首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seismic observations have shown structural variation near the base of the mantle transition zone(MTZ)where subducted cold slabs,as visualized with high seismic speed anomalies(HSSAs),flatten to form stagnant slabs or sink further into the lower mantle.The different slab behaviors were also accompanied by variation of the "660 km" discontinuity depths and low viscosity layers(LVLs) beneath the MTZ that are suggested by geoid inversion studies.We address that deep water transport by subducted slabs and dehydration from hydrous slabs could affect the physical properties of mantle minerals and govern slab dynamics.A systematic series of three-dimensional numerical simulation has been conducted to examine the effects of viscosity reduction or contrast between slab materials on slab behaviors near the base of the MTZ.We found that the viscosity reduction of subducted crustal material leads to a separation of crustal material from the slab main body and its transient stagnation in the MTZ.The once trapped crustal materials in the MTZ eventually sink into the lower mantle within 20-30 My from the start of the plate subduction.The results suggest crustal material recycle in the whole mantle that is consistent with evidence from mantle geochemistry as opposed to a two-layer mantle convection model.Because of the smaller capacity of water content in lower mantle minerals than in MTZ minerals,dehydration should occur at the phase transformation depth,~660 km.The variation of the discontinuity depths and highly localized low seismic speed anomaly(LSSA) zones observed from seismic P waveforms in a relatively high frequency band(~1 Hz) support the hypothesis of dehydration from hydrous slabs at the phase boundary.The LSSAs which correspond to dehydration induced fluids are likely to be very local,given very small hydrogen(H~+) diffusivity associated with subducted slabs.The image of such local LSSA zones embedded in HSSAs may not be necessarily captured in tomography studies.The high electrical conductivity in the MTZ beneath the northwestern Pacific subduction zone does not necessarily require a broad range of high water content homogeneously.  相似文献   

2.
大陆深俯冲的最大深度——来自数值模拟实验的结果   总被引:1,自引:0,他引:1  
采用粘弹性材料8块体有限元模型并设定温度场后进行的大陆深俯冲二维数值模拟表明,在组合载荷(负浮力、洋中脊推力从上到下10~30MPa 和地幔对流拖曳力100MPa)作用下,陆壳俯冲实际垂向位移可达117km,最终俯冲深度达到147km,而洋壳实际垂向位移约162km,最终俯冲深度达到231km;在洋壳、陆壳俯冲到一定深度以前,它们的俯冲速度基本保持不变,表现为洋壳、陆壳底端的位移-时间曲线近似为直线;当俯冲时间超过9Ma,洋壳、陆壳分别达到167km、96km 深度后,俯冲速度会越来越慢。  相似文献   

3.
The paper discusses generation of volatile-bearing plumes in the mantle transition zone(MTZ) in terms of mineral-fluid petrology and their related formation of numerous localities of intra-plate bimodal volcanic series in Central and East Asia.The plume generation in the MTZ can be triggered by the tectonic erosion of continental crust at Pacific-type convergent margins and by the presence of water and carbon dioxide in the mantle.Most probable sources of volatiles are the hyclrated/carbonated sediments and basalts and serpentinite of oceanic slabs,which can be subducted down to the deep mantle.Tectonic erosion of continental crust supplies crustal material enriched in uranium and thorium into the mantle,which can serve source of heat in the MTZ.The heating in the MTZ induces melting of subducted slabs and continental crust and mantle upwelling,to produce OIB-type mafic and felsic melts,respectively.  相似文献   

4.
Preservation/exhumation of ultrahigh-pressure subduction complexes   总被引:14,自引:0,他引:14  
W.G. Ernst   《Lithos》2006,92(3-4):321-335
Ultrahigh-pressure (UHP) metamorphic terranes reflect subduction of continental crust to depths of 90–140 km in Phanerozoic contractional orogens. Rocks are intensely overprinted by lower pressure mineral assemblages; traces of relict UHP phases are preserved only under kinetically inhibiting circumstances. Most UHP complexes present in the upper crust are thin, imbricate sheets consisting chiefly of felsic units ± serpentinites; dense mafic and peridotitic rocks make up less than  10% of each exhumed subduction complex. Roundtrip prograde–retrograde PT paths are completed in 10–20 Myr, and rates of ascent to mid-crustal levels approximate descent velocities. Late-stage domical uplifts typify many UHP complexes.

