首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 0 毫秒
1.
《Planetary and Space Science》2007,55(13):2015-2024
The Descent Imager/Spectral Radiometer (DISR) aboard the Huygens Probe took several hundred visible-light images with its three cameras on approach to the surface of Titan. Several sets of stereo image pairs were collected during the descent. The digital terrain models constructed from those images show rugged topography, in places approaching the angle of repose, adjacent to flatter darker plains. Brighter regions north of the landing site display two styles of drainage patterns: (1) bright highlands with rough topography and deeply incised branching dendritic drainage networks (up to fourth order) with dark-floored valleys that are suggestive of erosion by methane rainfall and (2) short, stubby low-order drainages that follow linear fault patterns forming canyon-like features suggestive of methane spring-sapping. The topographic data show that the bright highland terrains are extremely rugged; slopes of order of 30° appear common. These systems drain into adjacent relatively flat, dark lowland terrains. A stereo model for part of the dark plains region to the east of the landing site suggests surface scour across this plain flowing from west to east leaving ∼100-m-high bright ridges. Tectonic patterns are evident in (1) controlling the rectilinear, low-order, stubby drainages and (2) the “coastline” at the highland–lowland boundary with numerous straight and angular margins. In addition to flow from the highlands drainages, the lowland area shows evidence for more prolific flow parallel to the highland–lowland boundary leaving bright outliers resembling terrestrial sandbars. This implies major west to east floods across the plains where the probe landed with flow parallel to the highland–lowland boundary; the primary source of these flows is evidently not the dendritic channels in the bright highlands to the north.  相似文献   

2.
We present an analysis comparing observations acquired by the Mars Express Observatoire pour la Minéralogie l’Eau, les Glaces et l’Activité (OMEGA) and Phoenix lander measurements. Analysis of OMEGA data provides evidence for hydrous and ferric phases at the Phoenix landing site and the surrounding regions. The 3 μm hydration band deepens with increasing latitude, along with the appearance and deepening of a 1.9 μm H2O band as latitude increases ∼60° polewards. A water content of 10-11% is derived from the OMEGA data for the optical surface at the Phoenix landing site compared to 1-2% derived for subsurface soil by Phoenix lander measurements. The hydration of these regions is best explained by surface adsorbed water onto soil grains. No evidence for carbonate or perchlorate-bearing phases is evident from OMEGA data, consistent with the relatively small abundances of these phases detected by Phoenix. The identification of spectral features consistent with hydrated phases (possibly zeolites) from OMEGA data covering regions outside the landing site and the ubiquitous ferric absorption edge suggest that chemical weathering may play a role in the arctic soils.  相似文献   

3.
The descent imager/spectral radiometer (DISR) onboard the Huygens probe investigated the radiation balance inside Titan's atmosphere and took hundreds of images and spectra of the ground during the descent. The scattering of the aerosols in the atmosphere and the absorption by methane strongly influence the irradiation reaching the surface and the signals received by the various instruments. The physical properties of the surface can only be assessed after the influence of the atmosphere has been taken into account and properly removed. In the broadband visible images (660 to 1000 nm) the contrast of surface features is strongly reduced by the aerosol scattering. Calculations show that for an image taken from an altitude of 14.5 km, the corrected contrast is about three times higher than in the raw image.Spectral information of the surface by the imaging spectrometers in the visible and near infrared range can only be retrieved in the methane absorption windows. Intensity ratios from the methane windows can be used to make false color maps. The elevated bright ‘land’ terrain is redder than the flat dark ‘lake bed’ terrain.The reflectance spectra of the land and lake bed area in the IR are derived, as well as the reflectance phase function in the limited range from 20° to 50° phase angle. An absorption feature at 1.55 μm which may be attributed tentatively to water ice is found in the lake bed, but not in the land area. Otherwise the surface exhibits a featureless blue slope in the near-IR region (0.9-). Brightness profiles perpendicular to the coast line show that the bottoms of the channels of the large scale flow pattern become darker the further they are away from the land area. This could be interpreted as sedimentation of the bright land material transported by the rivers into the lake bed area. The river beds in the deeply incised valleys need not to be covered by dark material. Their roughly 10% brightness decrease could be caused by the illumination as illustrated by a model calculation. The size distribution of cobbles seen in the images after landing is in agreement with a single major flooding of the area with a flow speed of about .  相似文献   

