首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Regularities of the formation of bottom sediments down to a depth of 1.2 m, as well as factors governing the composition of sediments, waters, and soils in the catchment area of the lake, are discussed. It has been established that the chemical composition of lacustrine sediments is closely associated with the composition of soils in the ambient watersheds, and the soils, in turn, are associated with the composition of the soil-forming rocks. The available data suggest an extremely irregular contamination of the lake system by technogenic radionuclides within the water area. Maximum radiocesium contamination of lacustrine bottom sediments is 350 mCi/km2 (recalculated to year 2000). Concentrations of elements (Cu, Zn, Cr, Ni, Co, Mg, Be, Sb, Mn, and others) in bottom sediments, water, and soils in catchment areas of Lake Kolyvan do not exceed the background values (except for the Hg content in bottom sediments), suggesting that the area under consideration is not contaminated by inorganic technogenic components.  相似文献   

2.
We discuss the redox environments and the compositions of bottom sediments and sedimentary pore waters in the region of a hydrothermal vent in Frolikha Bay, Lake Baikal. According to our results, the submarine vent and its companion nearby spring on land originate from a common source. The most convincing evidence for their relation comes from the proximity of stable oxygen and hydrogen isotope compositions in pore waters and in the spring water. The isotope composition indicates a meteoric origin of pore waters, but their major- and minor-element chemistry bears imprint of deep water which may seep through permeable faulted crust. Although pore waters near the submarine vent have a specific enrichment in major and minor constituents, hydrothermal discharge at the Baikal bottom causes a minor impact on the lake water chemistry, unlike the case of freshwater geothermal lakes in the East-African Rift and North America.  相似文献   

3.
武汉市墨水湖沉积物重金属污染特征与防治对策   总被引:8,自引:2,他引:8  
苏春利  王焰新 《矿物岩石》2006,26(2):111-116
武汉市墨水湖重金属污染严重,其污染特征在我国城市湖泊中具代表性。在对墨水湖不同湖区沉积物中重金属污染物空间分布特征进行分析的基础上,应用地积累指数法探讨不同重金属元素含量随深度变化的规律和原因,并对墨水湖沉积物中重金属的污染程度进行评价表明:墨水湖沉积物中重金属元素锌和汞污染最为严重,污染程度由高到低依次为:Zn>Hg>Cu>C r>Pb>A s;从整个湖区来看,分布有排污口的周边湖区污染严重,湖心污染程度较低;沉积物中主要重金属元素含量随深度增加而降低,其变化规律主要受污染状况的影响,沉积物颗粒粒径的变化和早期成岩作用的影响不大。为了改善墨水湖水质条件和重金属污染严重的现状,必须在截污、疏浚和引水工程等基本治理措施保护下,重建和恢复沉水植物系统,才能从根本上改善湖泊水质。  相似文献   

4.
论湖南石门砷—(金)矿床的古热泉成因   总被引:4,自引:0,他引:4  
张景荣  陆建军 《地质论评》1994,40(5):429-435
湖南石门砷-(金)矿床属古热泉成因,具有典型的三层结构模式,矿体呈筒状;矿床中硅质体属热泉沉积的硅华,矿石中微量元素间该区现代热泉体系沉积物的类似;成矿溶液富Na^2^+,Ca^2^+,Cl^-,HCO3^-和SO4^2^-,也与该区现代热泉水成分相似。泉水的氢,氧,氩,氦同位素研究表明,成矿溶液中水主要为大气降水。提出了热泉型砷-(金)矿床的成矿模式:下渗的大气降水被深部热流体加热,在地层中循环  相似文献   