Sialic crust may be deeply subducted, reflecting profound underflow of an oceanic plate prior to collisional suturing. Exhumation involves decompression through the PT stability fields of lower pressure metamorphic facies. Scattered UHP relics are retained in strong, refractory, watertight host minerals (e.g., zircon, pyroxene, garnet) typified by low rates of intracrystalline diffusion. Isolation of such inclusions from the recrystallizing rock matrix impedes back reaction. Thin-aspect ratio, ductile-deformed nappes are formed in the subduction zone; heat is conducted away from UHP complexes as they rise along the subduction channel. The low aggregate density of continental crust is much less than that of the mantle it displaces during underflow; its rapid ascent to mid-crustal levels is driven by buoyancy. Return to shallow levels does not require removal of the overlying mantle wedge. Late-stage underplating, structural contraction, tectonic aneurysms and/or plate shallowing convey mid-crustal UHP décollements surfaceward in domical uplifts where they are exposed by erosion. Unless these situations are mutually satisfied, UHP complexes are completely transformed to low-pressure assemblages, obliterating all evidence of profound subduction.  相似文献   


5.
周华伟  林清良 《地学前缘》2002,9(4):285-292
文中介绍有关西藏—喜马拉雅碰撞带的一项地震层析成像研究。根据一个用天然地震数据产生的全球波速模型 ,印度板块有可能以近水平状俯冲于整个西藏高原之下至 16 5~ 2 6 0km深度。西藏岩石圈具有低波速地壳和高波速下岩石圈 (75~ 12 0km深 )。在 12 0~ 16 5km深度范围 ,西藏岩石圈与俯冲的印度板块之间有一层低速软流圈物质。高原中部从地表到 310km深处有一低速体 ,说明地幔物质有可能穿过俯冲板块的脆弱部位上隆。这些结果以及野外实测的地壳缩短值说明高原的抬升得助于印度板块的近水平俯冲。我们推论俯冲印度板块的升温上浮以及上覆软流层的存在是造成西藏高原高海拔抬升以及内部地表仍相对平坦的主要原因。2 0 0 1年 1月 2 6日在印度西部发生的毁灭性大地震有可能是俯冲应力在印度板块后缘薄弱处引发的岩石圈大断裂。  相似文献   

6.
The evolution of an active continental margin is simulated in two dimensions, using a finite difference thermomechanical code with half-staggered grid and marker-in-cell technique. The effect of mechanical properties, changing as a function of P and T, assigned to different crustal layers and mantle materials in the simple starting structure is discussed for a set of numerical models. For each model, representative PT paths are displayed for selected markers. Both the intensity of subduction erosion and the size of the frontal accretionary wedge are strongly dependent on the rheology chosen for the overriding continental crust. Tectonically eroded upper and lower continental crust is carried down to form a broad orogenic wedge, intermingling with detached oceanic crust and sediments from the subducted plate and hydrated mantle material from the overriding plate. A small portion of the continental crust and trench sediments is carried further down into a narrow subduction channel, intermingling with oceanic crust and hydrated mantle material, and to some extent extruded to the rear of the orogenic wedge underplating the overriding continental crust. The exhumation rates for (ultra)high pressure rocks can exceed subduction and burial rates by a factor of 1.5–3, when forced return flow in the hanging wall portion of the self-organizing subduction channel is focused. The simulations suggest that a minimum rate of subduction is required for the formation of a subduction channel, because buoyancy forces may outweigh drag forces for slow subduction. For a weak upper continental crust, simulated by a high pore pressure coefficient in the brittle regime, the orogenic wedge and megascale melange reach a mid- to upper-crustal position within 10–20 Myr (after 400–600 km of subduction). For a strong upper crust, a continental lid persists over the entire time span covered by the simulation. The structural pattern is similar in all cases, with four zones from trench toward arc: (a) an accretionary complex of low-grade metamorphic sedimentary material; (b) a wedge of mainly continental crust, with medium-grade HP metamorphic overprint, wound up and stretched in a marble cake fashion to appear as nappes with alternating upper and lower crustal provenance, and minor oceanic or hydrated mantle interleaved material; (c) a megascale melange composed of high-pressure and ultrahigh-pressure metamorphic oceanic and continental crust, and hydrated mantle, all extruded from the subduction channel; (d) zone represents the upward tilted frontal part of the remaining upper plate lid in the case of a weak upper crust. The shape of the PT paths and the time scales correspond to those typically recorded in orogenic belts. Comparison of the numerical results with the European Alps reveals some similarities in their gross structural and metamorphic pattern exposed after collision. A similar structure may be developed at depth beneath the forearc of the Andes, where the importance of subduction erosion is well documented, and where a strong upper crust forms a stable lid.  相似文献   

