首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract— A meteor spectrum was recorded serendipitously at the European Southern Obrervatory (ESO) Very Large Telescope (VLT) during a long exposure in long‐slit spectroscopic mode with FORS1. The ?8 magnitude fireball crossed the narrow 1Î × 7î slit during the observation of a high z supernova in normal service mode operation on May 12, 2002. The spectrum covered the range of 637–1050 nm, where the meteor's air plasma emissions from N2, N, and O dominate. Carbon atom emission was not detected in the relatively unexplored wavelength range above 900 nm, but the observed upper limit was only 3 sigma less than expected from the dissociation of atmospheric CO2. The meteor trail was resolved along the slit, and the emission had a Gaussian distribution with a dimension of FWHM = 7.0 (±0.4) * sin(α) * H (km)/90 m, where α is the unknown angle between the orientation of the meteor path and slit and H the assumed altitude of the meteor in km. To our knowledge, this is the first observation of a spatially resolved spectrum across a meteor trail. Unlike model predictions, the plasma excitation temperature varied only from about 4,300 to 4,365 K across the trail, based on the ratio of atomic and molecular nitrogen emissions. Unfortunately, we conclude that this was because the meteor at 100 km altitude was out of focus.  相似文献   

2.
Observations are reported of field aligned etectron fluxes in the energy range 50–500 eV at altitudes below 270 km from two rocket flights in the auroral zone. The regions of field aligned suprathermal electrons occurred in bursts of a few seconds duration, and in some instances the energy of the peak field aligned flux was in the range 100–500 eV. Theoretical calculations of the pitch angle distribution were made using the Monte Carlo technique for two model atmospheres having exospheric temperatures of 750 and 1500 K bracketing the expected auroral zone exospheric temperature. The calculations were made for the case of incident field aligned suprathermal fluxes with no local parallel electric field and also for the case of a local constant parallel electric field. Comparison of theoretical and experimental pitch angle distributions showed that in one case at 270 km a parallel electric field of 1–2 mV/m fitted the data whereas another burst at 210 km required a parallel electric field of about 10 mV/m to produce a field aligned distribution of 230 eV electrons as pronounced as was observed. Furthermore in this latter case the lack of strong field alignment at 500 eV pointed to localisation of the parallel electric field to an altitude range of 20–30 km about the rocket altitude.  相似文献   

3.
We report a comprehensive analysis of the instrumentally observed meteorite fall ??ár nad Sázavou, which occurred in the Czech Republic on December 9, 2014, at 16:16:45–54 UT. The original meteoroid with an estimated initial mass of 150 kg entered the atmosphere with a speed of 21.89 km s?1 and began a luminous trajectory at an altitude of 98.06 km. At the maximum, it reached ?15.26 absolute magnitude and terminated after a 9.16 s and 170.5 km long flight at an altitude of 24.71 km with a speed of 4.8 km/s. The average slope of the atmospheric trajectory to the Earth's surface was only 25.66°. Before its collision with Earth, the initial meteoroid orbited the Sun on a moderately eccentric orbit with perihelion near Venus orbit, aphelion in the outer main belt, and low inclination. During the atmospheric entry, the meteoroid severely fragmented at a very low dynamic pressure 0.016 MPa and further multiple fragmentations occurred at 1.4–2.5 MPa. Based on our analysis, so far three small meteorites classified as L3.9 ordinary chondrites totaling 87 g have been found almost exactly in the locations predicted for a given mass. Because of very high quality of photographic and radiometric records, taken by the dedicated instruments of the Czech part of the European Fireball Network, ??ár nad Sázavou belongs to the most reliably, accurately, and thoroughly described meteorite falls in history.  相似文献   

