首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Long-term variations of solar differential rotation and sunspot activity are investigated through re-analyzing the data on parameters of the differential-rotation law obtained by Makarov, Tlatov, and Callebaut (Solar Phys. 170, 373, 1997), Javaraiah, Bertello, and Ulrich (Astrophys. J. 626, 579, 2005a; Solar Phys. 232, 25, 2005b), and Javaraiah et al. (Solar Phys. 257, 61, 2009). Our results indicate that the solar-surface-rotation rate at the Equator (indicated by the A-parameter of the standard solar-rotation law) shows a secular decrease since Cycle 12 onwards, given by about 1?–?1.5×10?3 (deg?day?1?year?1). The B-parameter of the standard differential-rotation law seems to also show a secular decrease since Cycle 12 onwards, but of weak statistical significance. The rotation rate averaged over latitudes 0°?–?40° does not show a secular trend of statistical significance. Moreover, the average sunspot area shows a secular increase of statistical significance since Cycle 12 onwards, while a negative correlation is found between the level of sunspot activity (indicated by the average sunspot area) and the solar equatorial rotation on long-term scales.  相似文献   

2.
Multi-wavelength studies of energetic solar flares with seismic emissions have revealed interesting common features between them. We studied the first GOES X-class flare of Solar Cycle 24, as detected by the Solar Dynamics Observatory (SDO). For context, seismic activity from this flare (SOL2011-02-15T01:55-X2.2, in NOAA AR 11158) has been reported by Kosovichev (Astrophys. J. Lett., 734, L15, 2011) and Zharkov et?al. (Astrophys. J. Lett., 741, L35, 2011). Based on Dopplergram data from the Helioseismic and Magnetic Imager (HMI), we applied standard methods of local helioseismology in order to identify the seismic sources in this event. RHESSI hard X-ray data are used to check the correlation between the location of the seismic sources and the particle-precipitation sites in during the flare. Using HMI magnetogram data, the temporal profile of fluctuations in the photospheric line-of-sight magnetic field is used to estimate the magnetic-field change in the region where the seismic signal was observed. This leads to an estimate of the work done by the Lorentz-force transient on the photosphere of the source region. In this instance, this is found to be a significant fraction of the acoustic energy in the attendant seismic emission, suggesting that Lorentz forces can contribute significantly to the generation of sunquakes. However, there are regions in which the signature of the Lorentz force is much stronger, but from which no significant acoustic emission emanates.  相似文献   

3.
Numerical reconstruction/extrapolation of the coronal nonlinear force-free magnetic field (NLFFF) usually takes the photospheric vector magnetogram as input at the bottom boundary. The magnetic field observed at the photosphere, however, contains a force that is in conflict with the fundamental assumption of the force-free model. It also contains measurement noise, which hinders the practical computation. Wiegelmann, Inhester, and Sakurai (Solar Phys. 233, 215, 2006) have proposed to preprocess the raw magnetogram to remove the force and noise to provide better input for NLFFF modeling. In this paper we develop a new code of magnetogram preprocessing that is consistent with our extrapolation method CESE–MHD–NLFFF (Jiang, Feng, and Xiang in Astrophys. J. 755, 62, 2012; Jiang and Feng in Astrophys. J. 749, 135, 2012a). Based on the magnetic-splitting rule that a magnetic field can be split into a potential-field part and a non-potential part, we split the magnetogram and dealt with the two parts separately. The preprocessing of the magnetogram’s potential part is based on a numerical potential-field model, and the non-potential part is preprocessed using the similar optimization method of Wiegelmann, Inhester, and Sakurai (2006). The code was applied to the SDO/HMI data, and results show that the method can remove the force and noise efficiently and improve the extrapolation quality.  相似文献   