7.
戴立群  赵子福 《地球科学》2019,44(12):4128-4134
在大陆碰撞造山带中寻找消失的古洋壳再循环及其壳幔相互作用的证据,对理解从洋壳俯冲到陆壳俯冲化学地球动力学过程的转变,以及板块构造理论的发展具有重要意义.通过对桐柏-红安造山带晚古生代和晚中生代镁铁质岩浆岩的岩石地球化学特征进行总结,可以识别出俯冲古洋壳再循环的岩石学和地球化学记录.晚古生代岛弧型镁铁质岩石具有弧型微量元素特征和相对亏损的放射成因同位素组成,记录了俯冲古洋壳在弧下深度(80~160 km)的流体交代作用;而晚中生代洋岛型镁铁质岩石OIB型微量元素特征和亏损-弱富集的放射成因同位素组成,记录了俯冲古洋壳在弧后深度(>200 km)的熔体交代作用.这一定性的解释也进一步得到了定量计算的证实,其结果表明镁铁质岩浆岩中的不相容元素的含量以及放射性成因同位素的富集程度,主要受控于地幔源区中所加入的地壳组分的性质和比例.因此,碰撞造山带中的岛弧型和洋岛型镁铁质岩浆岩,分别记录了弧下和弧后深度的俯冲古洋壳物质再循环.   相似文献   

8.
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical fo  相似文献   

9.
大陆俯冲过程中的流体   总被引:5,自引:1,他引:5  
李曙光  侯振辉 《地学前缘》2001,8(3):123-129
含水矿物矿物稳定性的实验研究和超高压岩石的同位素地球化学研究表明 ,大陆地壳在俯冲过程中 ,随着变质程度的升高和部分含水矿物的相继分解 ,会有流体释放出来。当俯冲深度接近5 0km ,俯冲陆壳岩石中大量低级变质含水矿物 (如绿泥石、绿帘石、阳起石 )会脱水并从俯冲陆壳逸出形成流体流。这一流体流可溶解带走俯冲陆壳内已从云母类矿物逸出的放射成因Ar及部分U、Pb ,并导致w(U) /w(Pb)升高。这一阶段逸出的流体有可能交代、水化仰冲壳楔 ,为其发生部分熔融形成同碰撞花岗岩或加速山根下地壳的榴辉岩化创造条件。在俯冲深度为 5 0~ 10 0km ,变镁铁质岩石中的角闪石相继分解并释放出H2 O。由于变镁铁质岩石在陆壳中所占比例较少 ,因此 ,这一阶段释放的水不能形成大规模的流体流 ,因而不能使体系内的过剩Ar大量散失 ,但足以形成局部循环 ,加速变镁铁质岩石及其互层或邻近围岩的榴辉岩化变质反应。在俯冲深度 >10 0km的超高压变质阶段 ,仅有少量的含水矿物分解 ,而多硅白云母仍保持稳定。这时俯冲陆壳内只可能有少量粒间水存在 ,从而导致俯冲陆壳与周围软流圈地幔不能发生充分的相互作用。  相似文献   

