首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Automatic Solar Flare Tracking Using Image-Processing Techniques   总被引:1,自引:0,他引:1  
Measurement of the evolution properties of solar flares through their complete cyclic development is crucial in the studies of Solar Physics. From the analysis of solar H images, we used Support Vector Machines (SVMs) to automatically detect flares and applied image segmentation techniques to compute their properties. We also present a solution for automatically tracking the apparent separation motion of two-ribbon flares and measuring their moving direction and speed in the magnetic fields. From these measurements, with certain assumptions, we inferred the reconnection of the electric field as a measure of the rate of the magnetic reconnection in the corona. The automatic procedure is a valuable tool for real-time monitoring of flare evolution.  相似文献   

2.
3.
An analytical solution for the joint effects of the Earth oblateness and the direct solar radiation pressure on the motion of an Artificial Earth Satellite of complex shape is constructed. The equations of motion are derived in the previous paper (hereafter refered to as paper I). The solution is effected through two canonical transformations retaining secular and periodic terms up to orders 3 and 2 respectively. The developments stressed on the effects of the radiation pressure and its coupling with the earth's gravity. A procedure for the computation of position and velocity is outlined. The conditions of the resonance are determined and the procedure for the transformations in the case of resonance is outlined. The solution revealed as expected that radiation pressure produced secular effects at the third order resulting from the coupling between periodic terms at lower orders. These affect both the main satellite body and the antenna. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Lavraud  B.  Gosling  J. T.  Rouillard  A. P.  Fedorov  A.  Opitz  A.  Sauvaud  J.-A.  Foullon  C.  Dandouras  I.  Génot  V.  Jacquey  C.  Louarn  P.  Mazelle  C.  Penou  E.  Phan  T. D.  Larson  D. E.  Luhmann  J. G.  Schroeder  P.  Skoug  R. M.  Steinberg  J. T.  Russell  C. T. 《Solar physics》2009,256(1-2):379-392

We analyze Wind, ACE, and STEREO (ST-A and ST-B) plasma and magnetic field data in the vicinity of the heliospheric current sheet (HCS) crossed by all spacecraft between 22:15 UT on 31 March and 01:25 UT on 1 April 2007 corresponding to its observation at ST-A and ST-B, which were separated by over 1800 R E (or over 1200 R E across the Sun?–?Earth line). Although only Wind and ACE provided good ion flow data in accord with a solar wind magnetic reconnection exhaust at the HCS, the magnetic field bifurcation typical of such exhausts was clearly observed at all spacecraft. They also all observed unambiguous strahl mixing within the exhaust, consistent with the sunward flow deflection observed at Wind and ACE and thus with the formation of closed magnetic field lines within the exhaust with both ends attached to the Sun. The strong dawnward flow deflection in the exhaust is consistent with the exhaust and X-line orientations obtained from minimum variance analysis at each spacecraft so that the X-line is almost along the GSE Z-axis and duskward of all the spacecraft. The observation of strahl mixing in extended and intermittent layers outside the exhaust by ST-A and ST-B is consistent with the formation of electron separatrix layers surrounding the exhaust. This event also provides further evidence that balanced parallel and antiparallel suprathermal electron fluxes are not a necessary condition for identification of closed field lines in the solar wind. In the present case the origin of the imbalance simply is the mixing of strahls of substantially different strengths from a different solar source each side of the HCS. The inferred exhaust orientations and distances of each spacecraft relative to the X-line show that the exhaust was likely nonplanar, following the Parker spiral orientation. Finally, the separatrix layers and exhausts properties at each spacecraft suggest that the magnetic reconnection X-line location and/or reconnection rate were variable in both space and time at such large scales.

  相似文献   

5.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

6.
P. Riley  R. Lionello 《Solar physics》2011,270(2):575-592
A variety of techniques exist for mapping solar wind plasma and magnetic field measurements from one location to another in the heliosphere. Such methods are either applied to extrapolate solar data or coronal model results from near the Sun to 1 AU (or elsewhere), or to map in-situ observations back to the Sun. In this study, we estimate the sensitivity of four models for evolving solar wind streams from the Sun to 1 AU. In order of increasing complexity, these are: i) ballistic extrapolation; ii) ad hoc kinematic mapping; iii) 1-D upwinding propagation; and iv) global heliospheric MHD modeling. We also consider the effects of the interplanetary magnetic field on the evolution of the stream structure. The upwinding technique is a new, simplified method that bridges the extremes of ballistic extrapolation and global heliospheric MHD modeling. It can match the dynamical evolution captured by global models, but is almost as simple to implement and as fast to run as the ballistic approximation.  相似文献   

7.
8.
The theory of optimal control is applied to obtain minimum-time trajectories for solar sail spacecraft for interplanetary missions. We consider the gravitational and solar radiation forces due to the Sun. The spacecraft is modelled as a flat sail of mass m and surface area A and is treated dynamically as a point mass. Coplanar circular orbits are assumed for the planets. We obtain optimal trajectories for several interrelated problem families and develop symmetry properties that can be used to simplify the solution-finding process. For the minimum-time planet rendezvous problem we identify different solution branches resulting in multiple solutions to the associated boundary value problem. We solve the optimal control problem via an indirect method using an efficient cascaded computational scheme. The global optimizer uses a technique called Adaptive Simulated Annealing. Newton and Quasi-Newton Methods perform the terminal fine tuning of the optimization parameters.  相似文献   

