首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The advent of ALMA is bound to improve our knowledge of OB star formation dramatically. Here, we present an overview of this topic outlining how high angular resolution and sensitivity may contribute to shed light on the structure of high-mass star forming regions and hence on the process itself of massive star formation. The impact of this new generation instrument will range from establishing the mass function of pre-stellar cores inside IR-dark clouds, to investigating the kinematics of the gas from which OB stars are built up, to assessing or ruling out the existence of circumstellar accretion disks in these objects.  相似文献   

2.
This review presents recent results on protoplanetary disks obtained from angularly resolved observations. Observations with mm arrays show that disks are in Keplerian rotation, with radius as large as 1000 AU. Optical images show disks to be flared. Both type of observations imply the dust in disk has evolved and grown from interstellar dust. Measurement of the gas temperature from CO isotopes indicate temperature gradient, consistent with the disk flaring and heating by the central star. Disks which appear to have started to dissipate their initial gas content have also been discovered, but their very diverse aspects leaves the dissipation process unclear. Current data mostly concern the outer disk (>50 AU), although near-IR interferometry has started to unveil the innermost regions (<1 AU). The next generation of instruments (MIDI on VLTI, ALMA) will allow to probe the intermediate regime, where planet formation is expected to occur.  相似文献   

3.
This paper presents a prospect for the observations of comets with ALMA. Thanks to unprecedented sensitivity, angular resolution and instantaneous uv-coverage, key measurements on a number of topics related to the chemical and physical properties of the coma and the nucleus will be obtained. These include (1) the identification of new molecular species and measurements of key isotopic ratios, (2) measurements of the composition of short-period comets coming from the trans-Neptunian scattered disc, to investigate chemical diversity within the whole comet population, (3) imaging of gas jets and their relationship with dust features, (4) the study of extended sources of gas in the coma, and (5) the study of the physical and outgassing properties of the nucleus.  相似文献   

4.
In this lecture, we review the properties of protoplanetary disks as derived from high angular resolution observations at millimeter wavelengths. We discuss how the combination of several different high angular resolution techniques allow us to probe different regions of the disk around young stellar objects and to derive the properties of the dust when combined with sophisticated disk models. The picture that emerges is that the dust in circumstellar disks surrounding pre-main sequence stars is in many cases significantly evolved compared to the dust in molecular clouds and the interstellar medium. It is however still difficult to derive a consistent picture and timeline for dust evolution in disks as the observations are still limited to small samples of objects.We also review the evidence for and properties of disks around high-mass young stellar objects and the implications on their formation mechanisms. The study of massive YSOs is complicated by their short lifetimes and larger average distances. In most cases high angular resolution data at millimeter wavelengths are the only method to probe the structure of disks in these objects.We provide a summary of the characteristics of available high angular resolution millimeter and submillimeter observatories. We also describe the characteristics of the ALMA observatory being constructed in the Chilean Andes. ALMA is going to be the world leading observatory at millimeter wavelengths in the coming decades, the project is now in its main construction phase with early science activities envisaged for 2010 and full science operations for 2012.  相似文献   

5.
Protoplanetary disks are the most probable sites where planet formation takes place. According to theory, planet formation in protoplanetary disks should show remarkable signatures, such as a gap/hole or a spiral structure. In fact, recent high-angular and high-sensitivity observations in millimeter and submillimeter wavelengths, as well as optical/near-IR wavelengths, have shown such structures in protoplanetary disks. Two particular examples of such disks around AB Aurigae and HD 142527 are discussed here, with an emphasis on results obtained using the Submillimeter Array. These disks—and their probable planet formation—will be very important future targets for ALMA to study the physical process of planet formation in detail.  相似文献   

6.
Among the observed circumstellar dust envelopes a certain population, planetary debris disks, is ascribed to systems with optically thin dust disks and low gas content. These systems contain planetesimals and possibly planets and are believed to be systems that are most similar to our solar system in an early evolutionary stage. Planetary debris disks have been identified in large numbers by a brightness excess in the near-infrared, mid-infrared and/or submillimetre range of their stellar spectral energy distributions. In some cases, spatially resolved observations are possible and reveal complex spatial structures. Acting forces and physical processes are similar to those in the solar system dust cloud, but the observational approach is obviously quite different: overall spatial distributions for systems of different ages for the planetary debris disks, as opposed to detailed local information in the case of the solar system. Comparison with the processes of dust formation and evolution observed in the solar system therefore helps understand the planetary debris disks. In this paper, we review our present knowledge of observations, acting forces, and major physical interactions of the dust in the solar system and in similar extra-solar planetary systems.  相似文献   

