首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We conducted reversed deliquescence experiments in saturated NaCl–NaNO3–H2O, KNO3–NaNO3–H2O, and NaCl–KNO3–H2O systems from 90 to 120°C as a function of relative humidity and solution composition. NaCl, NaNO3, and KNO3 represent members of dust salt assemblages that are likely to deliquesce and form concentrated brines on high-level radioactive waste package surfaces in a repository environment at Yucca Mountain, NV. Discrepancy between model prediction and experiment can be as high as 8% for relative humidity and 50% for dissolved ion concentration. The discrepancy is attributed primarily to the use of 25°C models for Cl–NO3 and K–NO3 ion interactions in the current Yucca Mountain Project high-temperature Pitzer model to describe the nonideal behavior of these highly concentrated solutions.  相似文献   

2.
Molecular diffusion in fully saturated porous materials is strongly influenced by the pore space, which, in general, is characterized by a complex topological structure. Hence, information on macroscopic diffusion properties requires up‐scaling of transport processes within nano‐pores and micro‐pores over several spatial scales. A new model in the framework of continuum micromechanics is proposed for predicting the effective molecular diffusivity in porous materials. Considering a representative volume element, characterizing a porous material without any information about the pore space microstructure complexity, the uniform flux is perturbed by recursively embedding shape information hierarchically in the form of the ESHELBY matrix‐inclusion morphology to obtain the effective diffusivity as a function of the recurrence level and the porosity. The model predicts a threshold value for the porosity, below which no molecular diffusion can occur because of the presence of isolated pore clusters that are not connected and unavailable for transport. The maximum porosity, below which no molecular transport is possible, is predicted as one‐third for spherical inclusions. The model allows for extensions to more complex morphologies of the inclusions. We also identify, that the effects of the micro‐structure on molecular transport are characterized by porosity dependent long‐range and short‐range interactions. The developed framework is extended to incorporate realistic pore size distributions across several spatial scales by means of a distribution function within the hierarchical homogenization scheme. Available experimental results assert the model predictions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
The behavior due to rainfall infiltrating the ground plays a role in landslides, groundwater recharge and various other ground responses. Most of these geotechnical behaviors have a correlation between soil pore space and soil volumetric water content in the unsaturated and saturated soil porous media. Therefore, the soil porosity associated with soil pores and the distribution of volumetric water content are significantly important hydrological characteristics. In the case of shallow slope failure such as landslide, the infiltration activity due to the connectivity of soil pore spaces in a porous media is induced. Slope failure may be attributed to the effect of a wetting front with the slope due to liquid infiltration, which changes the volumetric water content, soil matric suction and shear strength of the slope. This study was performed with an unsaturated injection test using a frequency domain reflectometry (FDR) dielectric device which measures the dielectric constant of unsaturated soil and the study then proposed the unsaturated dielectric mixing models to calculate soil porosity and effective porosity of unsaturated soils. From the experimental results the ratio of effective porosity to porosity of soils are measured in a range of 70–85%. These experimental results show a decrease of about 5–10% for unsaturated soil compared to the ratio of effective porosity to porosity of saturated soil. The infiltration passages of tracer material are restricted within the pore connectivity in the unsaturated soil which is caused by dead-pores in the soil. Using the FDR device and the unsaturated dielectric mixing models, we can consider the acquisition of physical properties to detect the infiltration activity, the response of the dielectric constant along with the injected tracer and hydrological parameters for the unsaturated soil porous media.  相似文献   

4.
Microclimatic parameters and natural materials were studied in order to assess conservation of the cave complex at Galdar, Gran Canaria. Based on the microclimatic data, experimental simulations were carried out to quantify water retention capacity and water vapour transport kinetics under continuously changing extreme temperatures and relative humidity values. The behaviour of natural construction materials is greatly influenced by changes in thermo-hygrometric conditions and is linked to pore structure. The host rock has a complex porous media: high porosity and polymodal pore size distribution, where the smallest pores contribute to water condensation, whilst large pores lead to high water absorption rates. The axial compressive strength of the host-rock decreases between 30 and 70% at water saturation. Stuccos covering cave wall paintings are formed by clay minerals, mainly smectites. These clay minerals cover a large specific surface area, which leads to a high capacity for water condensation and retention. It is also shown that neither water condensation nor vapour transport are noticeably modified by the presence of stucco on the host-rock when rapid, highly variable changes occur in environmental conditions if large shrinkage cracks are present. Results show that safe threshold microclimatic conditions can be found below 75% RH in the natural temperature range and that slight variations in temperature and relative humidity do not modify durability properties.  相似文献   