5.
6.
Exchange of water between groundwater and surface water could alter water quality of the surface waters and thereby impact its ecosystem. Discharges of anoxic groundwater, with high concentrations of sulfate and chloride and low concentrations of nitrate and oxygen, from three sinkhole vents (El Cajon, Middle Island and Isolated) in Lake Huron have been recently documented. In this investigation, we collected and analyzed a suite of water samples from these three sinkhole vents and lake water samples from Lake Huron for Ra, radon-222, stable isotopes of oxygen and hydrogen, and other ancillary parameters. These measurements are among the first of their kind in this unique environment. The activities of Ra are found to be one to two orders of magnitude higher than that of the lake water. Isotopic signatures of some of the bottom lake water samples indicate evidences for micro-seeps at distances farther from these three vents. A plot of δD versus δ18O indicates that there are deviations from the Global Meteoric Line that can be attributed to mixing of different water masses and/or due to some subsurface chemical reactions. Using the Ra isotopic ratios, we estimated the transit times of the vent waters from the bottom to the top of the vent (i.e., sediment–water interface) to be 4–37 days. More systematic studies on the distribution of the radioactive and stable isotope studies are needed to evaluate the prevalence of micro-seeps in Lake Huron and other Great Lakes system.  相似文献   

7.
A high-resolution side-scan sonar survey of the lake bed off the Keweenaw Peninsula, Lake Superior, demonstrates that bottom currents are affecting lake bed morphology at depths up to 240 m. Numerous lineations which run parallel to the shore appear to be sand ribbons. A field of sedimentary furrows which occurs in one area demonstrates the long-term directional stability of the near-bottom flow. Large (100–300 m in diameter, 2–5 m deep), unusual ring-like or arcuate depressions are common throughout the western half of Lake Superior. These rings themselves do not appear to have been formed by bottom currents, but may have developed as water was released by the rapid compaction of glacial sediments which underlie the lake bed. Off the Keweenaw Peninsula the forms of the rings have been modified by bottom currents. The bottom currents which have modified the lake bed are probably generated when storms cross the lake at times when it is poorly stratified.  相似文献   

8.
Using some uranium deposits and recent U-bearing sediments as examples, it is shown that all U-bearing rocks are characterized by an association of organic matter and calcium phosphate, irrespective of the quantitative relationship between these components. A considerable proportion of these components was delivered into sediments with remains of marine planktonic and nektonic organisms. Along with organic matter, calcium phosphate played a significant role in uranium concentration. This is related to a high sorption ability of the calcium phosphate. Uranium accumulated during diagenesis as a result of diffusion exchange between bottom and interstitial waters. The combination of anoxic bottom environment with high bioproductivity in upper aerated waters, a typical phenomenon in oceanic upwelling zones, is the most favorable factor of uranium concentration in the sedimentary process. This determines the stable paragenetic association of organic matter, phosphorus, and uranium in marine sediments, such as black shales and organogenic phosphate deposits.  相似文献   

9.
The Bonneville Basin is a continental lacustrine system accommodating extensive microbial carbonate deposits corresponding to two distinct phases: the deep Lake Bonneville (30 000 to 11 500 14C bp ) and the shallow Great Salt Lake (since 11 500 14C bp ). A characterization of these microbial deposits and their associated sediments provides insights into their spatio‐temporal distribution patterns. The Bonneville phase preferentially displays vertical distribution of the microbial deposits resulting from high‐amplitude lake level variations. Due to the basin physiography, the microbial deposits were restricted to a narrow shoreline belt following Bonneville lake level variations. Carbonate production was more efficient during intervals of relative lake level stability as recorded by the formation of successive terraces. In contrast, the Great Salt Lake microbial deposits showed a great lateral distribution, linked to the modern flat bottom configuration. A low vertical distribution of the microbial deposits was the result of the shallow water depth combined with a low amplitude of lake level fluctuations. These younger microbial deposits display a higher diversity of fabrics and sizes. They are distributed along an extensive ‘shore to lake’ transect on a flat platform in relation to local and progressive accommodation space changes. Microbial deposits are temporally discontinuous throughout the lake history showing longer hiatuses during the Bonneville phase. The main parameters controlling the rate of carbonate production are related to the interaction between physical (kinetics of the mineral precipitation, lake water temperature and runoff), chemical (Ca2+, Mg2+ and HCO3? concentrations, Mg/Ca ratio, dilution and depletion) and/or biological (trophic) factors. The contrast in evolution of Lake Bonneville and Great Salt Lake microbial deposits during their lacustrine history leads to discussions on major chemical and climatic changes during this interval as well as the role of physiography. Furthermore, it provides novel insights into the composition, structure and formation of microbialite‐rich carbonate deposits under freshwater and hypersaline conditions.  相似文献   