10.
《Gondwana Research》2014,25(3-4):1080-1090
Geological studies have suggested that a significant amount of crustal material has been lost from the surface due to delamination, continental collision, and subduction at oceanic–continental convergent margins. If so, then the subducted crustal materials are expected to be trapped in the mid-mantle due to the density difference from peridotitic materials induced by the phase transition from coesite to stishovite. In order to study the effect of the subducted granitic materials floating around the mantle transition zone, we conducted two-dimensional numerical experiments of mantle convection incorporating a continental drift with a heat source placed around the bottom of the mantle transition zone. The simulations deal with a time-dependent convection of fluid under the extended Boussinesq approximation in a model of a two-dimensional rectangular box with a height of 2900 km and a width of 11,600 km, where a continent with a length of 2900 km and heat source below the continent are imposed. We found that the addition of heat source in the mantle transition zone considerably enhances the onset of upwelling plumes in the upper mantle, which further reduces the time scale of continental drift. The heat source also causes massive mechanical mixing, especially in the upper mantle. The results suggest that the heat source floating around the mantle transition zone can be a possible candidate for inducing the supercontinent cycle.  相似文献   

11.
It is proposed that major continental collision normally causes two orogenies. The first is characterized by ophiolite obduction, and the second by widespread deformation, often accompanied by metamorphism and granite intrusion. The two orogenies are separated by a relatively quiescent orogenic pause of 40–60 Ma. The two stages of continental collision are illustrated by examples from the Paleozoic Newfoundland Appalachians, and the Mesozoic-Cenozoic Tethyan collision belts of the Zagros and Himalayas.

The stages of continental collision are explained in terms of the forces driving plate motions, which are dominated by the downward pull of subducting oceanic lithosphere and, to a lesser extent, by the outward push of spreading oceanic ridges.

The Taconic stage marks attempted subduction of continental crust. The buoyancy of continental crust offsets the negative buoyancy of subducting oceanic lithosphere and other driving forces so that plate motion is halted. Orogeny involves vertical buoyancy forces and is concentrated along the narrow belt of plate overlap at the subduction zone.

In a major collision the Taconic stage destroys a substantial proportion of the earth's subducting capacity. It is an event of such magnitude that it has global consequences, reducing sea-floor spreading and the rate of convection. This results in retention of heat within the earth and a consequent increase in the forces driving the plates. The orogenic pause represents the time taken for these forces to become strong enough to overcome the obstruction of buoyant continental crust and renew subduction at the collision zone.

The Acadian stage of collision occurs when renewed subduction is achieved by detachment of continental crust from its underlying lithosphere. As the subcrustal lithosphere is subducted, the crust moves horizontally. The result is crustal shortening with widespread deformation and generation of anatectic granitic magma, as well as subduction related volcanism.

The effects of continental collision on the rate of sea-floor spreading can be related to eustatic changes in sea level, glaciations, and mass extinctions. There may also be connections, through changes in the rate of mantle convection, to the earth's magnetic polarity bias and rotation rate.  相似文献   