4.
A detailed petrologic survey has been made of 17 basaltic chips (sized between 1 and 10 mm) from the 12003 soil sample as part of an ongoing study of basaltic diversity at the Apollo 12 landing site. An attempt has been made to classify these samples according to the well‐established grouping of olivine, pigeonite, ilmenite, and feldspathic basalts. Particular attention has been paid to variations in major, minor, and trace element mineral chemistry (determined by electron microprobe analysis and laser ablation ICP‐MS), which may be indicative of particular basaltic suites and less susceptible to sampling bias than bulk sample characteristics. Examples of all three main (olivine, pigeonite, and ilmenite) basaltic suites have been identified within the 12003 soil. One sample is identified as a possible new addition to the feldspathic suite, which currently consists of only one other confirmed sample. Identification of additional feldspathic basalts strengthens the argument that they represent a poorly sampled basaltic flow local to the Apollo 12 site, rather than exotic material introduced to the site by impact mixing processes. Three samples are identified as representing members of one or two previously unrecognized basaltic suites.  相似文献   

5.
We present the results from the first sonar to be deployed outside of Earth, and the first active acoustic instrument on Titan, onboard the Huygens probe, and the implications of its data for the geomorphology and characteristics of the Huygens landing site. Signals were recorded from 90 m downwards until impact, with a maximum sensor footprint diameter at the ground of 39.2 m. Probe impact speed was measured to be 4.67 m s−1. Derivation of terrain topography in a transect beneath the probe may indicate a ridge-trough terrain with an amplitude of about 1 m and a wavelength of about 10 m, although a flat surface is also consistent with the results. Modelling of the returned signal indicates that the surface acoustic properties at the landing site must be specular in nature, which may have two possible (not incompatible) causes—the surface may consist of sorted interlocking grains, smooth on the centimetre scale, which would imply either fluvial sorting or the infill of small particles interstitial to the larger particles (similar to a terrestrial playa). Alternatively, specularity may indicate the presence of methane as an interstitial liquid or as very small pools. Due to mission constraints, tens of metres around the landing site were not well-imaged by Huygens' cameras except for the narrow azimuth observed after impact (the camera did not look straight down, and was not in imaging mode during the last few hundred metres of descent). Thus the data presented are among the few direct observations of the landing site surroundings.  相似文献   

6.
An improved cloud tracking method for deriving wind velocities from successive planetary images was developed. The new method incorporates into the traditional cross-correlation method an algorithm that corrects for erroneous cloud motion vectors by re-determining the most plausible correlation peak among all of the local maxima on the correlation surface by comparing each vector with its neighboring vectors. The newly developed method was applied to the Venusian violet images obtained by the Solid State Imaging system (SSI) onboard the Galileo spacecraft during its Venus flyby. Although the results may be biased by the choice of spatial scale of atmospheric features, the cloud tracking is the most practical mean of estimating the wind velocities with extensive spatial and temporal coverage. The two-dimensional distribution of the horizontal wind vector field over 5 days was obtained. It was found from these wind maps that the solar-fixed component in 1990 was similar to that in 1982 obtained by the Pioneer Venus orbiter. The deviation of the instantaneous zonal wind field from the solar-fixed component shows a distinct wavenumber-1 structure in the equatorial region. On the assumption that this structure is a manifestation of an equatorial Kelvin wave, the phase relationship between the zonal wind and the cloud brightness suggests a short photochemical lifetime of the violet absorber. The momentum deposition by this Kelvin wave, which is subject to radiative damping, would induce a westward mean-wind acceleration of ~0.3 m s?1 per Earth day.  相似文献   

7.
The possibility of reconstructing the surface topography from single images with the photometric method in the linear approximation is analyzed. The photometric method or surface topography Reconstruction employs a statistical approach to the problem formulation and is the most mathematically correct. This method allows determination of the most probable surface topography given specific observational data. When only one image is available, the photometric method is superior in comparison with the currently available photoclinometry. The processing of test surface topography with the photometric method shows that, under typical conditions, the error of surface relief reconstruction is of higher than 40% in terms of the standard deviation of the surface height. The surface relief of some Martian areas are reconstructed from HRSC images obtained by the Mars Express spacecraft. It is shown that the image-reconstructed surface topography is in good agreement with the topographic information for the same Martian areas obtained by the MOLA altimeter.  相似文献   