4.
We present a method for fast and accurate azimuth disambiguation of vector magnetogram data regardless of the location of the analyzed region on the solar disk. The direction of the transverse field is determined with the principle of minimum deviation of the field from the reference (potential) field. The new disambiguation (NDA) code is examined on the well-known models of Metcalf et al. (Solar Phys. 237, 267, 2006) and Leka et al. (Solar Phys. 260, 83, 2009), and on an artificial model based on the observed magnetic field of AR 10930 (Rudenko, Myshyakov, and Anfinogentov, Astron. Rep. 57, 622, 2013). We compare Hinode/SOT-SP vector magnetograms of AR 10930 disambiguated with three codes: the NDA code, the nonpotential magnetic-field calculation (NPFC: Georgoulis, Astrophys. J. Lett. 629, L69, 2005), and the spherical minimum-energy method (Rudenko, Myshyakov, and Anfinogentov, Astron. Rep. 57, 622, 2013). We then illustrate the performance of NDA on SDO/HMI full-disk magnetic-field observations. We show that our new algorithm is more than four times faster than the fastest algorithm that provides the disambiguation with a satisfactory accuracy (NPFC). At the same time, its accuracy is similar to that of the minimum-energy method (a very slow algorithm). In contrast to other codes, the NDA code maintains high accuracy when the region to be analyzed is very close to the limb.  相似文献   

5.
The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a?time?–?distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time?–?distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE’96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a?minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE’96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors that they produce.  相似文献   

6.
A. Gil  M. V. Alania 《Solar physics》2013,282(2):565-578
Recently Pop (Solar Phys. 276, 351, 2012) identified a Laplace (or double exponential) distribution in the number of days with a given absolute value in the change over a day, in sunspot number, for days on which the sunspot number does change. We show this phenomenological rule has a physical origin attributable to sunspot formation, evolution, and decay, rather than being due to the changes in sunspot number caused by groups rotating onto and off the visible disc. We also demonstrate a simple method to simulate daily sunspot numbers over a solar cycle using the Pop (Solar Phys. 276, 351, 2012) result, together with a model for the cycle variation in the mean sunspot number. The procedure is applied to three recent solar cycles. We check that the simulated sunspot numbers reproduce the observed distribution of daily changes over those cycles.  相似文献   

7.
We present a list of 61 solar photospheric lines in the near-infrared H-band (1500?–?1800 nm), obtained by synthesis under the LTE approximation, and compute the corresponding velocity and temperature response functions (RF) in the line core and depth-integrated RFs as a function of wavelength. In particular, we computed the core formation heights and the ranges of atmospheric layers where thermodynamic perturbations are dominant. Moreover, we indicate the wavelength where the line is more sensitive to thermodynamic variations and quantify this sensitivity. This list is the extension of a previous work of Penza and Berrilli (Solar Phys. 277, 227, 2012).  相似文献   

8.
Algorithms are derived for constructing five dimensional Kaluza-Klein cosmological space-times in the presence of a perfect fluid source in the framework of f(R,T) gravity theory proposed by Harko et al. (Phys. Rev. D 84:024020, 2011). Starting from the solution of Reddy et al. (Int. J. Theor. Phys 51:3222-3227, 2012b) some classes of new solutions are generated which correspond to accelerating models of the Universe. The physical and kinematical behaviors of the models are studied.  相似文献   

9.
The first near-side X-class flare of Solar Cycle 24 occurred in February 2011 (SOL2011-02-05T01:55) and produced a very strong seismic response in the photosphere. One sunquake was reported by Kosovichev (Astrophys. J. Lett. 734, L15, 2011), followed by the discovery of a second sunquake by Zharkov, Green, Matthews et al. (Astrophys. J. Lett. 741, L35, 2011). The flare had a two-ribbon structure and was associated with a flux-rope eruption and a halo coronal mass ejection (CME) as reported in the CACTus catalogue. Following the discovery of the second sunquake and the spatial association of both sources with the locations of the feet of the erupting flux rope (Zharkov, Green, Matthews et al., Astrophys. J. Lett. 741, L35, 2011), we present here a more detailed analysis of the observed photospheric changes in and around the seismic sources. These sunquakes are quite unusual, taking place early in the impulsive stage of the flare, with the seismic sources showing little hard X-ray (HXR) emission, and strongest X-ray emission sources located in the flare ribbons. We present a directional time–distance diagram computed for the second source, which clearly shows a ridge corresponding to the travelling acoustic-wave packet and find that the sunquake at the second source happened about 45 seconds to one minute earlier than the first source. Using acoustic holography we report different frequency responses of the two sources. We find strong downflows at both seismic locations and a supersonic horizontal motion at the second site of acoustic-wave excitation.  相似文献   