5.
A numerical investigation of the desaturation process at the argillaceous Tournemire site has been carried out. This desaturation is initialized by the contact of the saturated rock with the ambient air in excavated openings. The used hydraulical model is based on the Richards’ approximation for unsaturated one phase flow coupled with the deformation of a porous medium with anisotropic linearly elastic behavior. In relation to the extent of the desaturated zone around an excavated opening, the intrinsic permeability and the relative permeability have been identified to be the most important model parameters. The mechanical deformation process itself, the seasonal influences and the tunnel lining are less important for the formation of the desaturated zone. The comparison with measured saturation values bares some difficulties but indicates the principle capacity of the applied finite element codes to simulate the desaturation process. The consideration of seasonal changes in humidity in the ambient air results in a constantly recurring desaturation–resaturation cycle in the near field of the openings. This seasonally influenced zone amount 1–2 m and is nearly independent from time and from a variation of model parameters within a reasonable range. The possibility of material weakening in this zone is of special interest, since claystone is a potential host rock for the disposal of radioactive waste.  相似文献   

6.
This paper presents an analytical study of fluid flow in a porous medium presenting pores of two different length scales: at the smallest or microscopic scale, the presence of connected voids confers a porous medium structure to the material investigated, while at the upper or mesoscopic scale, macro-pores are present. This microstructure is employed to represent the progressive opening of inter-aggregate pore spaces observed in natural compacted montmorillonites polluted by heavy metal ions. Three-dimensional analytical expressions are rigorously derived for pore fluid velocity and excess pore fluid pressure within the porous matrix, around an occluded ellipsoidal inter-aggregate void. The eccentricity ratio is employed to characterize the geometrical shape of the ellipsoidal void, while its orientation with respect to the inflow in the far field is determined by the dip angle θ. As an application, we investigate the flow focusing effect for varying eccentricity ratios and dip angles.  相似文献   

7.
A stress–strain relationship within porous rock under anisotropic stress conditions is required for modeling coupled hydromechanical processes associated with a number of practical applications. In this study, a three-dimensional stress–strain relationship is proposed for porous rock under elastic and anisotropic stress conditions. This relationship is a macroscopic-scale approximation that uses a natural-strain-based Hooke’s law to describe deformation within a fraction of pores and an engineering-strain-based Hooke’s law to describe deformation within the other part. This new relationship is evaluated using data from a number of uniaxial and triaxial tests published in the literature. Based on this new stress–strain relationship, we also develop constitutive relationships among stress, strain, and related stress-dependent hydraulic/mechanical properties (such as compressibility, shear modulus, and porosity). These relationships are demonstrated to be consistent with experimental observations.  相似文献   

8.
Literature regarding the pore pressure generation characteristics and in turn the cyclic resistance behaviour of silty sand deposits is confusing. In an attempt to clarify the effect of nonplastic fines on undrained cyclic pore pressure response of sand–silt mixtures, an experimental programme utilising around 289 stress-controlled cyclic triaxial tests on specimens of size 50 mm diameter and 100 mm height was carried out at a frequency of 0.1 Hz. Specimens were prepared to various measures of density through constant gross void ratio approach, constant relative density approach, constant sand skeleton void ratio approach, and constant interfine void ratio approach to study the effect of nonplastic fines on pore pressure response of sand–silt mixtures. The effect of relative density, confining pressure as well as the frequency and magnitude of cyclic loading was also studied. It was observed that the pore pressure response is greatly influenced by the limiting silt content and the relative density of a specimen corresponding to any approach. The influence of other parameters such as relative density, confining pressure and magnitude of cyclic loading was as usual but an increase in frequency of cyclic loading was seen to generate excess pore pressure at a higher rate indicating an impact load type of behaviour at higher frequency. Utilising the entire test results over a wide range of parameters a new pore pressure band for sand–silt mixtures in line with Lee and Albaisa (1974) has been proposed. Similarly another pore pressure band corresponding to 10th cycle of loading as suggested by Dobry (1985) and up to a shear strain of around 25% has been proposed. These two bands can readily be used by researchers and field engineers to readily assess the pore pressure response of sand–silt mixtures.  相似文献   