8.
Abstract— Elemental composition and composition ratios derived from gamma‐ray measurements collected by the NEAR‐Shoemaker spacecraft while on the surface of 433 Eros are reported. Performance of the gamma‐ray spectrometer (GRS) during cruise and orbit is reviewed. The best gamma‐ray data were collected on the surface of Eros after the spacecraft's controlled descent on 2001 February 12. Methods used in spectral analysis, to convert peak areas to incident photons, and photons to elemental composition are described in some detail. The elemental abundance of K and the Mg/Si, Fe/Si, Si/O and Fe/O abundance ratios were determined. The Mg/Si and Si/O ratios and the K abundance are roughly chondritic, but the Fe/Si and Fe/O ratios are low compared to expected chondritic values. Three possible explanations for the apparent Fe depletion are considered.  相似文献   

9.
Data collected by Phoenix Lander’s Thermal and Evolved Gas Analyzer (Phoenix-TEGA) indicate carbonate thermal decomposition at both low and high temperatures. The high-temperature thermal decomposition is consistent with calcite, dolomite, or ankerite, (3–6 wt.%) or any combination of these phase or, presumably, solid solutions of these phases having intermediate composition. The low-temperature thermal decomposition is consistent with the presence of magnesite or siderite, their solid solutions, or any combination of magnesite and siderite, and possibly other carbon-bearing phases (e.g., organics). The carbonate concentration for the low temperature release, assuming magnesite–siderite, is ~1.0 wt.%. This revised interpretation of the Phoenix-TEGA data resulted from new laboratory measurements of carbonate decomposition at a Phoenix-like 12 mbar atmospheric pressure. Phoenix carbonate was inherited in ejecta from the Vastitas Borealis and Scandia regions, inherited from material deposited by aeolian processes, and/or formed in situ at the Phoenix Landing site (pedogenesis). Inherited carbonate implies multiple formation pathways may be represented by carbonates at the Phoenix Landing site. Soil carbonates and associated moderate alkalinity indicate that the soil pH is favorable for microbial activity at the Phoenix Landing site and presumably throughout the martian northern plains.  相似文献   

10.
Abstract High-Ti basalts from the Apollo collections span a range in age from 3.87 Ga to 3.55 Ga. The oldest of these are the common Apollo 11 Group B2 basalts which yield evidence of some of the earliest melting of the lunar mantle beneath Mare Tranquillitatis. Rare Group D high-Ti basalts from Mare Tranquillitatis have been studied in an attempt to confirm a postulated link with Group B2 basalts (Jerde et al., 1994). The initial Sr isotopic ratio of a known Group D basalt (0.69916 ± 3 at 3.85 Ga) lies at the lower end of the tight range for Group B2 basalts (87Sr/86Sr = 0.69920 to 0.69921). One known Group D basalt and a second postulated Group D basalt yield indistinguishable initial ?Nd (1.2 ± 0.6 and 1.2 ± 0.3) and again lie at the lower end of the range for the Group B2 basalts from Apollo 11 (+2.0 ± 0.4 to +3.9 ± 0.6, at 3.85 Ga). A third sample has isotopic (87Sr/86Sr = 0.69932 ± 2; ?Nd = 2.5 ± 0.4; at 3.59 Ga; as per Snyder et al., 1994b) and elemental characteristics similar to the Group A high-Ti basalts returned from the Apollo 11 landing site. Ages of 40Ar-39Ar have been determined for one known Group D basalt and a second postulated Group D basalt using step-heating with a continuous-wave laser. Suspected Group D basalt, 10002, 1006, yielded disturbed age spectra on two separate runs, which was probably due to 39Ar recoil effects. Using the “reduced plateau age” method of Turner et al. (1978), the ages derived from this sample were 3898 ± 19 and 3894 ± 19 Ma. Three separate runs of known Group D basalt 10002, 116 yielded 40Ar/39Ar plateau ages of 3798 ± 9 Ma, 3781 ± 8 Ma, and 3805 ± 7 Ma (all errors 2σ). Furthermore, this sample has apparently suffered significant 40Ar loss either due to solar heating or due to meteorite impact. The loss of a significant proportion of 40Ar at such a time means that the plateau ages underestimate the “true” crystallization age of the sample. Modelling of this Ar loss yields older, “true” ages of 3837 ± 18, 3826 ± 16, and 3836 ± 14 Ma. These ages overlap the ages of Group B2 high-Ti basalts (weighted average age = 3850 ± 20 Ma; range in ages = 3.80 to 3.90 Ga). The combined evidence indicates that the Group D and B2 high-Ti basalts could be coeval and may be genetically related, possibly through increasing degrees of melting of a similar source region in the upper mantle of the Moon that formed >4.2 Ga ago. The Group D basalts were melted from the source first and contained 3–5×more trapped KREEP-like liquid than the later (by possibly only a few million years) Group B2 basalts. Furthermore, the relatively LREE- and Rb-enriched nature of these early magmas may lend credence to the idea that the decay of heat-producing elements enriched in the KREEP-like trapped liquid of upper mantle cumulates, such as K, U, and Th, could have initiated widespread lunar volcanism.  相似文献   