10.
Following Couvidat (Solar Phys. 282, 15, 2013), we analyze data from the Helioseismic and Magnetic Imager (HMI) and the Atmospheric Imaging Assembly (AIA) instruments onboard the Solar Dynamics Observatory. Doppler velocity and continuum intensity at 6173 Å as well as intensity maps at 1600 Å and 1700 Å are studied on 14 active regions and four quiet-Sun regions at four heights in the solar photosphere. A Hankel–Fourier analysis is performed around these regions of interest. Outgoing–ingoing scattering phase shifts at a given atmospheric height are computed, as well as ingoing–ingoing and outgoing–outgoing phase differences between two atmospheric heights. The outgoing–ingoing phase shifts produced by sunspots show little dependence on measurement height, unlike the acoustic power reduction measured in Couvidat (2013). Phenomena happening above the continuum level, like acoustic glories, appear not to have a significant effect on the phases. However, there is a strong dependence on sunspot size, line-of-sight magnetic flux, and intensity contrast. As previously suggested by other groups, the region of wave scattering appears both horizontally smaller and vertically less extended than the region of acoustic power suppression, and occurs closer to the surface. Results presented here should help refine theoretical models of acoustic wave scattering by magnetic fields. Ingoing–ingoing phase differences between two measurement heights are also computed and show a complex pattern highly dependent on atmospheric height. In particular, a significant sensitivity of AIA signals to lower chromospheric layers is shown. Finally, ingoing–ingoing minus outgoing–outgoing phase differences between various measurement heights are discussed.  相似文献   

11.
Magneto-curvature stresses could deform magnetic field lines giving rise to back reaction and restoring magnetic stresses (Tsagas in Phys. Rev. Lett., 2001). Barrow and Tsagas (Phys. Rev. D, 2008) have shown that in Friedman universe the expansion slows down in its spatial section of negative Riemann curvature. Earlier, Chicone and Latushkin (Proc. Am. Math. Soc. 125(11):3391, 1995) proved that fast dynamos in compact 2D manifold implies negatively constant Riemannian curvature. Here one applies the Barrow-Tsagas ideas to cosmic dynamos of negative curvature. Fast dynamo, covariant stretching of Riemann slices of cosmic Lobachevsky plane is given. Inclusion of advection term on dynamo equations (Clarkson and Marklund in Mon. Not. R. Astron. Soc., 2005) is considered. In advection absence, slow dynamos are also obtained. It is shown the viscous and restoring forces on stretching particles decrease, as magnetic rates increase. From COBE data ( $\frac{{\delta}B}{B}\approx{10^{-5}}$ ), one is able to compute the stretching $\frac{{\delta}V^{y}}{V^{y}}=1.5\frac{{\delta}B}{B}\approx{1.5{\times}10^{-5}}$ . Zeldovich et al. have computed the maximum magnetic growth rate as γ max ≈8.0×10?1 t ?1. From COBE data a lower growth rate as γ COBE ≈6.0×10?6 t ?1, is well-within Zeldovich et al estimate. Instead of Harrison value $B\approx{t^{\frac{4}{3}}}$ one obtains a lower primordial field B≈10?6 t which yields B≈10?6 G at 1 s Big Bang time.  相似文献   