10.
The discovery of layered, SO4-rich sediments on the Meridiani Planum on Mars has focused attention on understanding the formation of acid–saline lakes. Many salt lakes have formed in southern Australia where regional groundwaters are characterized by acidity and high salinity and show features that might be expected in the Meridiani sediments. Many (but not all) of the acid–saline Australian groundwaters are found where underlying Tertiary sediments are sulfide-rich. When waters from the formations come to the surface or interact with oxidised meteoric water, acid groundwaters result. In this paper examples of such waters around Lake Tyrrell, Victoria, and Lake Dey-Dey, South Australia, are reviewed. The acid–saline groundwaters typically have dissolved solids of 30–60 g/L and pH commonly <4.5. Many contain high concentrations of Fe and other metals, leached from local sediments. The combination of acidity and salinity also releases Ra. Around salt-lakes, these acidic waters often emerge at the surface in marginal spring zones where the low density (ρ ∼ 1.04) regional water flows out over the denser (ρ ∼ 1.16) lake brines. In the spring zones examined, large amounts of Fe are commonly precipitated. In a few places minerals of the alunite-jarosite family are formed which can trap many other metals, including Ra. The studied groundwater systems were discovered by U exploration programs following up radiometric anomalies related to this Ra. Evaporation concentrates the lesser soluble salts (gypsum and some halite) on the surface of the lakes. The lake brines contain most of the more soluble salts and form a column within the porous sediments which is held in place by hydrostatic forces around the salt-lake. These brines are near-neutral in pH.  相似文献   

11.
In the nearshore area of northwestern Lake Victoria a thin strip of quartzarenite sand occurs which grades lakeward into silty clay consisting of quartz with subordinate amounts of K-feldspar, plagioclase, kaolinite, illite, vermiculite and organic matter. Varimax matrix determinations of the element concentrations in the lake-bottom sediments extractable by aqua regia indicate that: (1) there is a strong association of Cr, Cu, Zn and Ni; (2) there is a strong association of Fe, Mn and Co; (3) Cu and Ni show moderate to slight associations with organic matter; (4) Ca is relatively independent of the other elements. The general decrease in the pH values of the surface and bottom waters outward from the lake shore, with consistently higher values for the surface water relative to the bottom waters, results from decreasing levels of photosynthetic activity.  相似文献   

12.
Dissolved trace elements and heavy metals of waters and sediments in the ten shallow lakes in the middle and lower reaches of the Yangtze River region were determined to identify their composition and spatial distribution, and to assess the extent of their environmentally detrimental effects by comparison with water and sediment quality guidelines. Results indicated that As and Pb were the main pollutants in lake waters and Mn and Hg the potential ones, while As, Cu and Pb were the main pollutants in lake sediments. Their spatial distribution indicated that Daye Lake was seriously polluted by metals, which was corroborated by cluster analysis. Higher concentrations of trace elements have been found in lakes downstream of the Yangtze River delta, and higher concentrations of metals have been recorded in sediments of upstream lakes, suggesting that metals in water were more sensitive to anthropogenic activities and that metals in sediment were mainly controlled by minerals. Correlation analyses demonstrated that there were stronger associations among metals in lake sediments than those in lake waters, and their good relationships suggested the common sources. Further research on the subject will help develop water quality management with the aim of restoring shallow lakes in the Yangtze River.  相似文献   