4.
Abstract— During the early morning hours of the night of the peak of the annual Leonid meteor shower on 1998 November 17, a bright fireball (approximately ?12 to ?14 visual magnitude at 100 km in the zenith) was observed over northern New Mexico with visual sightings as far away from Los Alamos as Albuquerque (~150 km to the south of Los Alamos), including direct persistent trail observations at the U. S. A. F. Starfire Optical Range (SOR), which is also near Albuqerque. This event did not produce any sonic boom reports, presumably because of its high altitude. It was also detected locally by an infrared radiometer at Sandia National Laboratory and by an intensified charge-coupled device (CCD) camera located in Placitas, New Mexico. Subsequent investigations of the data from the six infrasound arrays used by Los Alamos National Laboratory (LANL) and operated for the Department of Energy as a part of the Comprehensive Test Ban Treaty (CTBT) Research and Development program for the International Monitoring System (IMS) showed the presence of an infrasonic signal from the proper direction at the correct time for this bolide from two of our six arrays (both located in Los Alamos). The infrasound recordings (i.e., the wave amplitude and period data) indicated that an explosion occurred in the atmosphere at a source height of ~93.5 km (with respect to sea level) or ~90 km with respect to the altitude of Los Alamos, having its origins slightly to the north and west of Los Alamos. Purely geometric solutions from the ground observers reports combined with direct measurements from the CCD camera at Placitas produced a source height of 91 ± 7 km. The signal characteristics analyzed from 0.5 to 3.0 Hz include a total duration of about 3–4 s for a source directed from Los Alamos toward 353.6 ± 0.4° measured from true north at a maximum elevation arrival angle of ~72.7°. The latter was deduced on the basis of the observed signal trace velocities (for the part of the recording with the highest cross-correlation) and ranged from a constant value of about 920–1150 m/s (depending on the window length used in the analysis) for a ray trajectory along a direct refractive path between the source and the Los Alamos arrays. The dominant signal frequency at maximum amplitude at Los Alamos was ~0.71 Hz. These highly correlated signals had a peak to peak, maximum amplitude of ~2.1 microbars (0.21 Pa). Using several methods that incorporate various observed signal characteristics, total distance traveled, etc., our analysis indicates that the bolide probably had a source energy of ~1.14 t (TNT equivalent) or 4.77 × 109 J. This is ~14.1× smaller than the source energy estimate made using the infrasonic, empirical source energy relationship for low-altitude stationary point sources developed in the 1960s by the Air Force Technical Applications Center (AFTAC), Patrick Air Force Base, Florida. This relation was originally developed, however, for much larger source energies and at much longer ranges.  相似文献   

5.
The fate of entering meteoroids in atmosphere is determined by their size, velocity and substance properties. Material from ablation of small-sized meteors (roughly R≤0.01–1 cm) is mostly deposited between 120 and 80 km altitudes. Larger bodies (up to meter sizes) penetrate deeper into the atmosphere (down to 20 km altitude). Meteoroids of cometary origin typically have higher termination altitude due to substance properties and higher entry velocity. Fast meteoroids (V>30–40 km/s) may lose a part of their material at higher altitudes due to sputtering. Local flow regime realized around the falling body determines the heat transfer and mass loss processes. Classic approach to meteor interaction with atmosphere allows describing two limiting cases: – large meteoroid at relatively low altitude, where shock wave is formed (hydrodynamical models); – small meteoroid/or high altitudes – free molecule regime of interaction, which assumes no collisions between evaporated meteoroid particles. These evaporated particles form initial train, which then spreads into an ambient air due to diffusion. Ablation models should make it possible to describe physical conditions that occur around meteor body. Several self-consistent hydrodynamical models are developed, but similar models for transition and free molecule regimes are still under study. This paper reviews existing ablation models and discusses model boundaries.  相似文献   