11.
Observations of the Sun were made with the Cape reversible transit circle from 1907 to 1959. We have made least squares solutions for six unknowns viz., equator and equinox corrections and corrections to earth orbital parameters including the ephemeris mean longitude of the Sun, the mean obliquity of the ecliptic, the mean longitude of perihelion, and the mean eccentricity of the earth's orbit based on Newcomb's, DE102, and DE200 Ephemerides for each of six catalogs of observations made during that period. The six unknowns are also determined simultaneously for the six catalogs taken together. The six catalogs are absolute, in that methods of observation and reduction were adopted in such a way as to produce a system of results not closely dependent on the adopted system of assumed clock and azimuth star positions.The observed equator and equinox corrections from a comparison of DE200 with the Cape Sun observations referred to an improved FK4 system are –0.07±0.01 arcsec and –0.20±0.04 arcsec, respectively, at the mean epoch of observation, 1933.02. The time rate of change of the equator correction was not significant. The time rate of change of the observed equinox is –1.02±0.30 arcsec per century.The observed equinox correction of the DE102 at 1933.02 is –0.41±0.04 arcsec, which is 0.5 arcsec less than the NEWCOMB (Herget) equinox correction. This confirms the result based on Washington Sun observations.  相似文献   

12.
Radio emission of 10 cm from the whole disk was monitored during the eclipse of 7 March, 1970 by the Aerospace San Fernando Observatory and AFCRL Sagamore Hill Solar Radio Observatory. For both, the active region associated with sunspot 17 774, McMath region 10 618, was occulted. At Sagamore Hill the entire region was occulted. At SFO only the southern half of the sunspot group and the hydrogen plage southeast of the group was occulted. This region produced an importance class 1N flare and 10 cm burst beginning at 1601 UT and was enhanced about 15 flux units above the mean value of 190 units at onset.The Sagamore Hill data indicate the region was about 3.8 and contributed about 0.21 of the total radiation from the disk. The SFO data gave about 5.4 for the size of the southern half of the region and showed that about 0.20 of the total radiation came from there. Radiation came primarily from the hydrogen plage southeast of the major spot of the group. The hydrogen plage northwest of the group did not contribute significantly. Although the small flare occurred in this region, it did not contribute more than 0.04 of the total (0.20 of the active region) at occultation of region 10 618.  相似文献   

13.
Plasma velocities determined from the anisotropies of energetic ions via the Compton-Getting effect have been important in studies of magnetospheric flows, particularly with regard to the magnetospheres of Jupiter and Saturn. In this paper we consider a range of issues concerned with the practical limitations of such measurements, and their effect on the velocities deduced. First, however, we consider the differing approaches to ion data analysis which have been employed, via fitting to a spherical harmonic expansion or directly to a model distribution function. We show that these approaches are formally identical when corresponding terms are included. The other issues considered are (a) the effect of flow and gradient contributions to the anisotropy and how and when they can be separately determined; (b) finite detector energy channel widths, telescope opening cones, and azimuthal sweep on spinning spacecraft; (c) lack of complete coverage of the unit sphere; (d) misidentification of the ion species detected; (e) telescope cross-calibration errors; and (f) contamination by energetic electron counts. The effect of these data limitations are systematically examined and quantified. The discussion is illustrated by consideration of the characteristics of energetic ion instruments carried by the Ulysses spacecraft, and an analysis of data obtained by the Anisotropy Telescopes instrument during the inbound pass of the spacecraft through the outer Jovian magnetosphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号