首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
We have carried out zircon U-Pb SHRIMP dating and Hf isotope determinations on a biotite paraschist and on a tonalitic orthogneiss of the Yaminue Complex,and re-evaluate this complex in the broader context of the tectonic evolution of the Patagonia composite terrane.In the metasedimentary unit (msuYC),the youngest detrital zircon dated at 318±5 Ma(Mississippian/Pennsylvanian boundary) indicates a Pennsylvanian(or younger) depositional age.The three main age populations peak at 474,454 and 374 Ma.Preliminary Hf isotope data for two detrital zircons(447 and 655 Ma) yieldedε(Hf) values of -0.32 and 0.48,indicating that their primary sources contained small amounts of recycled crustal components(of Calymmian age;TDM 1.56 Ga).Zircons from the orthogneiss(miuYC;intrusive into msuYC) show a crystallization age of 261.3±2.7 Ma(Capitanian;late middle Permian) which is broadly coeval with deformation,and Neoarchean-Paleoproterozoic inheritance.Meaningful core-rim relationship between Neoarchean zircon cores and late Permian rims is well defined,indicating the occurrence of Archean crust in this sector of Patagonia.Hf TDM of Permian zircons is mainly Meso-Paleoarchean(2.97-3.35 Ga),with highly negativeε(Hf) values(ca.-33).Hf TDM of inherited Neoarchean zircon cores is also Meso-Paleoarchean(3.14-3.45 Ga) but more juvenile(ε(Hf) = -0.3).Hf isotopes reinforce the presence of unexposed ancient crust in this area. Combining geological and isotope data,as well as geophysical models,we identify the Yaminue Complex within the La Esperanza-Yaminue crustal block flanked by two other,distinct crustal blocks:the Eastern block which forms part of the Patagonia terrane sensu stricto,located in the eastern Patagonian region,and the Western block forming part of the Southern Patagonia terrane.Their origins and timing of amalgamation to form the Patagonia composite terrane are also discussed.  相似文献   

2.
New combined U–Pb and Lu–Hf isotope analyses on zircon from three turbidite deposits, and petrologic data for associated igneous rocks were used to study the evolution of the Paleozoic basement of Eastern Cordillera, NW Argentina. Maximum and minimum ages for turbidite deposits, considered to be part of the Puncoviscana Fm., are reported. In the Tastil area, turbidites were deposited in a fore-arc setting after 560 Ma and intruded at 534 Ma by the Tastil batholith. In the El Niño Muerto Hill area turbidites with maximum depositional age of 496 ± 11 Ma were intruded by high-K dacites at 483 ± 3 Ma. In the Río Blanco Valley, the turbiditic/hemipelagitic sediments, with maximum depositional age of 463 ± 11 Ma were contemporaneous with E-MORB/OIB volcanism. The U–Pb and Lu–Hf data permitted to distinguish two major periods of magmatic activity during Late Mesoproterozoic–Early Neoproterozoic (0.95 to 1.2 Ga) and Late Neoproterozoic–Early Paleozoic (0.75 to 0.46 Ga) times, the former dominated by the input of juvenile crust and the latter by arc magmatism and recycling of Meso- to Paleoproterozoic crust. On the basis of new data we suggest that western margin of Gondwana was controlled by subduction processes and accretion of small terrains during Neoproterozoic–Early Paleozoic times.  相似文献   

3.
The Qinling Orogen separating the North China plate from the Yangtze plate is a key area for understanding the timing and process of aggregation between the two plates. Two competing and highly contrasting tectonic models currently exist to explain the timing and nature of collision; one advocates a Devonian continental collision while the other favors a Triassic collision. The Wuguan Complex, between the early Paleozoic North Qinling and the Mesozoic South Qinling terranes, can provide important constraints on the late Paleozoic evolutionary processes of the Qinling Orogen. Metamorphosed sedimentary rock of the Wuguan Complex have a detrital zircon age spectrum with two major peaks at 453 Ma and 800 Ma, several minor age populations of 350–430 Ma and 1000–2868 Ma, and a youngest weighted mean age of 358 ± 3 Ma, indicating a mixed source from the North Qinling terrane. The recrystallized zircons yield a weighted mean age of 333 ± 2 Ma, representing the metamorphic age. Geochemical analyses imply that the sedimentary rocks were originally deposited in an active continental margin dominated by an acidic-arc source with a subordinate mafic-ultramafic source. The youngest population of detrital zircons (358 Ma) suggests that the Wuguan Complex developed as forearc basin along the southern accreted margin of the North Qinling terrane during the early Carboniferous, whereas the ca. 520–460 Ma mafic rocks with E-MORB, N-MORB, OIB or island arc basalt signatures probably derived from the Danfeng Group. In combination with regional data, we suggest that the depositional age of the Wuguan Complex is ca. 389–330 Ma, but it was subsequently incorporated into tectonic mélange by the northward subduction of the Paleo-Qinling Ocean. A long-lived southward-facing subduction-accretionary system in front of the North Qinling terrane probably lasted until at least the early Carboniferous.  相似文献   