12.
The primary poles for (243) Ida and (134340) Pluto and its satellite (134340) Pluto : I Charon were redefined in the IAU Working Group on Cartographic Coordinates and Rotational Elements (WGCCRE) 2006 report (Seidelmann et al. in Celest Mech Dyn Astr 98:155, 2007), and 2009 report (Archinal et al. in Celest Mech Dyn Astr 109:101, 2011), respectively, to be consistent with the primary poles of similar Solar System bodies. However, the WGCCRE failed to take into account the effect of the redefinition of the poles on the values of the rotation angle W at J2000.0. The revised relationships in Table 3 of Archinal et al. 2011) are $$\begin{array}{llll} W & = & 274^{\circ}.05 +1864^{\circ}.6280070\, d\;{\rm for\; (243)\,Ida} \\ W & = & 302^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto,\; and}\\ W & = & 122^{\circ} .695 + 56^{\circ} .3625225\, d\;{\rm for\; (134340)\,Pluto : I \,Charon}\end{array}$$ where d is the time in TDB days from J2000.0 (JD2451545.0).  相似文献   

13.
The current study aims at quantifying the flux distributions of solar intranetwork (IN) magnetic field based on the data taken in four quiet and two enhanced network areas with the Narrow-band Filter Imager of the Solar Optical Telescope on board the Hinode satellite. More than 14000 IN elements and 3000 NT elements were visually identified. They exhibit a flux distribution function with a peak at 1?–?3×1016 Mx (maxwell) and 2?–?3×1017 Mx, respectively. We found that the IN elements contribute approximately to 52 % of the total flux and an average flux density of 12.4 gauss of the quiet region at any given time. By taking the lifetime of IN elements of about 3 min (Zhou et al., Solar Phys. 267, 63, 2010) into account, the IN fields are estimated to have total contributions to the solar magnetic flux up to 3.8×1026 Mx per day. No fundamental distinction can be identified in IN fields between the quiet and enhanced network areas.  相似文献   

14.
We carry out the adaptive mesh refinement (AMR) implementation of our solar–interplanetary space-time conservation element and solution element (CESE) magnetohydrodynamic model (SIP–CESE MHD model) using a six-component grid system (Feng, Zhou, and Wu, Astrophys. J. 655, 1110, 2007; Feng et al., Astrophys. J. 723, 300, 2010). By transforming the governing MHD equations from the physical space (x,y,z) to the computational space (ξ,η,ζ) while retaining the form of conservation (Jiang et al., Solar Phys. 267, 463, 2010), the SIP–AMR–CESE MHD model is implemented in the reference coordinates with the aid of the parallel AMR package PARAMESH available at http://sourceforge.net/projects/paramesh/ . Meanwhile, the volumetric heating source terms derived from the topology of the magnetic-field expansion factor and the minimum angular separation (at the photosphere) between an open-field foot point and its nearest coronal-hole boundary are also included. We show the preliminary results of applying the SIP–AMR–CESE MHD model for simulating the solar-wind background of different solar-activity phases by comparison with SOHO observations and other spacecraft data from OMNI. Our numerical results show overall good agreements in the solar corona and in interplanetary space with these multiple-spacecraft observations.  相似文献   

15.
We study the effect of localized sound-speed perturbations on global mode frequencies by applying techniques of global helioseismology to numerical simulations of the solar acoustic wave field. Extending the method of realization-noise subtraction (e.g., Hanasoge, Duvall, and Couvidat, Astrophys. J. 664, 1234, 2007) to global modes and exploiting the luxury of full spherical coverage, we are able to achieve very highly resolved frequency differences that are then used to study sensitivities and the signatures of the thermal asphericities. We find that i) global modes are almost twice as sensitive to sound-speed perturbations at the bottom of the convection zone in comparison to anomalies well inside the radiative interior (r?0.55R ), ii) the m degeneracy is lifted ever so slightly, as seen in the a coefficients, and iii) modes that propagate in the vicinity of the perturbations show small amplitude shifts. Through comparisons with error estimates obtained from Michelson Doppler Imager (MDI; Scherrer et al., Solar Phys. 162, 129, 1995) observations, we find that the frequency differences are detectable with a sufficiently long time series (70?–?642 days).  相似文献   

16.
A model for an anisotropic Bianchi type VI universe in a Scale Covariant theory of gravitation (Canuto et al. in Phys. Rev. D 16:6, 1977a; Phys. Rev. Lett. 39:8, 1977b) is analyzed. Exact solutions to the corresponding field equations are found under some specific assumptions. A finite singularity is found in the model at the initial time t=0. All the physical parameters are studied and thoroughly discussed. The model behaves like a big bang singular model o f the universe.  相似文献   

