature anomalies.This paper was presented at the International Conference on Modelling of Global Climate Change and Variability, held in Hamburg 11–15 September 1989 under the auspices of the Meteorological Institute of the University of Hamburg and the Max Planck Institute for Meteorology. Guest Editor for these papers is Dr. L. Dümenil  相似文献   

19.
Observations show that the summer precipitation over East China often goes through decadal variations of opposite sign over North China and the Yangtze River valley (YRV), such as the “southern flood and northern drought” pattern that occurred during the late 1970s–1990s. In this study it is shown that a modulation of the Pacific Decadal Oscillation (PDO) on the summer precipitation pattern over East China during the last century is partly responsible for this characteristic precipitation pattern. During positive PDO phases, the warm winter sea surface temperatures (SSTs) in the eastern subtropical Pacific along the western coast of North American propagate to the tropics in the following summer due to weakened oceanic meridional circulation and the existence of a coupled wind–evaporation–SST feedback mechanism, resulting in a warming in the eastern tropical Pacific Ocean (5°N–20°N, 160°W–120°W) in summer. This in turn causes a zonal anomalous circulation over the subtropical–tropical Pacific Ocean that induces a strengthened western Pacific subtropical high (WPSH) and thus more moisture over the YRV region. The end result of these events is that the summer precipitation is increased over the YRV region while it is decreased over North China. The suggested mechanism is found both in the observations and in a 600-years fully coupled pre-industrial multi-century control simulations with Bergen Climate Model. The intensification of the WPSH due to the warming in the eastern tropical Pacific Ocean was also examined in idealized SSTA-forced AGCM experiments.  相似文献   

20.
利用1979-2016 年ERA-Interim 再分析资料,分析了ENSO 对冬季北太平洋地区水汽输送特征的影响,包括整层水汽含量、整层水汽输送及其散度和大气河频率.结果表明,在El Ni?o年冬季,东北太平洋地区的气旋式环流异常增强了自副热带太平洋向北美西海岸的水汽输送,导致区域性的水汽辐合与辐散异常;La Ni?...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号