6.
Thermal conductivity measurements, presented in this paper (Fig. 3), were made during the descent of the Huygens probe through the atmosphere of Titan below the altitude of 30 km. The measurements are broadly consistent with reference values derived from the composition, pressure and temperature profiles of the atmosphere; except in narrow altitude regions around 19 km and 11 km, where the measured thermal conductivity is lower than the reference by 1% and 2%, respectively. Only single data point exists at each of the two altitudes mentioned above; if true however, the result supports the case for existence for molecules heavier than nitrogen in these regions (such as: ethane, other primordial noble gases, carbon dioxide, and other hydrocarbon derivatives). The increasing thermal conductivity observed below 7 km altitude could be due to some liquid deposition during the descent; either due to condensation and/or due to passing through layers of fog/cloud containing liquid nitrogen-methane. Thermal conductivity measurements do not allow conclusions to be drawn about how such liquid may have entered the sensor, but an estimate of the cumulative liquid content encountered in the last 7 km is 0.6% by volume of the Titan's atmosphere sampled during descent.  相似文献   

7.
A detailed analysis of the D-region ion composition measurements performed by Zbinden et al. (1975), during a winter day of high ionospheric absorption, has been carried out. The study examines the interactive mesosphere-D-region processes which occur in such anomalous conditions and their implication for water cluster ion chemistry. Two clustering regimes for NO+ have been observed in the data. Association with N2 is identified as the dominant process below 76 km. Between 76 and 78 km altitude the effective loss rate of NO+ drops by two orders of magnitude. Above 77 km, the three-body reaction NO+ + CO2+M→NO+CO2+M seems to be the main NO+ loss. A mesospheric temperature profile could be derived from the ion composition data. This indicates the presence of a strong inversion above 76 km altitude. The wavelike structure obtained, is shown to be consistent with in situ winter temperature measurements. The sharp suppression of the N2 association reaction could, thus, be explained by an increase in the collisional break-up of the NO+N2 ion because of the enhanced temperature. In conclusion, our study indicates that, besides the increase in the production of NO+ and O2+, due to an enhancement in the minor ionizable constituents, an additional thermal mesosphere-D-region interaction seems necessary to explain this winter anomalous ion composition data.  相似文献   

8.
《Planetary and Space Science》1999,47(10-11):1341-1346
The present study investigates the role of high altitude monomer particles in the energy balance of Titan’s upper atmosphere above an assumed low and high aggregate formation altitude of 385 km and 535 km. A ‘single particle approach’ was applied, where the starting point is the energy balance of an individual aerosol. In our analysis 0.01–0.06 μm radius aerosol particles were chosen for the proposed monomer formation regions. These particles absorb solar radiation, emit in the infrared, and are energetically linked to the surrounding gas by thermal conduction. To compute the monomer particle heating effect, the aerosols are assumed to radiate directly to space. We found that high altitude monomers may affect the profile of Titan’s thermosphere from 2 to 20 K depending on the formation altitude of fluffy non-spherical aggregates, the monomer size and distribution. The actual Titan temperature profile in this altitude range including all heating effects will be measured by the HASI instrument during the descent of the Huygens probe.  相似文献   

9.
We report on the results of observations of a type IV burst made by the Ukrainian Radio interferometer of the Academy of Sciences (URAN-2) in the frequency range 22?–?33 MHz. The burst is associated with a coronal mass ejection (CME) initiated by a behind-the-limb active region (N05E151) and was also observed by the Nançay Decameter Array (NDA) radio telescope in the frequency band 30?–?60 MHz. The purpose of the article is the determination of the source of this type IV burst. After analysis of the observational data obtained with the URAN-2, the NDA, the Solar-Terrestrial Relations Observatory (STEREO) A and B spacecraft, and the Solar and Heliospheric Observatory (SOHO) spacecraft, we come to the conclusion that the source of the burst is the core of a behind-the-limb CME. We conclude that the radio emission can escape the center of the CME core at a frequency of 60 MHz and originates from the periphery of the core at a frequency of 30 MHz that is due to occultation by the solar corona at the corresponding frequencies. We find plasma densities in these regions assuming the plasma mechanism of radio emission. We show that the frequency drift of the start of the type IV burst is governed by an expansion of the CME core. The type III bursts that were observed against this type IV burst are shown to be generated by fast electrons propagating through the CME core plasma. A type II burst was registered at frequencies of 44?–?64 MHz and 3?–?16 MHz and was radiated by a shock with velocities of about \(1000~\mbox{km}\,\mbox{s}^{-1}\) and \(800~\mbox{km}\,\mbox{s}^{-1}\), respectively.  相似文献   