13.
Modeling the bulk sediment XRD patterns allows insight into the environmental and depositional histories of two neighboring rift lake basins within the Baikal watershed. Parallel 14C-dated LGM-Holocene records in Lakes Baikal and Hovsgol are used to discuss the mineralogical signatures of regional climate change. In both basins, it is possible to distinguish ‘glacial’ and ‘interglacial’ mineral associations. Clay minerals comprise in excess of 50% of layered silicates in bulk sediment.The abundance of smectite (expandable) layers in mixed-layer illite–smectites and the total illite abundance are the main paleoclimatic indices in the clay mineral assemblage. Both indices exhibit coherent responses to the Bølling–Allerød and the Younger Dryas. The smectite layer index is not equivalent to the abundance of illite–smectite, because illite–smectite tends to transform into illite. Repeated wetting–drying cycles in soils and high abundance of expandable layers in illite–smectites (>42%) favor the process of illitization. This relationship is clearly shown in both Baikal and Hovsgol records for the first time. The opposite late Holocene trends in illite abundance in Lake Baikal and Lake Hovsgol records suggest that a sensitive optimal regime may exist for illite formation in the Baikal watershed with regard to warmth and effective moisture.The Lake Hovsgol sediments of the last glacial contain carbonates, suggesting a positive trend in the lake's water budget. A progressive change towards lower Mg content in carbonates indicates lowering mineralization of lake waters. This trend is consistent with the lithologic evidence for lake-level rise in the Hovsgol basin.The pattern of mineralogical changes during the past 20 ka is used to interpret bulk sediment and carbonate mineralogy of the long 81-m Lake Hovsgol drill core (HDP-04) with a basal age of 1 Ma. The interglacial-type silicate mineral associations are confined to several thin intervals; most of the sediment record is calcareous. Carbonates are represented by six main mineral phases: calcite, low-Mg calcite, intermediate/high-Mg calcite, dolomite, excess-Ca dolomite and metastable monohydrocalcite. These mineral phases tend to form stratigraphic successions indicative of progressive changes in lake water chemistry. Five sediment layers with abundant Mg-calcites in the HDP-04 section suggest deposition in a low standing lake with high mineralization (salinity) and high Mg/Ca ratios of lake waters. Lake Hovsgol sediments contain the oldest known monohydrocalcite, found tens of meters below lake bottom in sediments as old as 800 ka. This unusual find is likely due to the conditions favorable to preservation of this metastable carbonate.  相似文献   

14.
Saline alkaline lakes that precipitate sodium carbonate evaporites are most common in volcanic terrains in semi‐arid environments. Processes that lead to trona precipitation are poorly understood compared to those in sulphate‐dominated and chloride‐dominated lake brines. Nasikie Engida (Little Magadi) in the southern Kenya Rift shows the initial stages of soda evaporite formation. This small shallow (<2 m deep; 7 km long) lake is recharged by alkaline hot springs and seasonal runoff but unlike neighbouring Lake Magadi is perennial. This study aims to understand modern sedimentary and geochemical processes in Nasikie Engida and to assess the importance of geothermal fluids in evaporite formation. Perennial hot‐spring inflow waters along the northern shoreline evaporate and become saturated with respect to nahcolite and trona, which precipitate in the southern part of the lake, up to 6 km from the hot springs. Nahcolite (NaHCO3) forms bladed crystals that nucleate on the lake floor. Trona (Na2CO3·NaHCO3·2H2O) precipitates from more concentrated brines as rafts and as bottom‐nucleated shrubs of acicular crystals that coalesce laterally to form bedded trona. Many processes modify the fluid composition as it evolves. Silica is removed as gels and by early diagenetic reactions and diatoms. Sulphate is depleted by bacterial reduction. Potassium and chloride, of moderate concentration, remain conservative in the brine. Clastic sedimentation is relatively minor because of the predominant hydrothermal inflow. Nahcolite precipitates when and where pCO2 is high, notably near sublacustrine spring discharge. Results from Nasikie Engida show that hot spring discharge has maintained the lake for at least 2 kyr, and that the evaporite formation is strongly influenced by local discharge of carbon dioxide. Brine evolution and evaporite deposition at Nasikie Engida help to explain conditions under which ancient sodium carbonate evaporites formed, including those in other East African rift basins, the Eocene Green River Formation (western USA), and elsewhere.  相似文献   