4.
International Journal of Earth Sciences - The Neoarchean (ca. 2728 Ma) anorthosite-bearing Doré Lake Complex in the northeastern Abitibi subprovince, Quebec, was emplaced into an...  相似文献   

5.
The Archean granites exposed in the Mesorchean Rio Maria granite-greenstone terrane (RMGGT), southeastern Amazonian craton can be divided into three groups on the basis of petrographic and geochemical data. (1) Potassic leucogranites (Xinguara and Mata Surrão granites), composed dominantly of biotite monzogranites that have high SiO2, K2O, and Rb contents and show fractionated REE patterns with moderate to pronounced negative Eu anomalies. These granites share many features with the low-Ca granite group of the Yilgarn craton and CA2-type of Archean calc-alkaline granites. These granites result from the partial melting of rocks similar to the older TTG of the RMGGT. (2) Leucogranodiorite-granite group (Guarantã suite, Grotão granodiorite, and similar rocks), which is composed of Ba- and Sr-rich rocks which display fractionated REE patterns without significant Eu anomalies and show geochemical affinity with the high-Ca granite group or Transitional TTG of the Yilgarn craton and the CA1-type of Archean calc-alkaline granites. These rocks appear to have been originated from mixing between a Ba- and Sr-enriched granite magma and trondhjemitic liquids or alternatively product of interaction between fluids enriched in K, Sr, and Ba, derived from a metasomatized mantle with older TTG rocks. (3) Amphibole-biotite monzogranites (Rancho de Deus granite) associated with sanukitoid suites. These granites were probably generated by fractional crystallization and differentiation of sanukitoid magmas enriched in Ba and Sr.The emplacement of the granites of the RMGGT occurred during the Mesoarchean (2.87–2.86 Ga). They are approximately coeval with the sanukitoid suites (∼2.87 Ga) and post-dated the main timing of TTG suites formation (2.98–2.92 Ga). The crust of Rio Maria was probably still quite warm at the time when the granite magmas were produced. In these conditions, the underplating in the lower crust of large volumes of sanukitoid magmas may have also contributed with heat inducing the partial melting of crustal protoliths and opening the possibility of complex interactions between different kinds of magmas.  相似文献   

6.
7.
In-situ zircon U–Pb and Hf isotopic analysis via laser ablation microprobe-inductively coupled plasma mass spectrometer (LAM-ICPMS) of samples from Kemp and MacRobertson Lands, east Antarctica suggests that the Kemp Land terrane evolved separately from the rest of the Rayner Complex prior to the ca. 940 Ma Rayner Structural Episode. Several Archaean metamorphic events in rocks from western Kemp Land can be correlated with events previously reported for the adjacent Napier Complex. Recently reported ca. 1,600 Ma isotopic disturbance in rocks from the Oygarden Group may be correlated with a charnockitic intrusion in the Stillwell Hills before ca. 1,550 Ma. Despite being separated by some 200 km, THfDM ages indicate felsic orthogneiss from Rippon Point, the Oygarden Group, Havstein Island and the Stillwell Hills share a ca. 3,660–3,560 Ma source that is indistinguishable from that previously reported for parts of the Napier Complex. More recent additions to this crust include Proterozoic charnockite in the Stillwell Hills and the vicinity of Mawson Station. These plutons have distinct 176Hf/177Hf ratios and formed via the melting of crust generated at ca. 2,150–2,550 Ma and ca. 1,790–1,870 Ma respectively.  相似文献   

8.
Las Lozas volcanic succession, cropping out in the southwestern Puna, Catamarca province, Argentina, consists of an intracontinental volcanic sequence of Carboniferous age. The lavic members are predominantly rhyolites, and subordinated andesites and basalts. The volcaniclastic layers consist of monomictic and polymictic breccias with structures denoting processes of lava fragmentation. They constitute a bimodal suite, ranging from basalts to high silica rhyolites. A new U–Pb SHRIMP age of 320 ± 2 Ma for a rhyolite allows extending the Mississipian magmatism of the region to the lower Pennsylvanian. Hf data point to juvenile sources of Cryogenian age with no evidence of older reworked crustal contamination.  相似文献   