17.
Recent magnetic modeling efforts have shown substantial misalignment between theoretical models and observed coronal loop morphology as observed by STEREO/EUVI, regardless of the type of model used. Both potential field and non-linear force-free field (NLFFF) models yielded overall misalignment angles of 20??C?40 degrees, depending on the complexity of the active region (Sandman et al., Solar Phys. 259, 1, 2009; DeRosa et al., Astrophys. J. 696, 1780, 2009) We demonstrate that with new, alternative forward-fitting techniques, we can achieve a significant reduction in the misalignment angles compared with potential field source surface (PFSS) models and NLFFF models. Fitting a series of submerged dipoles to the field directions of stereoscopically triangulated loops in four active regions (30 April, 9 May, 19 May, and 11 December 2007), we find that 3??C?5 dipoles per active region yield misalignment angles of ???11°??C?18°, a factor of two smaller than those given by previously established extrapolation methods. We investigate the spatial and temporal variation of misalignment angles with subsets of loops for each active region, as well as loops observed prior to and following a flare and filament eruption, and find that the spatial variation of median misalignment angles within an active region (up to 75%) exceeds the temporal variation associated with the flare (up to 40%). We also examine estimates of the stereoscopic error of our analysis. The corrected values yield a residual misalignment of 7°??C?13°, which is attributed to the non-potentiality due to currents in the active regions.  相似文献   

18.
We combined the (K s , J?K s ) data in Laney et al. (Mon. Not. R. Astron. Soc. 419:1637, 2012) with the V apparent magnitudes and trigonometric parallaxes taken from the Hipparcos catalogue and used them to fit the $M_{K_{s}}$ absolute magnitude to a linear polynomial in terms of V?K s colour. The mean and standard deviation of the absolute magnitude residuals, ?0.001 and 0.195 mag, respectively, estimated for 224 red clump stars in Laney et al. (2012) are (absolutely) smaller than the corresponding ones estimated by the procedure which adopts a mean $M_{K_{s}}=-1.613~\mbox{mag}$ absolute magnitude for all red clump stars, ?0.053 and 0.218 mag, respectively. The statistics estimated by applying the linear equation to the data of 282 red clump stars in Alves (Astrophys. J. 539:732, 2000) are larger, $\Delta M_{K_{s}}=0.209$ and σ=0.524 mag, which can be explained by a different absolute magnitude trend, i.e. condensation along a horizontal distribution.  相似文献   

19.
In this paper, ten CME events viewed by the STEREO twin spacecraft are analyzed to study the deflections of CMEs during their propagation in the corona. Based on the three-dimensional information of the CMEs derived by the graduated cylindrical shell (GCS) model (Thernisien, Howard, and Vourlidas in Astrophys. J. 652, 1305, 2006), it is found that the propagation directions of eight CMEs had changed. By applying the theoretical method proposed by Shen et?al. (Solar Phys. 269, 389, 2011) to all the CMEs, we found that the deflections are consistent, in strength and direction, with the gradient of the magnetic energy density. There is a positive correlation between the deflection rate and the strength of the magnetic energy density gradient and a weak anti-correlation between the deflection rate and the CME speed. Our results suggest that the deflections of CMEs are mainly controlled by the background magnetic field and can be quantitatively described by the magnetic energy density gradient (MEDG) model.  相似文献   

20.
The exact higher dimensional solutions of Einstein-Maxwell field equations for spherically symmetric distribution of charged perfect fluid are obtained by using the method originally used by Hajj-Boutros and Sfeila (Gen. Relativ. Gravit. 18(4):395, 1986) for four-dimensional space-time. The new exact solutions have been generated from those of Khadekar et al. (J. Indian Math. Soc. 68(1–4):33, 2001), Humi and Mansour (Phys. Rev. D 29(6):1076, 1984) and Banerjee and Santos (J. Math. Phys. 22(4):824, 1981) in the frame work of higher dimensional space-time. The various physical properties are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号