15.
We have collected and analyzed a series of water samples from three closed-basin lakes (Lakes Bonney, Fryxell, and Hoare) in Taylor Valley, Antarctica, and the streams that flow into them. In all three lakes, the hypolimnetic waters have different 87Sr/86Sr ratios than the surface waters, with the deep water of Lakes Fryxell and Hoare being less radiogenic than the surface waters. The opposite occurs in Lake Bonney. The Lake Fryxell isotopic ratios are lower than modern-day ocean water and most of the whole-rock ratios of the surrounding geologic materials. A conceivable source of Sr to the system could be either the Cenozoic volcanic rocks that make up a small portion of the till deposited in the valley during the Last Glacial Maximum or from marble derived from the local basement rocks. The more radiogenic ratios from Lake Bonney originate from ancient salt deposits that flow into the lake from Taylor Glacier and the weathering of minerals with more radiogenic Sr isotopic ratios within the tills. The Sr isotopic data from the streams and lakes of Taylor Valley strongly support the notion documented by previous investigators that chemical weathering has been, and is currently, a major process in determining the overall aquatic chemistry of these lakes in this polar desert environment.  相似文献   

16.
Mercury contribution to an adirondack lake   总被引:1,自引:0,他引:1  
Elevated copper, lead, and zinc concentrations in the upper 10 to 20 cm of sediment sampled from Cranberry Lake, a large Adirondack lake, are attributed to atmospheric contributions. Pb-210 and pollen core data, however, suggest Cranberry Lake also received mercury discharges during the turn of the century when the area was the center of extensive lumbering and related activities. Elevated mercury concentrations in Cranberry Lake smallmouth bass derived from remobilization from mercury-contaminated bottom sediments which increased the bioavailability to Cranberry Lake organisms. Mercury remobilization and accumulation by fish are promoted by fluctuating pH values resulting from acid precipilation.  相似文献   

17.
This study of five small (<3.0 ha) lakes in southwestern Greenland examines the veracity of branched glycerol dialkyl glycerol tetraethers (br GDGTs) as a temperature proxy in lacustrine systems. The proximity (<5 km) of the lakes suggests that their temperature history, and thus their br GDGT records, should be similar. Distributions of br GDGTs in (i) surface sediments from all five lakes, (ii) 14C-dated sediment cores from two lakes (Upper and Lower EVV Lakes) and (iii) soil samples from the area surrounding the lakes were examined. The temporal records of br GDGT-based temperature for the two cores exhibited both similarities and major discrepancies. The differences between the paleotemperature records for the two lakes suggest that br GDGTs are not solely soil-derived, reflecting air temperature, but also indicate an additional br GDGT contribution from another source. Among the broader suite of lake sediments, there was a strong correlation (R2 0.987) between br GDGT-based surface sediment temperatures and measured summer bottom water temperatures for the four lakes with hypoxic/anoxic bottom waters, including Upper EVV Lake. The correlation suggests production of br GDGTs by anaerobic bacteria within the bottom water and/or sediment–water interface, reflecting environmental temperature for the individual lakes and augmenting the uniform, soil-derived signal. Hence, assessment of br GDGTs in Greenland lake sediments provides evidence for their origin from anaerobic autochthonous bacteria and indicates that interpretation of lacustrine br GDGT-based paleotemperature records requires contextual knowledge of individual lake systems and potential source(s) of sedimentary br GDGTs.  相似文献   