9.
A pedagogical introduction to the classical hydrodynamic steady state solutions for flows in a spherically symmetric atmosphere is presented along with a detailed analysis of the stability of such flows and a discussion of the Parker/Bondi phase diagram of solutions in the Mach number – stellar radius plane. This leads naturally to the scenario presented by Velli (1994) for wind-accretion transitions, which helps to explain results from numerical simulations in many contexts and gives a more comprehensive answer to the question of why the solar wind and other steady state flows in spherical symetry must quite generally become supersonic.  相似文献   

10.
We analyze in situ measurements of the solar wind velocity obtained by the Advanced Composition Explorer (ACE) and the Helios spacecraft during the years 1998?–?2012 and 1975?–?1983, respectively. The data mainly belong to solar cycles 23 (1996?–?2008) and 21 (1976?–?1986). We used the directed horizontal-visibility-graph (DHVg) algorithm and estimated a graph functional, namely, the degree distance (D), which is defined using the Kullback–Leibler divergence (KLD) to understand the time irreversibility of solar wind time-series. We estimated this degree-distance irreversibility parameter for these time-series at different phases of the solar activity cycle. The irreversibility parameter was first established for known dynamical data and was then applied to solar wind velocity time-series. It is observed that irreversibility in solar wind velocity fluctuations show a similar behavior at 0.3 AU (Helios data) and 1 AU (ACE data). Moreover, the fluctuations change over the phases of the activity cycle.  相似文献   

11.
12.
Measurements of Faraday rotation through the solar corona were collected using the radio beacon aboard the MESSENGER spacecraft during the longest solar minimum in a century. As MESSENGER entered superior conjunction, the plane of polarization of its radio signal was observed to rotate as it traversed the circularly birefringent plasma of the Sun’s atmosphere. On time scales of less than three hours, these uncalibrated plane of polarization observations of Faraday rotation can be used to investigate the dynamic processes in the solar plasma, such as magnetohydrodynamic (MHD) waves and coronal mass ejections (CMEs). Here we describe the MESSENGER Faraday rotation experiment, the data processing conducted to obtain the plane of polarization, and the estimation of error.  相似文献   

13.
孙何雨 《天文学报》2023,64(3):29-117
电子是太阳风粒子中最为重要的组分之一,它可以通过多种机制对太阳风产生影响.太阳风中的电子通常具有温度各向异性和束流两种非热平衡分布特征,这些偏离热平衡分布的特征可以通过波粒相互作用激发电子不稳定性和等离子体波动,激发的等离子体波动又可以通过波粒相互作用调制太阳风粒子的分布,从而加热太阳风中的背景粒子.因此电子动力学不稳定性在太阳风的演化过程中扮演了极为重要的角色.详细介绍了太阳风中常见的电子动力学不稳定性,并基于等离子体动力论,详细介绍太阳风传播过程中所出现的各种不稳定性,尤其是在近日球层和太阳大气区域所出现的电子声热流不稳定性以及低混杂热流不稳定性,并分析其波粒相互作用机制,以便更加深入地研究太阳风传播过程中的电子分布函数演化.  相似文献   

14.
15.
16.

At the present time, there is no generally accepted classification of the solar wind flows. There are various approaches to this problem depending on the goal of the study. In our paper, we propose the binary classification of the solar wind types by the main hydrodynamic parameters (velocity, temperature, and density) based on the statistical analysis of the solar wind. The analysis of the OMNIWeb one-minute data is performed for the period from 1996 to 2017, which encompasses solar cycle 23 and current solar cycle 24. Eight types of the solar wind are distinguished: fast-hot-dense, fast-hot-rarefied, fast-cold-dense, fast-cold-rarefied, slow-hot-dense, slow-hot-rarefied, slow-cold-dense, slow-cold-rarefied. These types occur with different frequency and are the consequences of different manifestations of solar activity. Of particular interest are the solar wind flows, the parameters of which deviate from the averages most significantly.

  相似文献   

17.
18.
Solar System Research - The article discusses the problems of controlling the relative motion of spacecraft (SC) in a tandem flight configuration. Flight configurations of two SC that form the...  相似文献   

19.
This paper presents a Hamiltonian approach to modelling spacecraft motion relative to a circular reference orbit based on a derivation of canonical coordinates for the relative state-space dynamics. The Hamiltonian formulation facilitates the modelling of high-order terms and orbital perturbations within the context of the Clohessy–Wiltshire solution. First, the Hamiltonian is partitioned into a linear term and a high-order term. The Hamilton–Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are obtained, called epicyclic elements. The influence of higher order terms and perturbations, such as Earth’s oblateness, are incorporated into the analysis by a variation of parameters procedure. As an example, closed-form solutions for J2-invariant orbits are obtained.  相似文献   

20.
The solar wind parameters were analyzed using the concept which is being developed by the authors and assumes the existence of several systems of magnetic fields of different scales on the Sun. It was demonstrated that the simplest model with one source surface and a radial expansion does not describe the characteristics of the quiet solar wind adequately. Different magnetic field subsystems on the Sun affect the characteristics of the solar wind plasma in a different way, even changing the sign of correlation. New multiparameter schemes were developed to compute the velocity and the magnetic field components of the solar wind. The radial component of the magnetic field in the solar corona and the tilt of the heliospheric current sheet, which determines the degree of divergence of field lines in the heliosphere, were taken into account when calculating the magnetic field in the solar wind. Both the divergence of field lines in the corona and the strength of the solar magnetic field are allowed for in calculating the solar wind speed. The suggested schemes provide a considerably higher computation accuracy than that given by commonly used one-parameter models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号