9.
This paper describes a random solid‐porous model capable of simulating the structure of porous materials. To this purpose, the grain and pore size distributions as well as the void ratio of the material are required. Solids and pores are distributed at random in the model's space according to a size strategy. Herein, the model is used to simulate the retention curves of soils. The Laplace equation is used to determine the size of the pores able to saturate or dry during a wetting or drying process, respectively. The continuous path principle is used to define those elements that effectively saturate or dry during these processes. With this procedure, it is possible to simulate the main retention curves as well as the scanning curves during wetting–drying cycles. Some experimental results reported in the international literature have been used to test the model. This model can be enhanced to study the mechanical behavior of unsaturated soils. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The evolution of photospheric velocities from the first minutes after the emergence of fresh magnetic flux and the formation of the first pores in active region NOAA 10488 is studied with a time resolution of 1 min and spatial resolution of 4″. The emerging magnetic flux of a major active region is initially a bundle of magnetic-flux loops. Some of these loops erupt through the system of supergranular cells with speeds of up to 1 km/s within 15–25 min and form pores and small spots. It is suggested that the development of a pore represents the emergence of a horizontal magnetic field, which is converted into elements with a strong vertical magnetic field. The region of ascending plasma initially coincides with the zero line of a bipolar magnetic pair. Downflow and upflow regions are related to and appear with the development of pores. During the first hours of their evolution, the trailing-polarity pores exhibit downflows with mean speeds of ∼500 m/s, while upflows with speeds of ∼250 m/s dominate near the leading-polarity pores. It is concluded that a matter flow from the leading to the trailing end is present in the rising loop of a magnetic flux tube, in agreement with well-known numerical-simulation results. The flow that develops in the magnetic-flux tube erupting through the convection zone persists when pores and small spots emerge in the photosphere, at least during the first hours of their evolution.  相似文献   

11.
以四川盆地和塔里木盆地孔隙型白云岩样品为例,通过CT扫描、数字岩心、分形与多重分形等方法,讨论了典型白云岩储层不同孔隙系统(如晶间孔、粒间孔、铸模孔等)的结构特征,并用定量化参数对孔隙结构进行数值表征。结果表明:晶间孔和粒间孔样品的孔隙形状多为三角形,孔隙相对细长,喉道发育,连通性较好;铸模孔样品的孔隙形状较为规整,二维平面上表现为圆形,三维空间上近似球体,这类样品往往孔隙较为发育,但是孔喉系统连通性差;由多种类型孔隙组成的"混合孔"样品则非均质性较强,受岩石组构特征影响显著。进一步利用分形与多重分形方法对孔隙的非均质性进行研究发现:不同孔隙类型的结构差异在分形盒子维数上有明确响应,维数的均值相对大小表现为:铸模孔粒间孔晶间孔混合孔。孔隙度可能也对盒子维数产生影响。  相似文献   

12.
We use a lattice vibrational technique to derive thermophysical and thermochemical properties of the pure elements aluminum and iron in pressure–temperature space. This semi-empirical technique is based on either the Mie–Grüneisen–Debye (MGD) approach or an extension of Kieffer’s model to incorporate details of the phonon spectrum. It includes treatment of intrinsic anharmonicity, electronic effects based on the free electron gas model, and magnetic effects based on the Calphad approach. We show that Keane’s equation of state for the static lattice is better suitable to represent thermodynamic data for aluminum from 1 bar to pressures in the multi-megabar region relative to Vinet’s universal and the Birch–Murnaghan equation of state. It appears that the MGD and Mie–Grüneisen–Kieffer approach produce similar results, but that the last one better represents heat capacity below room temperature. For iron we show that the high temperature behavior of thermal expansivity can be explained within the Calphad approach by a pressure-dependent Curie temperature with a slope between –1 and 0 K/GPa.  相似文献   