9.
The Ordovician Macquarie Arc in the eastern subprovince of the Lachlan Orogen, southeastern Australia, is an unusual arc that evolved in four vertically stacked volcanic phases over ~ 37 million years, and which is flanked by coeval, craton-derived, passive margin sedimentary terranes dominated by detrital quartz grains. Although these two terranes are marked by a general absence of provenance mixing, LA-ICPMS analysis of U–Pb and Lu–Hf contents in zircon grains in volcaniclastic rocks from 3 phases of the arc demonstrates the same age populations of detrital grains inherited from the Gondwana margin as those that characterise the flanking quartz-rich Ordovician turbidites. Magmatic Phase 1 is older, ~ 480 Ma, and is characterised by detrital zircons grains with ages of ~ 490–540 with negative εHf from 0 to mainly –7.78, 550–625 Ma ages with negative εHf from 0 to ?26.6 and 970–1250 Ma (Grenvillian) with εHf from + 6.47 to ?6.44. We have not as yet identified any magmatic zircons related to Phase 1 volcanism. Small amounts of detrital zircons also occur in Phase 2 (~ 468–455 Ma), hiatus 1 and Phase 4 (~ 449–443 Ma), all of which are dominated by Ordovician magmatic zircons with positive εHf values, indicating derivation from unevolved mantle-derived magmas, consistent with formation in an intraoceanic island arc. Because of the previously obtained positive whole rock εNd values from Phase 1 lavas, we rule out contamination from substrate or subducted sediments. Instead, we suggest that during Phase 1, the Macquarie Arc lay close enough to the Gondwana margin so that volcaniclastic rocks were heavily contaminated by detrital zircon grains shed from granites and Grenvillian mafic rocks mainly from Antarctica (Ross Orogen and East Antarctica) and/or the Delamerian margin of Australia. The reduced nature of a Gondwana population in Phase 2, hiatus 1 and Phase 4 is attributed to opening of a marginal basin between the Gondwana margin and the Macquarie Arc that put it out of reach of all but rare turbiditic currents.  相似文献   

10.
Abstract  This paper determines the crystallization ages of the Xiaotongguanshan quartz monzodiorite and Shatanjiao quartz monzonite porphyry from the Tongling area using the SHRIMP zircon U‐Pb method. The crystallization age of the former is 142.8±1.8 Ma; that of the latter is 151.8±2.6 Ma. These data indicate that they were formed during the Late Jurassic (142.8 to 151.8 Ma). Zoned magma chamber was formed because of double diffusive convection. Therefore, the intrusive sequence of magma is generally from quartz monzonite through quartz monzodiorite to pyroxene monzodiorite, i.e. an inverted sequence.  相似文献   

11.
http://www.sciencedirect.com/science/article/pii/S1674987113000029   总被引:1,自引:0,他引:1  
The Preandean geological configuration of the eastern North Patagonian Massif is established through the use of geological and geophysical analysis.The positive gravity anomalies located near the Atlantic coast are due to 535 and 540 Ma old rocks belonging to the Pampean Orogeny (Precambrian-middle Cambrian),which are widely recognized in central and northern Argentina.The Famatinian Cycle (Ordovician-Devonian) is represented by a Silurian-Devonian marine basin equivalent to those of eastern-central Argentina and South Africa,and which was deformed at the end of the Devonian byan~E-W to WNW-ESE compressional event,part of the Famatinian Orogeny.Containing strong gravity gradients,the NW-SE belt is coincident with fault zones which were originated during the Gondwanide Orogeny.This event also produced NW-SE overthrusting of the Silurian-Devonian sequences and strike-slip faults that displaced blocks in the same direction.This deformation event belongs to the Gondwanide Orogeny that includes movements related to a counterclockwise rotation of blocks in northern Patagonia.The strong negative anomalies located in the western part of the area stem from the presence of rocks of the Jurassic Ca(n)adón Asfalto basin interbedded in the Marifil Complex.These volcaniclastic sequences show mild deformation of accommodation zones in a pre-Jurassic paleorelief.  相似文献   

