首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article summarizes work on multiple scattering based on models of media with randomly distributed scatterers. The scatterers are isotropic and statistically uniform. Measuring distance in terms of mean-free pathL s and time in terms of the mean-free timesL s/V, whereV is the velocity of scattered waves, we have more convenient dimensionless distance and time. It can be shown that after the dimensionless time equals 0.65 energy contributed from multiple scattering becomes predominant. Thus the later coda reflects the effect of multiple scattering rather than single scattering. Treating the seismic record, including starting and tail parts, as a whole, the diffusion theory predicts that at a dense distribution of scatterers and a small distance between source and receiver, codas reflect mainly intrinsicQ i. Of course, this conclusion is coincident with the presumption of the diffusion theory,Q s>Q i. However, from a new integral equation of multiple scattering, which deals with the scattered waves and primary waves separately, the conclusion is similar but clearer. This article quotes the new expression for coda energy in two-dimensional space. It shows that if the receiver is close to the source, the coda decay reflects only intrinsicQ i, then as the distance increases, effects of scatteringQ s, are involved in the decay feature. The theoretical plots of coda decay show that it seems in most cases in the earthQ i should not be smaller than one tenth ofQ s.Project Sponsored by the Joint Earthquake Science Foundation of China.  相似文献   

2.
A single scattering model was used to analyse the temporary changes in the mean density of scattered waves in a discrete random medium. The model of the mean energy density, originally proposed bySato (1977) for spherical radiation and isotropic scattering, has been modified and applied to a medium in which the scatterers are confined to a specified volume. The time variation of the early part of the mean energy density function for the different source durations was investigated. The dominant effect on the theoretical mean energy density is caused by the specified volume containing scatterers. The duration of the source pulse influences the early part of the coda fort/t 0<1.2, wheret is the lapse time measured from the source origin time, andt 0is arrival time of the body wave.The analysis of the coda signal of micro-events occurring immediately in front of the face enables us to estimate the size of the fracture zone induced by the stope. The model of the mean energy density of coda for a medium containing scatterers close to the seismic source was used to analyse a large number of events recorded close to an advancing mine face in a deep level gold mine in South Africa. The coda decay rate has two trends: the first, with a steep decay of coda, is produced by a larger deviation of rock parameters and/or larger size of the scatterers; the second trend, which decays more slowly, has the corresponding mean-free path ranging from 20 m to 200 m. The analysis indicates that the rock mass about 15–20 m from the stope contains a large proportion of fractured and blocked rock, which is the source of scattering. The scattering of theS-wave was much stronger and more stable, with the mean-free path varying from 11 m to 45 m. This is due to the shorter wavelength of theS wave in comparison with theP wave. The quality factor for theP coda wave varies from 30 to 100 in the fracture zone of stope and outside this zone it has a value of 300. The quality factor of theS wave varies from 20 to 78 in the equivalent volume. For rock surrounding the stope the ratioQ sp –1 /Q ss –1 varied from 0.31 to 0.69. This suggests that the radii of scatterers are smaller than 3.5 m.  相似文献   

3.
—Measurements of seismic attenuation (Q ?1) can vary considerably when made from different parts of seismograms or using different techniques, particularly at high frequencies. These discrepancies may be methodological, or may reflect earth processes. To investigate this problem, we compare body wave with coda Q ?1 results utilizing three common techniques i) parametric fit to spectral decay, ii) coda normalization of S waves, and iii) coda amplitude decay with lapse time. Q ?1 is measured from both body and coda waves beneath two mountain ranges and one platform, from recordings made at seismic arrays in the Caucasus and Kopet Dagh over paths ≤ 4° long. If Q is assumed frequency independent, spectral decay fits show Q s and Q coda near 700–800 for both mountain paths and near 2100–2200 for platform paths. Similar values are determined with the coda normalization technique. However, frequency-dependent parameterizations fit the data significantly better, with Q s ?(1 Hz) and Q coda?(1 Hz) near 200–300 for mountain paths and near 500–600 for platform paths. Lapse decay measurements are close to the frequency-dependent values, showing that both spectral and lapse decay methods can give similar results when Q has comparable parameterizations. Above 6 Hz, coda measurements suggest some enrichment relative to body waves, perhaps due to scattering, but intrinsic absorption appears to dominate at lower frequencies. All approaches show sharp path differences between the Eurasian platform and adjacent mountains, and all are capable of resolving spatial variations in Q.  相似文献   