13.
Drying of masonry specimens was monitored by means of a two-dimensional (2D) magnetic resonance imaging (MRI) technique. The external surfaces stayed wet for longer if NaCl was present instead of pure water only. This corroborates many practical observations that salts aggravate dampness in masonry. A slower evaporation process and not hygroscopicity was the cause. That suggests that salt-induced dampness may, in general, arise simply from changes in the drying process of masonry materials. That also implies that the height and depth at which crystallization occurs in walls may depend on the relative equilibrium humidity (RHeq) and other properties of salts that influence drying of porous materials. Evaporation rates of free surfaces of pure water and saturated NaCl solution were measured by a gravimetric technique. The results indicate that slow drying of salt-contaminated materials is not due only to the lower RHeq of salt solutions. The effective surface of evaporation is likely to be reduced perhaps due to blocking of pores by salt crystals. Final salt-distribution maps of the specimens show that: (a) salts may affect the inner materials of the masonry, even in evaporation-induced processes that lead crystallization to occur predominantly on the external surface; (b) distinct internal distribution patterns occur if masonry composition varies. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

14.
陆太进  戴慧  田庚凡  李克  张健  陈华  柯捷 《地学前缘》2020,27(5):247-253
绿松石是一种多孔材料,其孔隙特征直接影响其颜色、光泽、硬度、耐久性等性质,进而影响其市场价值,电化学处理的主要目的是降低绿松石孔隙度从而使其耐久、保色。采用全自动比表面仪、X射线显微CT(Micro-CT)等测试分析手段,对电化学处理前后绿松石的孔隙特征进行了对比研究。比表面仪研究发现,电化学处理后的绿松石总孔隙度、总孔体积、平均孔径及比表面积均有一定程度的变化;吸附-脱附曲线高压区域天然绿松石吸附曲线斜率变大,而电化学处理绿松石吸附曲线斜率变小;天然绿松石孔径分布曲线为类抛物线,而电化学处理绿松石孔径分布曲线呈内凹曲线状。Micro-CT研究结果表明:天然绿松石中出现的由表面贯穿至内部的大孔洞,经电化学处理后孔洞被不完全充填;天然绿松石存在“流纹状”结构,孔隙沿“流纹”分布,而电化学处理绿松石的“流纹状”结构消失,孔隙分布杂乱无章。本研究首次从孔隙特征角度入手,发现天然绿松石与电化学处理绿松石在高压区域吸附曲线特征、50 nm孔径以上孔隙分布曲线、孔隙充填情况和内部结构等方面存在明显差异。通过检测绿松石的钾(K)含量,并结合孔隙特征差异,可以有效地对绿松石是否经过电化学处理进行检验判定。  相似文献   

15.
The porous fine-grained to microcrystalline copper-zinc ore of the Semenov-2 hydrothermal field, a site in the Semenov hydrothermal cluster discovered in 2007 (13°31′N, MAR), is anomalously enriched in Au (22–188 ppm) and Ag (127–1787 ppm). Chalcopyrite, isocubanite, würtzite, and opal are major minerals; sphalerite, marcasite, pyrite, and covellite are auxiliary; and galena, pyrrhotite, native gold, silver telluride, barite, and aragonite are sporadic. Gold containing 0.31 to 23.07 wt % Ag occurs as up to 9-μm-sized subhedral, dendritelike, and elongated grains mostly hosted in opal and less frequently in sphalerite and in pores within isocubanite-chalcopyrite aggregate. An elongated grain (2 × 4 μm in size) of the Ag-Te phase was found in a pore. So far only basalts have been dredged from the Semenov-2 field, but anomalous gold and silver concentrations suggest the influence of ultramafic rocks; the latter were found 1.5 km westward, in the Semenov-1 hydrothermal field. Mineral assemblage and morphology of gold particles indicate its primary origin in contrast to the hydrothermal fields hosted in basalts, where gold is a product of remobilization. Zonal gold grains, found on oceanic floor for the first time, are characterized by low Ag content in the cores and high Ag content in the outer rims, reflecting variation in formation conditions.  相似文献   

16.
The mechanics of water retention in unsaturated granular media is of critical importance to a broad range of disciplines including soil science, geotechnical engineering, hydrology and agriculture. Fundamental to water retention is the relationship between degree of saturation and suction, referred to as the water retention curve (WRC). The majority of WRC models are empirically based and seldom incorporate physically meaningful parameters. This study presents an analytical model for the WRC that considers separate contributions from fully filled pores and partially filled pores containing liquid bridges. A recently established unique k-gamma pore volume distribution function for randomly assembled monodisperse granular materials is adopted to determine the contributions of fully filled pores. Calculation of the contribution of residual pore water retained in partially filled pores is undertaken by representing pores as individual cells shaped as platonic shapes of various sizes and determining the volume of all liquid bridges suspended between particles within the pore cells. Weighting factors for the various cell types are obtained from the pore volume distribution to determine the relative contribution of different pore cell geometries to the total residual pore water. The combined model accurately describes experimental data for monodisperse spherical glass beads for both wetting and drying, even though the underlying assumptions do not reflect exactly the complex, interconnected and highly irregular geometry of the pore space. A single parameter provides the lateral shift between the wetting and drying curves. The results of this study provide a geometric understanding of the mechanisms of water retention in granular media.  相似文献   