12.
13.
http://www.sciencedirect.com/science/article/pii/S1674987112000564   总被引:10,自引:0,他引:10  
High-pressure(HP) granulites widely occur as enclaves within tonalite-trondhjemitegranodiorite (TTG) gneisses of the Early Precambrian metamorphic basement in the Shandong Peninsula, southeast part of the North China Craton(NCC).Based on cathodoluminescence(CL),laser Raman spectroscopy and in-situ U-Pb dating,we characterize the zircons from the HP granulites and group them into three main types:inherited(magmatic) zircon,HP metamorphic zircon and retrograde zircon.The inherited zircons with clear or weakly defined magmatic zoning contain inclusions of apatites,and 207Pb/206Pb ages of 2915—2890 Ma and 2763—2510 Ma,correlating with two magmatic events in the Archaean basement. The homogeneous HP metamorphic zircons contain index minerals of high-pressure metamorphism including garnet,clinopyroxene.plagioclase,quartz,rutile and apatite,and yield 207Pb/206Pb ages between 1900 and 1850 Ma,marking the timing of peak HP granulite fades metamorphism.The retrograde zircons contain inclusions of orthopyroxene.plagioclase.quartz,apatite and amphibole.and yield the youngest 207Pb/206Pb ages of 1840—1820 Ma among the three groups,which we correlate to the medium to low-pressure granulite fades retrograde metamorphism.The data presented in this study suggest subduction of Meso- and Neoarchean magmatic protoliths to lower crust depths where they were subjected to HP granulite facies metamorphism during Palaeoproterozoic(1900—1850 Ma).Subsequently, the HP granulites were exhumated to upper crust levels,and were overprinted by medium to low-pressure granulite and amphibolite facies retrograde event at ca.1840—820 Ma.  相似文献   

14.
The dilemma of the Jiaodong gold deposits: Are they unique?   总被引:2,自引:0,他引:2  
The ca. 126e120 Ma Au deposits of the Jiaodong Peninsula, eastern China, define the country's largest gold province with an overall endowment estimated as>3000 t Au. The vein and disseminated ores are hosted by NE-to NNE-trending brittle normal faults that parallel the margins of ca. 165e150 Ma, deeply emplaced, lower crustal melt granites. The deposits are sited along the faults for many tens of kilometers and the larger orebodies are associated with dilatational jogs. Country rocks to the granites are Pre-cambrian high-grade metamorphic rocks located on both sides of a Triassic suture between the North and South China blocks. During early Mesozoic convergent deformation, the ore-hosting structures developed as ductile thrust faults that were subsequently reactivated during Early Cretaceous "Yan-shanian"intracontinental extensional deformation and associated gold formation. 〈br〉 Classification of the gold deposits remains problematic. Many features resemble those typical of orogenic Au including the linear structural distribution of the deposits, mineralization style, ore and alteration assemblages, and ore fluid chemistry. However, Phanerozoic orogenic Au deposits are formed by prograde metamorphism of accreted oceanic rocks in Cordilleran-style orogens. The Jiaodong de-posits, in contrast, formed within two Precambrian blocks approximately 2 billion years after devolati-lization of the country rocks, and thus require a model that involves alternative fluid and metal sources for the ores. A widespread suite of ca. 130e123 Ma granodiorites overlaps temporally with the ores, but shows a poor spatial association with the deposits. Furthermore, the deposit distribution and mineral-ization style is atypical of ores formed from nearby magmas. The ore concentration requires fluid focusing during some type of sub-crustal thermal event, which could be broadly related to a combination of coeval lithospheric thinning, asthenospheric upwelling, paleo-Pacific plate subduction, and seismicity along the continental-scale Tan-Lu fault. Possible ore genesis scenarios include those where ore fluids were produced directly by the metamorphism of oceanic lithosphere and overlying sediment on the subducting paleo-Pacific slab, or by devolatilization of an enriched mantle wedge above the slab. Both the sulfur and gold could be sourced from either the oceanic sediments or the serpentinized mantle. A better understanding of the architecture of the paleo-Pacific slab during Early Cretaceous below the eastern margin of China is essential to determination of the validity of possible models.  相似文献   