12.
《Gondwana Research》2014,25(2):494-508
Large segments of the continental crust are known to have formed through the amalgamation of oceanic plateaus and continental fragments. However, mechanisms responsible for terrane accretion remain poorly understood. We have therefore analysed the interactions of oceanic plateaus with the leading edge of the continental margin using a thermomechanical–petrological model of an oceanic-continental subduction zone with spontaneously moving plates. This model includes partial melting of crustal and mantle lithologies and accounts for complex rheological behaviour including viscous creep and plastic yielding. Our results indicate that oceanic plateaus may either be lost by subduction or accreted onto continental margins. Complete subduction of oceanic plateaus is common in models with old (> 40 Ma) oceanic lithosphere whereas models with younger lithosphere often result in terrane accretion. Three distinct modes of terrane accretion were identified depending on the rheological structure of the lower crust and oceanic cooling age: frontal plateau accretion, basal plateau accretion and underplating plateaus.Complete plateau subduction is associated with a sharp uplift of the forearc region and the formation of a basin further landward, followed by topographic relaxation. All crustal material is lost by subduction and crustal growth is solely attributed to partial melting of the mantle.Frontal plateau accretion leads to crustal thickening and the formation of thrust and fold belts, since oceanic plateaus are docked onto the continental margin. Strong deformation leads to slab break off, which eventually terminates subduction, shortly after the collisional stage has been reached. Crustal parts that have been sheared off during detachment melt at depth and modify the composition of the overlying continental crust.Basal plateau accretion scrapes oceanic plateaus off the downgoing slab, enabling the outward migration of the subduction zone. New incoming oceanic crust underthrusts the fractured terrane and forms a new subduction zone behind the accreted terrane. Subsequently, hot asthenosphere rises into the newly formed subduction zone and allows for extensive partial melting of crustal rocks, located at the slab interface, and only minor parts of the former oceanic plateau remain unmodified.Oceanic plateaus may also underplate the continental crust after being subducted to mantle depth. (U)HP terranes are formed with peak metamorphic temperatures of 400–700 °C prior to slab break off and subsequent exhumation. Rapid and coherent exhumation through the mantle along the former subduction zone at rates comparable to plate tectonic velocities is followed by somewhat slower rates at crustal levels, accompanied by crustal flow, structural reworking and syndeformational partial melting. Exhumation of these large crustal volumes leads to a sharp surface uplift.  相似文献   

13.
超高压变质岩生成问题中解决低密度大陆地壳深俯冲力学机制是一个关键问题。虽然俯冲地幔岩石可以裹携十几千米乃至几十千米尺度的陆壳块体到超高压变质深度,大规模的陆壳深俯冲需要特殊的构造条件。新西兰南岛北端研究表明,俯冲大洋板块能携带宽度达150km左右的窄条陆壳克服浮力达到超高压变质深度,而大陆板块碰撞的主体则浮在岩石圈上形成走滑断层。苏鲁-大别可能曾存在类似的构造条件:苏鲁西侧俯冲海洋板片首先拖曳苏鲁陆壳俯冲到超高压变质深度;随后大别以西俯冲大洋板片拖曳大别至超高压变质深度,而陆壳浮力导致苏鲁陆壳停止俯冲,飘浮的陆壳被北推而形成郯庐断裂;秦岭陆陆碰撞造山后大别超高压陆壳也折返;秦岭作为典型造山带,虽然不排除零星超高压变质的可能,但不具备大规模超高压变质的条件。  相似文献   

14.
为探讨水流体活动对板块俯冲隧道过程及大陆碰撞造山的制约作用,采用热力学和动力学耦合的数值模拟方法,建立了系统的数值模型.结果显示俯冲隧道内的混杂岩存在两种不同的折返路径:(1)平行于俯冲隧道斜向上折返,形成靠近缝合带的高压-超高压变质岩;(2)近垂直穿过上覆地幔楔侵入地壳深度.这两种差异性的模式主要受控于俯冲带热结构.俯冲带的温度结构控制俯冲隧道内水流体和熔体活动,从而影响上覆地幔楔的弱化程度,最终导致俯冲带内物质的不同运移过程和折返路径.同时,大陆俯冲碰撞带的岩石圈变形和拆沉作用均与俯冲带的流体-熔体活动所导致的岩石圈弱化息息相关.数值模拟结果极大促进了对于板块俯冲带流体-熔体活动及其动力学过程的理解.   相似文献   