17.
Air sparging (AS) is an in situ soil/groundwater remediation technology, which involves the injection of pressurized air/oxygen through an air sparging well below the zone of contamination. Characterizing the mechanisms governing movement of air through saturated porous media is critical for the design of an effective cleanup treatment system. In this research, micromechanical investigation was performed to understand the physics of air migration and subsequent spatial distribution of air at pore scale during air sparging. The void space in the porous medium was first characterized by pore network consisting of connected pore bodies and bonds. The biconical abscissa asymmetric concentric bond was used to describe the connection between two adjacent pore bodies. Then a rule‐based dynamic two‐phase flow model was developed and applied to the pore network model. A forward integration of time was performed using the Euler scheme. For each time step, the effective viscosity of the fluid was calculated based on fractions of two phases in each bond, and capillary pressures across the menisci was considered to compute the pressure field. The developed dynamic model was used to study the rate‐dependent drainage during air sparging. The effect of the capillary number and geometrical properties of the network on the dynamic flow properties of two‐phase flow including residual saturation, spatial distribution of air and water, dynamic phase transitions, and relative permeability‐capillary pressure curves were systematically investigated. Results showed that all the above information for describing the air water two‐phase flow are not intrinsic properties of the porous medium but are affected by the two‐phase flow dynamics and spatial distribution of each phase, providing new insight to air sparging. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
We have investigated the geochemical pattern of fluid infiltration in the extensional detachment of Tinos Island (Cyclades, Greece). Ion microprobe O-isotope analyses and fluid inclusion studies have been conducted in strain fringes developing around pyrite blasts in the mylonite of the shear zone. Micro-scale traverses in quartz and calcite fibres show that δ18O increases from 17–18 to 20–21‰ in 1 mm towards the blast, drops of 3‰ in ∼200 μm, then rises again in the direction of growth. δ18O variations are interpreted as transient influxes of exotic fluids into the shear zone between periods of closed system buffering by the host rock. Fluid inclusions trapped in the fibres show fluctuating salinities (0–4 wt% NaCl eq.) and densities that reflect drops of the pore pressure from lithostatic (λ=1) to hydrostatic (λ=0.4) values during fringe growth. Isotopic and microthermometric data are consistent with models of seismic pumping developed for compressive shear zones. We therefore suggest that co-seismic pore pressure variations developed suction forces sufficient to drive large-scale fluid migration in the Tinos detachment, as in convergent tectonic settings.  相似文献   

19.
孔隙作为软土的重要组成单元,在软土性质发生改变时其变化最直接、最明显。研究软土固结过程中孔隙演化特征,对于认识软土排水固结机制具有重要理论意义。本文对大亚湾饱和细粒土在梯度压力下的孔隙结构进行微纳米尺度定量分析:将圆柱形土样进行真空冷冻升华干燥,利用同步辐射显微CT获取分辨率1.625μm的二维切片,应用Avizo软件的灰度阈值截断法将二维切片重建三维结构,采用形态学算法对三维孔隙结构进行量化和表征。研究表明:自沉状态下超过90%孔隙的等效直径为4~10μm,只有少数孔隙的等效直径大于40μm;土样在100kPa压力作用后,大孔隙数量迅速减小,小孔隙数量迅速增加,表明初始状态下孔隙对压力最为敏感;大中孔隙容易被压缩消灭或被分裂为小微孔隙;随压力增加孔径变化趋于平缓,小孔隙和微孔隙占优势,孔隙的抗压能力与大小成反比。经梯度压力作用后土体从絮凝结构逐渐变成片叠结构,颗粒之间平行排斥,孔隙丰度逐渐减小,形状变得细长,方向趋于水平。本研究利用同步辐射显微CT技术结合三维可视化软件Avizo,建立具有真实孔隙结构特征的软土三维模型,从微纳米尺度分析了饱和细粒土的固结蠕变机理。  相似文献   