15.
http://www.sciencedirect.com/science/article/pii/S1674987113000820   总被引:1,自引:1,他引:0  
The combined use of Hf,Nd and Sr isotopes is more useful in understanding the supercontinent cycle than the use of only Hf isotopic data from detrital zircons.Sr and Nd seawater isotopes,although not as precise as εNd and εHf distributions,also record input from ocean ridge systems.Unlike detrital zircons where sources cannot be precisely located because of crustal recycling,both the location and tectonic setting often can be constrained for whole-rock Nd isotopic data.Furthermore,primary zircon sources may not reside on the same continent as derivative detrital zircons due to supercontinent breakup and assembly.Common to all of the isotopic studies are geographic sampling biases reflecting outcrop distributions,river system sampling,or geologists,and these may be responsible for most of the decorrelation observed between isotopic systems.Distributions between 3.5 and 2 Ga based on εHf median values of four detrital zircon databases as well as our compiled εNd database are noisy but uniformly distributed in time,whereas data between 2 and 1 Ga data are more tightly clustered with smaller variations.Grouped age peaks suggest that both isotopic systems are sampling similar types of orogens.Only after 1 Ga and before 3.5 Ga do we see wide variations and significant disagreement between databases,which may partially reflect variations in both the number of sample locations and the number of samples per location.External and internal orogens show similar patterns in εNd and εHfwith age suggesting that both juvenile and reworked crustal components are produced in both types of orogens with similar proportions.However,both types of orogens clearly produce more juvenile isotopic signatures in retreating mode than in advancing mode.Many secular changes in εHf and εNd distributions correlate with the supercontinent cycle.Although supercontinent breakup is correlated with short-lived decreasing εHf and εNd (≤ 100 Myr) for most supercontinents,there is no isotopic evidence for the breakup of the Paleoproterozoic supercontinent Nuna.Assembly of supercontinents by extroversion is recorded by decreasing εNd in granitoids and metasediments and decreasing εHf in zircons,attesting to the role of crustal reworking in external orogens in advancing mode.As expected,seawater Sr isotopes increase and seawater Nd isotopes decrease during supercontinent assembly by extroversion.Pangea is the only supercontinent that has a clear isotopic record of introversion assembly,during which median εNd and εHf rise rapidly for ≤ 100 Myr.Although expected to increase,radiogenic seawater Sr decreases (and seawater Nd increases) during assembly of Pangea,a feature that may be caused by juvenile input into the oceans from new ocean ridges and external orogens in retreating mode.The fact that a probable onset of plate tectonics around 3 Ga is not recorded in isotopic distributions may be due the existence of widespread felsic crust formed prior to the onset of plate tectonics in a stagnant lid tectonic regime,as supported by Nd and Hf model ages.  相似文献   

16.
A large-scale pop-up structure occurs at the front of the northern Dabashan thrust belt (NDTB),bound by the NNE-dipping Chengkou fault to the south,and the SSW-dipping Gaoqiao fault to the north.The pop-up structure shows different features along its strike as a direct reflection of the intensity of tectonic activity.To the northwest,the structure is characterized by a two-directional thrust system forming a positive flower-like structure.In contrast,the southeastern part is composed of the vertical Chengkou fault and a series of N-directed backthrusts.showing a semi-flower-like structure. We present results from Ar-Ar dating of syntectonic microthermal nietamorphic sericite which show that the Chengkou fault experienced intense deformation during the mid-Mesozoic Yanshanian epoch(about 143.3 Ma),causing rapid uplift and thrusting of the northern Dabashan thrust belt.During the propagation of this thrust,a series of backthrusts formed because of the obstruction from the frontier of Dabashan thrust belt,leading to the development of the pop-up structure.  相似文献   

17.
The Pranhita-Godavari Basin in central eastern India is one of the Proterozoic "Purana" basins of cratonic India.New geochronology demonstrates that it has a vast depositional history of repeated basin reactivation from the Palaeoproterozoic to the Mesozoic.U-Pb laser ablation inductively coupled plasma mass spectrometry dating of detrital zircons from two samples of the Somanpalli Group—a member of the oldest sedimentary cycle in the valley-constrains its depositional age to ~1620 Ma and demonstrates a tripartite age provenance with peaks at ~3500 Ma,~2480 Ma and ~1620 Ma,with minor age peaks in the Eoarchaean(~3.8 Ga) and at ~2750 Ma.These ages are consistent with palaeocurrent data suggesting a southerly source from the Krishna Province and Enderby Land in East Antarctica.The similarity in the maximum depositional age with previously published authigenic glauconite ages suggest that the origin of the Pranhita-Godvari Graben originated as a rift that formed at a high angle to the coeval evolving late Meosproterozoic Krishna Province as Enderby Land collided with the Dharwar craton of India.In contrast,detrital zircons from the Cycle III Sullavai Group red sandstones yielded a maximum depositional age of 970±20 Ma and had age peaks of ~2550 Ma,~1600 Ma and then a number of Mesoproterozoic detrital zircons terminating in three analyses at ~970 Ma.The provenance of these is again consistent with a southerly source from the Eastern Ghats Orogen and Antarctica.Later cycles of deposition include the overlying Albaka/Usur Formations and finally the late Palaeozoic to Mesozoic Gondwana Supergroup.  相似文献   