15.
俯冲物质深地幔循环——地球动力学研究的一个新方向   总被引:1,自引:0,他引:1  
地球上发生的各种地壳运动,大规模的火山喷发,不同深度不同规模的地震活动,规模宏大的山脉和高原的形成,以及地球历史上发生的大陆漂移运动,都被认为与板块构造活动密切相关。但这些运动的动力源究竟来自何方?如何去发现和证明它们的存在以及从理论上去认识和解释,是当今地球科学面临的巨大挑战,也是今后很长一段时间内地球科学的前沿和热点问题。近些年,人们通过各种方法,试图从更深部寻找板块作用动力学的证据。首先是地震层析研究取得了很大进展,获得了许多区域性和全球的高分辨率3-D地震地幔波速结构,使得我们得以认识地球深部的结构,探讨地幔的物质组成,流体的作用和动力学过程。证据显示,板块俯冲不仅可以到达地幔过渡带深度,而且可达到下地幔底部,堆积在核幔边界的上部,成为核幔边界产生的地幔柱的重要物质组成。其次是开展了大量的实验岩石学研究,模拟了一系列地球深部的高温高压矿物组合,被认为可能代表了地幔过渡带和下地幔的矿物组合,甚至核幔边界的含水矿物组合。另一方面,计算机模拟实验揭示了冷的大洋岩石圈发生深俯冲是可行的。尤为重要的是,许多来自地幔过渡带甚至下地幔深度的高压矿物已经在自然界陆续被发现,证明其中一些矿物是源...  相似文献   

16.
The convex form of subduction-stage pressure–temperature ( P–T ) paths up to c. 2.0 GPa implies the Sambagawa high- P metamorphic belt, Japan, formed a few million years before ridge subduction. Additional compilation of P–T conditions for higher- P Sambagawa rocks ( c. 2.0–2.5 GPa) reveals that the thermal profile along the slab surface shows a remarkable high- T -ward warping at c. 2.0 GPa ( c. 65 km). Previous thermal models indicate that this warping corresponds to the onset of induced mantle flow towards the subducting slab. If a normal thickness continental crust of c. 30 km was present, this implies the hangingwall region between 30 and 65 km depth was occupied by serpentinized wedge mantle isolated from large-scale mantle flow. Subsequent arrival of the spreading ridge, reheating and dehydration of the serpentinized wedge probably supplied the water necessary for causing granitic magmatism in the Ryoke high- T metamorphic belt, which is paired with the Sambagawa belt.  相似文献   

17.
Garnet‐bearing peridotite lenses are minor but significant components of most metamorphic terranes characterized by high‐temperature eclogite facies assemblages. Most peridotite intrudes when slabs of continental crust are subducted deeply (60–120 km) into the mantle, usually by following oceanic lithosphere down an established subduction zone. Peridotite is transferred from the resulting mantle wedge into the crustal footwall through brittle and/or ductile mechanisms. These ‘mantle’ peridotites vary petrographically, chemically, isotopically, chronologically and thermobarometrically from orogen to orogen, within orogens and even within individual terranes. The variations reflect: (1) derivation from different mantle sources (oceanic or continental lithosphere, asthenosphere); (2) perturbations while the mantle wedges were above subducting oceanic lithosphere; and (3) changes within the host crustal slabs during intrusion, subduction and exhumation. Peridotite caught within mantle wedges above oceanic subduction zones will tend to recrystallize and be contaminated by fluids derived from the subducting oceanic crust. These ‘subduction zone peridotites’ intrude during the subsequent subduction of continental crust. Low‐pressure protoliths introduced at shallow (serpentinite, plagioclase peridotite) and intermediate (spinel peridotite) mantle depths (20–50 km) may be carried to deeper levels within the host slab and undergo high‐pressure metamorphism along with the enclosing rocks. If subducted deeply enough, the peridotites will develop garnet‐bearing assemblages that are isofacial with, and give the same recrystallization ages as, the eclogite facies country rocks. Peridotites introduced at deeper levels (50–120 km) may already contain garnet when they intrude and will not necessarily be isofacial or isochronous with the enclosing crustal rocks. Some garnet peridotites recrystallize from spinel peridotite precursors at very high temperatures (c. 1200 °C) and may derive ultimately from the asthenosphere. Other peridotites are from old (>1 Ga), cold (c. 850 °C), subcontinental mantle (‘relict peridotites’) and seem to require the development of major intra‐cratonic faults to effect their intrusion.  相似文献   