4.
One of the many important contributions that Aki has made to seismology pertains to the origin of coda waves (Aki, 1969; Aki and Chouet, 1975). In this paper, I revisit Aki's original idea of the role of scattered surface waves in the seismic coda. Based on the radiative transfer theory, I developed a new set of scattered wave energy equations by including scattered surface waves and body wave to surface wave scattering conversions. The work is an extended study of Zeng et al. (1991), Zeng (1993) and Sato (1994a) on multiple isotropic-scattering, and may shed new insight into the seismic coda wave interpretation. The scattering equations are solved numerically by first discretizing the model at regular grids and then solving the linear integral equations iteratively. The results show that scattered wave energy can be well approximated by body-wave to body wave scattering at earlier arrival times and short distances. At long distances from the source, scattered surface waves dominate scattered body waves at surface stations. Since surface waves are 2-D propagating waves, their scattered energies should in theory follow a common decay curve. The observed common decay trends on seismic coda of local earthquake recordings particular at long lapse times suggest that perhaps later seismic codas are dominated by scattered surface waves. When efficient body wave to surface wave conversion mechanisms are present in the shallow crustal layers, such as soft sediment layers, the scattered surface waves dominate the seismic coda at even early arrival times for shallow sources and at later arrival times for deeper events.  相似文献   

5.
When the quality factorQ is taken into account in attenuation studies, it is necessary to know the relative losses of wave energy due to scattering and to anelastic absorption. The coda is the most important phenomenon now known which is related to elastic scattering of seismic waves. Utilizing coda, this study presents relationships which give theQ factors of the medium around the recording station and discriminate between attenuations arising from elastic scattering (under the assumption of isotropic scattering) and those arising from anelastic absorption. This work proposes a technique for separately determining the attenuation due to isotropic scattering and that due to absorption from the observed envelope of coda waves.  相似文献   

6.
This paper summarizes part of an ongoing feasibility study that investigates the possible use of the full elastic Born approximation in multipole borehole acoustics. As a first step we exclude the fluid-filled borehole with the motivation that one or two wavelengths away from the fluid-filled borehole, radiating borehole mode amplitudes (e.g., Stoneley wave, formation dipole wave, etc.) are small compared to body wave amplitudes (P-, SV- and SH-waves). Consequently, for scatterers one or two wavelengths away from the fluid-filled borehole, it suffices to only consider their interaction with body waves.In this paper we apply the contrast-source stress-velocity forward scattering (integral equation) formulation for solid configurations in its first order (Born-) approximation (De Hoop, 1995) assuming a multipole force source excitation in a zero-offset configuration. To scrutinize the validity of the Born approximation, we consider the simplest type of scatterer, i.e., one characterized by a (Heaviside) step function change in one or more of the contrast (perturbation) parameters and we derive analytic zero-offset formulas for the scattered wave particle velocity and displacement in both the space–frequency and space–time domain, respectively. We assume the scatterer to be located in the far-field. More complicated layered configurations can easily be derived by superposition of the given solution types. Explicit results are given for the dipole and quadrupole excitation, where the former is allowed to have an arbitrary orientation relative to the scatterer and where the latter one is located in a plane perpendicular to the scatterer. In the time domain it is shown, how the scattered wave field decomposes in a specular and diffuse wave field (two terms borrowed from ‘Optics’), where the former contribution vanishes in the absence of an imaging condition and where the latter is always present. For the dipole case, we subject our results to a sensitivity analysis with respect to the three independent perturbation parameters (i.e., density and two compliance parameters) and we compare these results to a full waveform benchmark code that has implemented the reflectivity method (Kennett, 1983), for a ‘horizontally’ stratified elastic medium. This allowed us to pinpoint the root cause of the observed (small) differences. As it turns out these deviations could be traced back to the inaccurateness of the first order Born scattering coefficients. An additional confirmation of this fact is provided through a comparison between the zero-offset scattering coefficients and the corresponding Zoeppritz reflection coefficients. Most notably, it was found that the PP first order scattering coefficient needs a higher than quadratic correction in two of the three independent perturbation parameters, i.e., the two compliance parameters, δΛ and δM. With respect to the density perturbation parameter (δρ) the PP scattering coefficient correction is quadratic with respect to this perturbation parameter, as is to be expected for a first order approximation. Moreover, also the SS first order scattering coefficient only needs a quadratic correction with respect to its associated perturbation parameters, i.e., δρ and δM.Finally, we give a brief outline on how to numerically implement the Born approximation (employing arbitrary offsets) in a configuration where a source–receiver pair is moving continuously relative to the ‘contrast’ (Geology), as is the case in borehole acoustic applications.  相似文献   