7.
ALMA provides unprecedented sensitivity and resolution to study gas and dust emission in the millimeter and submillimeter bands. The magnitude of the improvement is such that not only conventional studies can be done much better but entirely new tools and research fields should also become accessible. In this article, I examine several specific areas where new capabilities of ALMA will bring significant quantitative improvements to the determination of star formation rate and properties of the gas fueling the activities. I propose a survey of nearby galaxies with well measured metallicity gradient during the early phase of the ALMA operation as one of the key science projects.  相似文献   

8.
Dense cores are the simplest star-forming sites that we know, but despite their simplicity, they still hold a number of mysteries that limit our understanding of how solar-type stars form. ALMA promises to revolutionize our knowledge of every stage in the life of a core, from the pre-stellar phase to the final disruption by the newly born star. This contribution presents a brief review of the evolution of dense cores and illustrates particular questions that will greatly benefit from the increase in resolution and sensitivity expected from ALMA.  相似文献   

9.
In this work, we model the expected molecular emission from protoplanetary disks, modifying different physical parameters, such as dust grain size, mass accretion rate, viscosity, and disk radius, to obtain observational signatures in these sources. Having in mind possible future observations, we study correlations between physical parameters and observational characteristics. Our aim is to determine the kind of observations that will allow us to extract information about the physical parameters of disks. We also present prospects for molecular line observations of protoplanetary disks, using millimeter and submillimeter interferometers (e.g., SMA or ALMA), based on our results.  相似文献   

10.
The submillimeter (submm) extragalactic background light (EBL) traces the integrated star formation history throughout the cosmic time. Deep blank-field 850 μm and 1.4 GHz surveys and optical follow-up have been only able to determine the redshift of ∼20% of the submm EBL. The majority (80%) of the submm EBL is still below the confusion and sensitivity limits of current submm and radio instruments. We break through these limits with stacking analyses on our deep 850 μm image in the GOODS-N and find that the submm EBL mostly comes from galaxies at redshifts around 1.0. This redshift is much lower than the redshift of z=2–3 previously implied from radio identified submm sources. This result significantly decreases the number of high redshift galaxies that may be seen by ALMA.  相似文献   

11.
杨辰涛 《天文学报》2019,60(3):104-107
<正>随着亚毫米波望远镜的发展,利用这些新的探测设备,人们在亚毫米波段发现了一类高红移且富含尘埃的星系,将其称为亚毫米星系.这类星系的发现革新了我们对星系的演化以及极端条件下的恒星形成过程的认知.这些亚毫米星系是宇宙中最强的星暴星系,其中的恒星形成过程产生的能量接近爱丁顿极限.人们普遍认为这类星系正是近邻宇宙中那些大质量星系的前身天体.但是,很难解释其在高红移为何具有较高的数密度.它们其中非常少的一部分会被处于视线方向上的大质量星系通过引  相似文献   

12.
Submillimeter observations with ALMA will be the essential next step in our understanding of how stars and planets form. Key projects range from detailed imaging of the collapse of pre-stellar cores and measuring the accretion rate of matter onto deeply embedded protostars, to unravelling the chemistry and dynamics of high-mass star-forming clusters and high-spatial resolution studies of protoplanetary disks down to the 1 AU scale.  相似文献   

13.
We aim at understanding the statistical properties of luminous sub-millimeter (submm) galaxies (SMGs) in the context of cosmological structure formation. By utilizing a cosmological N-body simulation to calculate the distribution of dark halos in the Universe, we consider the dust enrichment in individual halos by Type II supernovae (SNe II). The SN II rate is estimated under a star formation activity which is assumed to occur on a dynamical timescale in the dark matter potential. Our simple framework successfully explains the luminosity function, the typical star formation rate, and the typical dust mass of an observational SMG sample at z~3. We also examine the clustering properties of SMGs, since a positive cross correlation between SMGs and Lyα emitters (LAEs) is indeed observed by a recent observation. In the simulation, we select SMGs by FIR dust luminosity >1012 L , while LAEs are chosen such that the age and the virial mass are consistent with the observed LAE properties. The SMGs and LAEs selected in this way show a spatial cross correlation whose strength is consistent with the observation. This confirms that the SMGs really trace the most clustered regions at z~3 and that their luminosities can be explained by the dust accumulation as a result of their star formation activities. We extend our prediction to higher redshifts, finding that a statistical sample of submm galaxies at z≥6 can be obtained by ALMA with a 100 arcmin2 survey. With the same survey, a few submm galaxies at z~10 may be detected.  相似文献   

14.
Interferometric observations are essential to probe the molecular emission in the inner cometary atmospheres and study the outgassing from the nucleus. Mapping the continuum emission can provide information about the dust and/or nucleus properties. We present here a summary of the observations of the dust and gas coma of comet 17P/Holmes and nuclear observations of 8P/Tuttle, both carried out with the IRAM interferometer at Plateau de Bure (PdBI) in 2007–2008. The observations of these two comets demonstrate the ability of the PdBI in terms of cometary science. In the near future, several improvements will be made (new receivers at 0.8 mm, a new wide-band correlator) allowing more frequent and more detailed studies of comets. On the long term, NOEMA, an expansion project, may add up to six antennas to the Plateau de Bure Interferometer, and increase the baseline lengths. Such an instrument would offer a complement to ALMA to track comets of the northern hemisphere with about half the sensitivity of ALMA for continuum studies.  相似文献   