18.
Seismic imaging of lithospheric discontinuities and continental evolution   总被引:1,自引:0,他引:1  
M. G. Bostock 《Lithos》1999,48(1-4):1-16
Discontinuities in physical properties within the continental lithosphere reflect a range of processes that have contributed to craton stabilization and evolution. A survey of recent seismological studies concerning lithospheric discontinuities is made in an attempt to document their essential characteristics. Results from long-period seismology are inconsistent with the presence of continuous, laterally invariant, isotropic boundaries within the upper mantle at the global scale. At regional scales, two well-defined interfaces termed H (60 km depth) and L (200 km depth) of continental affinity are identified, with the latter boundary generally exhibiting an anisotropic character. Long-range refraction profiles are frequently characterized by subcontinental mantle that exhibits a complex stratification within the top 200 km. The shallow layering of this package can behave as an imperfect waveguide giving rise to the so-called teleseismic Pn phase, while the L-discontinuity may define its lower base as the culmination of a low velocity zone. High-resolution, seismic reflection profiling provides sufficient detail in a number of cases to document the merging of mantle interfaces into lower continental crust below former collisional sutures and magmatic arcs, thus unambiguously identifying some lithospheric discontinuities with thrust faults and subducted oceanic lithosphere. Collectively, these and other seismic observations point to a continental lithosphere whose internal structure is dominated by a laterally variable, subhorizontal layering. This stratigraphy appears to be more pronounced at shallower lithospheric levels, includes dense, anisotropic layers of order 10 km in thickness, and exhibits horizontal correlation lengths comparable to the lateral dimensions of overlying crustal blocks. A model of craton evolution which relies on shallow subduction as a principal agent of craton stabilization is shown to be broadly compatible with these characteristics.  相似文献   

19.
青藏高原板内地震震源深度分布规律及其成因   总被引:6,自引:0,他引:6  
青藏高原板内地震以浅源地震为主, 下地壳基本上没有地震, 地震震源多集中在15~40 km的深度范围, 主要在中地壳内, 呈似层状弥散分布.其中30~33 km深度是一个优势层, 与壳内分层有关.总体上青藏高原南、北部的震源面略呈相向倾斜特征.70~100 km深度区间出现了比较集中的震级较小的地震, 可能与壳幔过渡带的拆离作用有关.高原内部的正断层系与板内地震密切相关, 是板内浅源地震的主控构造.总之, 青藏高原地震震源沿着活动的上地壳脆性层与软弱层之间的脆-韧性过渡带分布.这些板内地震活动属于大陆动力学过程, 与板块碰撞和板块俯冲无关.初步认为青藏高原浅层到深层多震层的成因分别是韧性基底与脆性盖层、韧性下地壳与脆性上地壳、韧性下地壳与脆性上地幔的韧-脆性转换、拆离和解耦的产物.   相似文献   

20.
陈意  苏斌  郭顺 《地球科学》2019,44(12):4086-4094
俯冲地壳衍生流体交代地幔楔,是产生俯冲带岩浆作用的重要机制.但是,目前人们对俯冲大陆物质改造地幔楔的岩石学过程和机理仍缺乏深入认识,造山带橄榄岩是解析这一问题的直接样品.通过对大别-苏鲁造山带橄榄岩进行系统的矿物学、岩石学和地球化学研究,发现橄榄石Ni/Co比值可有效区分幔源和壳源造山带橄榄岩,揭示幔源造山带橄榄岩起源于华北岩石圈地幔.苏鲁李家屯纯橄岩在进入俯冲带之前就已在地幔内部经历了碳酸盐熔体交代.大别毛屋和苏鲁蒋庄橄榄岩及其交代脉体记录了约170~200 km深度的俯冲带壳幔相互作用过程.深俯冲陆壳释放的富Si-Al质熔体可不同程度地改造地幔楔底部,形成富石榴石和富辉石的交代岩,并引发强烈的Os同位素分馏效应.该过程不仅改变地幔楔岩性和化学组成,还能够改变交代介质成分,为俯冲带各类深部地幔岩浆提供源区物质.因此,大陆深俯冲是导致上地幔不均一的重要途径.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号