20.
The Youjiang basin, which flanks the southwest edge of the Yangtze craton in South China, contains many Carlin-type gold deposits and abundant paleo-oil reservoirs. The gold deposits and paleo-oil reservoirs are restricted to the same tectonic units, commonly at the basinal margins and within the intrabasinal isolated platforms and/or bioherms. The gold deposits are hosted by Permian to Triassic carbonate and siliciclastic rocks that typically contain high contents of organic carbon. Paragenetic relationships indicate that most of the deposits exhibit an early stage of barren quartz ± pyrite (stage I), a main stage of auriferous quartz + arsenian pyrite + arsenopyrite + marcasite (stage II), and a late stage of quartz + calcite + realgar ± orpiment ± native arsenic ± stibnite ± cinnabar ± dolomite (stage III). Bitumen in the gold deposits is commonly present as a migrated hydrocarbon product in mineralized host rocks, particularly close to high grade ores, but is absent in barren sedimentary rocks. Bitumen dispersed in the mineralized rocks is closely associated and/or intergrown with the main stage jasperoidal quartz, arsenian pyrite, and arsenopyrite. Bitumen occurring in hydrothermal veins and veinlets is paragenetically associated with stages II and III mineral assemblages. These observations suggest an intimate relationship between bitumen precipitation and gold mineralization. In the paleo-petroleum reservoirs that typically occur in Permian reef limestones, bitumen is most commonly observed in open spaces, either alone or associated with calcite. Where bitumen occurs with calcite, it is typically concentrated along pore/vein centers as well as along the wall of pores and fractures, indicating approximately coeval precipitation. In the gold deposits, aqueous fluid inclusions are dominant in the early stage barren quartz veins (stage I), with a homogenization temperature range typically of 230°C to 270°C and a salinity range of 2.6 to 7.2 wt% NaCl eq. Fluid inclusions in the main and late-stage quartz and calcite are dominated by aqueous inclusions as well as hydrocarbon- and CO2-rich inclusions. The presence of abundant hydrocarbon fluid inclusions in the gold deposits provides evidence that at least during main periods of the hydrothermal activity responsible for gold mineralization, the ore fluids consisted of an aqueous solution and an immiscible hydrocarbon phase. Aqueous inclusions in the main stage quartz associated with gold mineralization (stage II) typically have a homogenization temperature range of 200–230°C and a modal salinity around 5.3 wt% NaCl eq. Homogenization temperatures and salinities of aqueous inclusions in the late-stage drusy quartz and calcite (stage III) typically range from 120°C to 160°C and from 2.0 to 5.6 wt% NaCl eq., respectively. In the paleo-oil reservoirs, aqueous fluid inclusions with an average homogenization temperature of 80°C are dominant in early diagenetic calcite. Fluid inclusions in late diagenetic pore- and fissure-filling calcite associated with bitumen are dominated by liquid C2H6, vapor CH4, CH4–H2O, and aqueous inclusions, with a typical homogenization temperature range of 90°C to 180°C and a salinity range of 2–8 wt% NaCl eq. It is suggested that the hydrocarbons may have been trapped at relatively low temperatures, while the formation of gold deposits could have occurred under a wider and higher range of temperatures. The timing of gold mineralization in the Youjiang basin is still in dispute and a wide range of ages has been reported for individual deposits. Among the limited isotopic data, the Rb–Sr date of 206 ± 12 Ma for Au-bearing hydrothermal sericite at Jinya as well as the Re–Os date of 193 ± 13 Ma on auriferous arsenian pyrite and 40Ar/39Ar date of 194.6 ± 2 Ma on vein-filling sericite at Lannigou may provide the most reliable age constraints on gold mineralization. This age range is comparable with the estimated petroleum charging age range of 238–185 Ma and the Sm–Nd date of 182 ± 21 Ma for the pore- and fissure-filling calcite associated with bitumen at the Shitouzhai paleo-oil reservoir, corresponding to the late Indosinian to early Yanshanian orogenies in South China. The close association of Carlin-type gold deposits and paleo-oil reservoirs, the paragenetic coexistence of bitumens with ore-stage minerals, the presence of abundant hydrocarbons in the ore fluids, and the temporal coincidence of gold mineralization and hydrocarbon accumulation all support a coeval model in which the gold originated, migrated, and precipitated along with the hydrocarbons in an immiscible, gold- and hydrocarbon-bearing, basinal fluid system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号