15.
Star formation is a fundamental process that dominates the life-cycle of various matters in galaxies: Stars are formed in molecular clouds, and the formed stars often affect the surrounding materials strongly via their UV photons, stellar winds, and supernova explosions. It is therefore revealing the distribution and properties of molecular gas in a galaxy is crucial to investigate the star formation history and galaxy evolution. Recent progress in developing millimeter and sub-millimeter wave receiver systems has enabled us to rapidly increase our knowledge on molecular clouds. In this proceedings, the recent results from the surveys of the molecular clouds in the Milky Way and the Magellanic Clouds as well as the Galactic center as the most active regions in the Milky Way are presented. The high sensitivity with unrivaled high resolution of ALMA will play a key role in detecting denser gas that is tightly connected to star formation.  相似文献   

16.
The Atacama Large Millimeter/submillimeter Array, ALMA, combines a large collecting area, very sensitive receivers and a location on a high dry site. ALMA’s sensitivity for continuum measurements is increased with the added feature of an 8 GHz instantaneous bandwidth. Taken together, these four factors provide unparalleled sensitivity in the millimeter/submillimeter wavelength range. With its great sensitivity and angular resolution, ALMA will transform our view of mm/sub-mm astronomy.  相似文献   

17.
We discuss the potential of ALMA for studying the formation of substellar objects. We first review briefly the various formation mechanisms proposed so far and stress the unique capability of ALMA to detect and study pre-brown dwarf cores and to confirm the core-collapse scenario to the lowest possible masses. We then discuss the properties of disks around substellar objects. We show how it will be possible to detect with ALMA most disks around objects with mass as low as few Jupiter masses, and to resolve spatially their emission in the more favorable cases.  相似文献   

18.
Molecular absorption lines measured along the line of sight of distant quasars are important probes of the gas evolution in galaxies as a function of redshift. A review is made of the handful of molecular absorbing systems studied so far, with the present sensitivity of mm instruments. They produce information on the chemistry of the ISM at z~1, the physical state of the gas, in terms of clumpiness, density and temperature. The CMB temperature can be derived as a function of z, and also any possible variations of fundamental constants can be constrained. With the sensitivity of ALMA, many more absorbing systems can be studied, for which some predictions and perspectives are described.  相似文献   

19.
New SCUBA measurements at millimetre wavelengths are presented for a sample of Vega-like stars. Six stars were detected, while sensitive upper limits were obtained for a further 11 sources. Most of the sample selected from a recent catalogue of Vega-like stars have infrared excesses similar to those of the prototype Vega-like stars α Lyr and α PsA. Their IR–submm spectral indices are steep, indicating that the submm emission from the discs is dominated by grains which are smaller than the wavelength of observation and that only small grains exist in those dusty discs. HD 98800 has an IR–submillimetre spectral index of less than two, which suggests that grains have grown to more than 0.3 mm in size. Hipparcos parallax data for HD 42137 and HD 123160 suggest that these two stars are giants rather than dwarfs, similar to the situation previously found for HD 233517. Dust masses, or upper limits, were derived for the sample; these indicate that most of the sources do not have as much dust as Herbig Ae/Be or T Tauri stars, but are likely to have dust masses comparable to those of the prototype Vega-like stars.  相似文献   

20.
If Type II supernovae – the evolutionary end points of short-lived, massive stars – produce a significant quantity of dust  (>0.1 M)  then they can explain the rest-frame far-infrared emission seen in galaxies and quasars in the first Gyr of the Universe. Submillimetre (submm) observations of the Galactic supernova remnant, Cas A, provided the first observational evidence for the formation of significant quantities of dust in Type II supernovae. In this paper, we present new data which show that the submm emission from Cas A is polarized at a level significantly higher than that of its synchrotron emission. The orientation is consistent with that of the magnetic field in Cas A, implying that the polarized submm emission is associated with the remnant. No known mechanism would vary the synchrotron polarization in this way and so we attribute the excess polarized submm flux to cold dust within the remnant, providing fresh evidence that cosmic dust can form rapidly. This is supported by the presence of both polarized and unpolarized dust emission in the north of the remnant where there is no contamination from foreground molecular clouds. The inferred dust polarization fraction is unprecedented  ( f pol∼ 30 per cent)  which, coupled with the brief time-scale available for grain alignment (<300 yr), suggests that supernova dust differs from that seen in other Galactic sources (where   f pol= 2−7  per cent) or that a highly efficient grain alignment process must operate in the environment of a supernova remnant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号