10.
The acoustic amplitude-yield relationships, including formal errors, for a population of energetic (>0.05 kt) and well-observed bolide events have been investigated. Using various infrasonic signal measurements as a function of range, these data have been calibrated against optical yield estimates from satellite measurements. Correction for the presence of stratospheric winds has also been applied to the observations and is found to be small, suggesting that either scatter is dominated by other variations amongst the fireball population such as differing burst altitudes and greater or lesser amounts of fragmentation or the magnitude of the variability in the stratospheric winds, which can be comparable to or even exceed the strength of the winds themselves. Comparison to similar point source, ground-level nuclear and high explosive airwave data shows that bolide infrasound is consistently lower in amplitude. This downward shift relative to nuclear and HE data is interpreted as due in part to increased weak non-linearity during signal propagation from higher altitudes. This is a likely explanation, since mean estimates of the altitude of maximum ene0rgy deposition along the bolide trajectory was found to be between 20 and 30 km altitude for this fireball population.  相似文献   

11.
It is shown that the phase difference between the horizontal components of the wind velocity induced by the first diurnal propagating tidal mode between 90 and 100 km altitude is modified by turbulent diffusion. Experimental data are compared with calculations made by two different methods. The calculated results agree well with the data for a coefficient of eddy diffusion K = 5 × 106 cm2 s−1 which is a realistic one at this altitude. Incidentally, it is shown that some measurements which have been interpreted as a presence of evanescent modes are probably due to an increase in vertical wavelength of the first propagating diurnal mode due to turbulent diffusion.  相似文献   

12.
《Planetary and Space Science》2007,55(13):1936-1948
The Huygens probe underwent vigorous short-period motions during its parachute descent through the atmosphere of Saturn's moon Titan in January 2005, at least some of which were excited by the Titan environment. Several sensors in the Huygens Surface Science Package (SSP) detect these motions, indicating the transition to the smaller stabilizer parachute, the changing probe spin rate, aerodynamic buffeting, and pendulum motions. Notably, in an altitude range of about 20–30 km where methane drops will freeze, the frequency content and statistical kurtosis of the tilt data indicate excitation by turbulent air motions like those observed in freezing clouds on Earth, supporting the suggestion of Tokano et al. [Tokano, T., McKay, C.P., Neubauer, F.M., Atreya, S.K., Ferri, F., Fulchignoni, M., Niemann, H.B. (2006a). Methane drizzle on Titan. Nature 442, 432–435] that the probe passed through such a cloud layer. Motions are weak below 20 km, suggesting a quiescent lower atmosphere with turbulent fluctuations of nominally <0.15 m/s (to within a factor of ∼2) but more violent motions in the upper troposphere may have been excited by turbulent winds with amplitudes of 1–2 m/s. Descent in part of the stratosphere (150–120 km) was smooth despite strong ambient wind (∼100 m/s), but known anomalies in the probe spin prevent investigation of turbulence in the known wind-shear layer from 60 to 100 km.  相似文献   