18.
Geochemical analysis of the bottom sediments of Lakes Banryoko, Onbe, Hamahara and Kijima in Shimane prefecture of southwest Japan was carried out to determine their metal concentrations, and to assess the potential for ecological harm by comparison with sediment quality guidelines. The work conducted includes water quality measurement, and analyses of trace and major elements and rare earth element (REE) of sediments. Results showed that water quality of the lakes contrasts slightly between their upper and lower parts. Average abundances of As, Pb, Zn, Cu, Ni, and Cr in Banryoko sediments were 27, 33, 90, 27, 25, and 46 ppm, respectively, compared to 31, 52, 175, 44, 44, and 75 ppm at Onbe, 11, 26, 96, 13, 13, and 35 ppm at Hamahara, and 24, 43, 193, 31, 12, and 30 ppm at Kijima. These concentrations exceeded the lowest effect level that has moderate impact on aquatic organisms as proposed by the New York State Department of Environmental conservation. Pb and Cu abundances are comparable to the Coastal Ocean Sediment Database threshold, while As and Zn exceed this value, indicating the concentrations of these metals are potentially toxic. Increases in the abundances of these metals in lake sediments are probably related to the reducing condition of the sediments, anthropogenic sources and surface soil erosion. The REE patterns of sediments in the study areas are broadly comparable to the average upper continental crust, but show some contrast between lakes due to differing source litho type. Significant positive correlations between Fe2O3 and As, Pb, Zn, and Cu were found in the sediments, suggesting these metals may be adsorbed on Fe oxides in the lake sediments.  相似文献   

19.
Lake Manitoba, North America's thirteenth largest lake, occupies a glacier-scoured basin in south-central Manitoba. Despite its large size, the lake is extremely shallow with a mean depth of 4.5 m. The lake can be subdivided into two connected but distinctly different basins: a small, irregular-shaped North Basin and a much larger and smoother South Basin. Most of the water inflow is from the Waterhen River (42% of the inflow) and from precipitation directly on the lake's surface (40%), while nearly 60% of the outflow is by evaporation. Lake Manitoba water is alkaline and brackish with the salinity dominated by sodium and chloride ions. The surficial offshore deposits of the main South Basin of the lake consist mainly of silt and clay-sized sediments composed of detrital components (clay minerals, quartz, carbonates, and feldspars) and endogenic/authigenic components (carbonates, sulfides, and organic matter). In addition to these modern sediments, several areas of relict fluvial-shoreline sand and till deposits occur in the South Basin. The lacustrine processes presently operating in Lake Manitoba reflect the influence of (1) the extreme shallow depth of the lake, (2) the basin morphology, and (3) the water chemistry. In addition, land clearing and increased watershed drainage have resulted in substantially increased sedimentation rates in the South Basin during the past century.  相似文献   

20.
We present an organic geochemical study of surface sediments of Lake Sarbsko, a shallow coastal lake on the middle Polish Baltic coast. The aim was to provide evidence concerning the origin of the organic matter (OM) and its compositional diversity in surface deposits of this very productive, highly dynamic water body. The content and composition of the OM in the bottom sediments were investigated at 11 sampling stations throughout the lake basin. OM sources were assigned on the basis of bulk indicators [total organic carbon (TOC), total nitrogen (TN), δ13CTOC and δ15N and extractable OM yield], biomarker composition of extractable OM and compound-specific C isotope signatures. The source characterization of autochthonous compounds was verified via phytoplankton analysis. The distribution of gaseous hydrocarbons in the sediments, as well as temporal changes in lake water pH, the concentration of DIC (dissolved inorganic carbon) and δ13CDIC were used to trace OM decomposition.The sedimentary OM is composed mainly of well preserved phytoplankton compounds and shows minor spatial variability in composition. However, the presence of CH4 and CO2 in the bottom deposits provides evidence for microbial degradation of sedimentary OM. The transformation of organic compounds in surface, bottom and pore waters via oxidative processes influences carbonate equilibrium in the lake and seasonally favours precipitation or dissolution of CaCO3.The data enhance our understanding of the relationships between the composition of sedimentary OM and environmental conditions within coastal ecosystems and shed light on the reliability of OM proxies for environmental reconstruction of coastal lakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号