18.
http://www.sciencedirect.com/science/article/pii/S1674987112001569   总被引:1,自引:0,他引:1  
The southeastern Anatolia comprises numbers of tectono-magmatic/stratigraphic units such as the metamorphic massifs,the ophiolites,the volcanic arc units and the granitoid rocks.All of them play important role for the late Cretaceous evolution of the southern Neotethys.The spatial and temporal relations of these units suggest the progressive development of coeval magmatism and thrusting during the late Cretaceous northward subduction/accretion.Our new U-Pb zircon data from the rhyolitic rocks of the wide-spread volcanic arc unit show ages of(83.1±2.2)-(74.6±4.4) Ma. Comparison of the ophiolites,the volcanic arc units and the granitoids suggest following late Cretaceous geological evolution.The ophiolites formed in a suprasubduction zone(SSZ) setting as a result of northward intra-oceanic subduction.A wide-spread island-arc tholeiitic volcanic unit developed on the top of the SSZ-type crust during 83-75 Ma.Related to regional plate convergence, northward under-thrusting of SSZ-type ophiolites and volcanic arc units was initiated beneath the Tauride platform(Malatya-Keban) and followed by the intrusion of l-type calc-alkaline volcanic arc granitoids during 84-82 Ma.New U-Pb ages from the arc-related volcanic-sedimentary unit and granitoids indicate that under-thrusting of ophiolites together with the arc-related units beneath the Malatya-Keban platform took place soon after the initiation of the volcanic arc on the top of the SSZtype crust.Then the arc-related volcanic-sedimentary unit continued its development and lasted at~75 Ma until the deposition of the late Campanian—Maastrichtian shallow marine limestone.The subduction trench eventually collided with the Bitlis-Ptrge massif giving rise to HP-IT metamorphism of the Bitlis massif.Although the development of the volcanic arc units and the granitoids were coeval at the initial stage of the subduction/accretion both tectono-magmatic units were genetically different from each other.  相似文献   

19.
http://www.sciencedirect.com/science/article/pii/S1674987114001352   总被引:8,自引:5,他引:3  
Ultrahigh temperature(UHT) metamorphism is the most thermally extreme form of regional crustal metamorphism,with temperatures exceeding 900℃.UHT crustal metamorphism is recognised in more than 50 localities globally in the metaniorphic rock record and is accepted as 'normal' in the spectrum of regional crustal processes.UHT metamorphism is typically identified on the basis of diagnostic mineral assemblages such as sapphirine+ quartz,orthopyroxene + sillimanite ± quartz and osumilite in Mg-AIrich rock compositions,now usually coupled with pseudosection-based thermobarometry using internally-consistent thermodynamic data sets and/or Al-in-Orthopyroxene and ternary feldspar thermobarometry.Significant progress in the understanding of regional UHT metamorphism in recent years includes:(1) development of a ferric iron activity-composition thermodynamic model for sapphirine,allowing phase diagram calculations for oxidised rock compositions:(2) quantification of UHT conditions via trace element thermometry,with Zr-in-rutile more commonly recording higher temperatures than Ti-in-zircon.Rutile is likely to be stable at peak UHT conditions whereas zircon may only grow as UHT rocks are cooling.In addition,the extent to which Zr diffuses out of rutile is controlled by chemical communication with zircon;(3) more fully recognising and utilising temperature-dependent thermal properties of the crust,and the possible range of heat sources causing metamorphism in geodynamic modelling studies:(4) recognising that crust partially melted either in a previous event or earlier in a long-duration event has greater capacity than fertile,unmelted crust to achieve UHT conditions due to the heat energy consumed by partial melting reactions:(5) more strongly linking U-Pb geochronological data from zircon and monazite to P-T points or path segments through using Y + REE partitioning between accessory and major phases,as well as phase diagrams incorporating Zr and REE;and(6)improved insight into the settings and factors responsible for UHT metamorphism via geodynamic forward models.These models suggest that regional UHT metamorphism is,principally,geodynamically related to subduction,coupled with elevated crustal radiogenic heat generation rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号