13.
R.T. Clancy  D.O. Muhleman 《Icarus》1985,64(2):157-182
Microwave spectra of carbon monoxide (12CO) in the mesosphere of Venus were measured in December 1978, May and December 1980, and January, September, and November 1982. These spectra are analyzed to provide mixing profiles of CO in the Venus mesosphere and best constrain the mixing profile of CO between ~ 100 and 80 km altitude. From the January 1982 measurement (which, of all our spectra, best constrains the abundance of CO below 80 km altitude) we find an upper limit for the CO mixing ratio below 80 km altitude that is two to three times smaller than the stratospheric (~65 km) value of 4.5 ± 1.0 × 10?5 determined by P. Connes, J. Connes, L.D. Kaplan, and W. S. Benedict (1968, Astrophys. J.152, 731–743) in 1967, indicating a possible long-term change in the lower atmospheric concentration of CO. Intercomparison among the individual CO profiles derived from our spectra indicates considerable short-term temporal and/or spatial variation in the profile of CO mixing in the Venus mesosphere above 80 km. A more complete comparison with previously published CO microwave spectra from a number of authors specifies the basic diurnal nature of mesospheric CO variability. CO abundance above ~ 95 km in the Venus atmosphere shows approximately a factor of 2–4 enhancement on the nightside relative to the dayside of Venus. Peak nightside CO abundance above ~95 km occurs very near to the antisolar point on Venus (local time of peak CO abundance above ~95 km occurs at 0.6?0.6+0.7 hr after midnight on Venus), strongly suggesting that retrograde zonal flow is substantially reduced at an altitude of 100 km in the Venus mesosphere. In contrast, CO abundances between 80 and 90 km altitude show a maximum that is shifted from the antisolar point toward the morningside of Venus (local time of peak CO abundance between 80 and 90 km occurs at 8.5 ± 1.0 hr past midnight on Venus). The magnitude of the diurnal variation of CO abundance between 80 and 90 km is again, approximately a factor of 2–4. Disk-averaged spectra of Venus do not determine the exact form for the diurnal distribution of CO in the Venus mesosphere as indicated by comparison of synthetic spectra, based upon model distributions, and the measured spectra. However, the offset in phase for the diurnal variation for the >95 km and 80–90-km-altitude regions requires an asymmetric (in solar zenith angle) distribution.  相似文献   

14.
The rate at which O(1S) is quenched in the atmosphere has been calculated as a function of altitude in the 75–115 km region. Recent measurements of the temperature-dependent O 2 quenching rate coefficient have been used, while for quenching by O(3P), an expression combining new theoretical and experimental results is employed. For the O(3P) altitude profile, the Jacchia (1971) model is chosen. The quenching profile shows a pronounced minimum quenching rate at about 87 km. It is concluded that different studies carried out on pulsating Type-B red aurorae, which extract an O(1S) quenching rate from the time lag between N 2+(B?X) emission and 5577-Åemission, can now be interpreted as indicating an altitude range for these aurorae of 84–89 km. This conclusion is in accord with observations made on artificial aurorae.  相似文献   

15.
Stratospheric dust layers photographically observed in the altitude range 16–28 km from a balloon gondola floating at 36.6 km altitude on 3 May 1982 over southern France are identified as originating from the 4 April eruption of the Mexican El Chichon volcano. The identification is compatible with the zonal air motions leading to lidar detections over Japan, United States and Italy. The observations confirm the eastward motion of part of the injected material below 20 km altitude and the westward motion above this altitude. They imply a northward component of the meridional motion of the order of 20° (from 17°N to 37°N) in one turn around the Earth. The observation of scattered sunlight in blue and red light allows to deduce some optical properties of the aerosol, mainly those implied by the wavelength dependence of the scattering efficiency being highly variable, particularly above the Junge layer.  相似文献   

16.
《Planetary and Space Science》2007,55(14):2071-2076
We have developed a new method to analyse in situ observations of atmospheric variables of state: the reconstruction of the vertical temperature profile from pressure measurements accompanied by rough knowledge of the atmospheric composition and the aerodynamical response properties of the descent vehicle. We can use the method to construct the temperature profile when no direct measurements are available, as well as to analyse the consistency between data from different instruments. We applied the method to the Huygens measurements of Titan's atmosphere, determining the aerodynamical drag properties from radar altimeter data. We discovered that the temperature profile computed in this manner differs from the profile from the temperature sensor (TEM) of the probe by up to 5% in the altitude range of 0–60 km, and up to 10% at higher altitudes due to increased noise. The method gives a tropopause altitude of about 50 km and a surface temperature of about 98 K, in contrast to the TEM temperature measurements. Our error analysis shows that these differences are caused by the known discrepancy in the Huygens altimeter data, with the estimates made by the reconstruction algorithm contributing only 1–2% of error.  相似文献   

17.
The Venera 8 descent module measured pressure, temperature, winds and illumination as a function of altitude in its landing on July 22, 1972, just beyond the terminator in the illuminated hemisphere of Venus. The surface temperature and pressure is 741 ± 7°K and 93 ± 1.5kgcm?2, consistent with early Venera observations and showing either no diurnal variation or insignificant diurnal variation in temperature and pressure in the vicinity of the morning terminator. The atmosphere is adiabatic down to the surface. The horizontal wind speed is low near the surface, about 35m/sec between 20 and 40km altitude, and increasing rapidly above 48km altitude to 100–140m/sec, consistent with the 4-day retrograde rotation of the ultraviolet clouds. The illumination at the center of the day hemisphere of Venus is calculated to be about 1% of the solar flux at the top of the atmosphere, consistent with greenhouse models and high enough to permit photography of the Venus surface by future missions. The attenuation below 35km altitude is explained by Rayleigh scattering with no atmospheric aerosols; above 35km there must be substantial extinction of incident light.  相似文献   

18.
Late in 1977, the periapsis altitude of the Viking Orbiters was lowered from 1500 to 300 km. The higher resolution of pictures taken at the lower altitude (8 m/pixel) permitted a more accurate determination of the location of the Viking 1 Lander by correlating topographic features seen in the new pictures with the same features in lander pictures. The position of the lander on Viking Orbiter picture 452B11 (NGF Rectilinear) is line 293, sample 1099. This location of the Viking 1 Lander has been used in a revision of the control net of Mars (M.E. Davies, F.Y. Katayama, and J.A. Roth, R2309 NASA, The Rand Corp., Feb. 1978). The new areographic coordinates of the lander are lat 22.483° N and long 47.968° W. The new location is estimated to be accurate to within 50 m.  相似文献   

19.
Abstract— On 1992 August 14 at 12:40 UTC, an ordinary chondrite of type L5/6 entered the atmosphere over Mbale, Uganda, broke up, and caused a strewn field of size 3 × 7 km. Shortly after the fall, an expedition gathered eye witness accounts and located the position of 48 impacts of masses between 0.1 g and 27.4 kg. Short-lived radionuclide data were measured for two specimens, one of which was only 12 days after the fall. Subsequent recoveries of fragements has resulted in a total of 863 mass estimates by 1993 October. The surfaces of all fragments contain fusion crust. The meteorite shower caused some minor inconveniences. Most remarkably, a young boy was hit on the head by a small specimen. The data are interpreted as to indicate that the meteorite had an initial mass between 400–1000 kg (most likely ~1000 kg) and approached Mbale from Az = 185 ± 15, H = 55 ± 15, and V = 13.5 ± 1.5/s. Orbital elements are given. Fragmentation of the initial mass started probably above 25 km altitude, but the final catastrophic breakup occurred at an altitude of 10–14 km. An estimated 190 ± 40 kg reached the Earth's surface minutes after the final breakup of which 150 kg of material has been recovered.  相似文献   

20.
We have analysed all the available high phase angle images of Titan limb taken by Voyager 1 and 2, in early 1980. For several different phase angles and wavelengths, we seek for a consistent set of haze parameters able to fit all data simultaneously. Our main purpose is to obtain an accurate estimate of the latitudinal variation of haze opacity at 200 km altitude at the time of the Voyager flyby's. We find that haze opacity at 200 km is about constant in the southern hemisphere and drops between equator and 60°N by about 30-50%, sharply increasing again beyond 60°N. The latter feature is clearly due to the north polarhood.This behaviour is opposite to total optical depth variations retrieved from IRIS observation, at the same epoch. The IRIS data refer to levels below 100 km altitude. A comparison of our results with calculations from a general circulation model, shows that (1) our results are realistic and can be considered as robust (2) the opacity variations at 200 km (this work) and at ground (IRIS data), although opposite, are not inconsistent with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号