7.
Numerical modelling ofSH wave seismograms in media whose material properties are prescribed by a random distribution of many perfectly elastic cavities and by intrinsic absorption of seismic energy (anelasticity) demonstrates that the main characteristics of the coda waves, namely amplitude decay and duration, are well described by singly scattered waves in anelastic media rather than by multiply scattered waves in either elastic or anelastic media. We use the Boundary Integral scheme developed byBenites et al. (1992) to compute the complete wave field and measure the values of the direct waveQ and coda wavesQ in a wide range of frequencies, determining the spatial decay of the direct wave log-amplitude relation and the temporal decay of the coda envelope, respectively. The effects of both intrinsic absorption and pure scattering on the overall attenuation can be quantified separately by computing theQ values for corresponding models with (anelastic) and without (elastic) absorption. For the models considered in this study, the values of codaQ –1 in anelastic media are in good agreement with the sum of the corresponding scatteringQ –1 and intrinsicQ –1 values, as established by the single-scattering model ofAki andChouet (1975). Also, for the same random model with intrinsic absorption it appears that the singly scattered waves propagate without significant loss of energy as compared with the multiply scattered waves, which are strongly affected by absorption, suggesting its dominant role in the attenuation of coda waves.  相似文献   

8.
The attenuation of coda waves in the earth’s crust in southwest (SW) Anatolia is estimated by using the coda wave method, which is based on the decrease of coda wave amplitude in time and distance. A total of 159 earthquakes were recorded between 1997 and 2010 by 11 stations belonging to the KOERI array. The coda quality factor Q c is determined from the properties of scattered coda waves in a heterogeneous medium. Firstly, the quality factor Q 0 (the value of Q c at 1 Hz.) and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves for frequencies of 1.5, 3.0, 6.0, 8.0, 12 and 20 Hz. Secondly, the attenuation coefficients (δ) are estimated. The shape of the curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The average Q c values vary from 110 ± 15 to 1,436 ± 202 for the frequencies above. The Q 0 and η values vary from 63 ± 7 to 95 ± 10 and from 0.87 ± 0.03 to 1.04 ± 0.09, respectively, for SW Anatolia. In this region, the average coda Qf relation is described by Q c = (78 ± 9)f 0.98±0.07 and δ = 0.012 km?1. The low Q 0 and high η are consistent with a region characterized by high tectonic activity. The Q c values were correlated with the tectonic pattern in SW Anatolia.  相似文献   

9.
10.
The attenuation properties of the crust in the Chamoli region of Himalaya have been examined by estimating the frequency-dependent relationships of quality factors for P waves (Qα) and for S waves (Qβ) in the frequency range 1.5–24 Hz. The extended coda normalization method has been applied on the waveforms of 25 aftershocks of the 1999 Chamoli earthquake (M 6.4) recorded at five stations. The average value of Qα is found to be varied from 68 at 1.5 Hz to 588 at 24 Hz while it varies from 126 at 1.5 Hz to 868 at 24 Hz for Qβ. The estimated frequency-dependent relations for quality factors are Qα = (44 ± 1)f(0.82±.04) and Qβ = (87 ± 3)f(0.71±.03). The rate of increase of Q(f) for P and S waves in the Chamoli region is comparable with the other regions of the world. The ratio Qβ/Qα is greater than one in the region which along with the frequency dependence of quality factors indicates that scattering is an important factor contributing to the attenuation of body waves in the region. A comparison of attenuation relation for S wave estimated here (Qβ = 87f0.71) with that of coda waves (Qc = 30f1.21) obtained by Mandal et al. (2001) for the same region shows that Qc > Qβ for higher frequencies (>8 Hz) in the region. This indicates a possible high frequency coda enrichment which suggests that the scattering attenuation significantly influences the attenuation of S waves at frequencies >8 Hz. This observation may be further investigated using multiple scattering models. The attenuation relations for quality factors obtained here may be used for the estimation of source parameters and near-source simulation of earthquake ground motion of the earthquakes, which in turn are required for the assessment of seismic hazard in the region.  相似文献   

11.
The Theory of Coda Wave Interferometry   总被引:7,自引:0,他引:7  
Coda waves are sensitive to changes in the subsurface because the strong scattering that generates these waves causes them to repeatedly sample a limited region of space. Coda wave interferometry is a technique that exploits this sensitivity to estimate slight changes in the medium from a comparison of the coda waves before and after the perturbation. For spatially localized changes in the velocity, or for changes in the source location, the travel-time perturbation may be different for different scattering paths. The coda waves that arrive within a certain time window are therefore subject to a distribution of travel-time perturbations. Here I present the general theory of coda wave interferometry, and show how the time-shifted correlation coefficient can be used to estimate the mean and variance of the distribution of travel-time perturbations. I show how this general theory can be used to estimate changes in the wave velocity, in the location of scatterer positions, and in the source location.  相似文献   

12.
The availability of accelerometric data for the Montenegro earthquake of 15th April 1979 makes it possible to investigate seismic Q of the lithosphere in that region, in particular, its dependence on frequency, on the depth reached by seismic waves, and on the length of time windows in which signals are processed. Two different spectral methods, S phase energy ratio and coda envelope decay, are applied, respectively, to direct and scattered shear waves. Similar results are obtained using different portions of the recordings, i.e., coda waves for the envelope decay fit and the S wave train, with a significant duration of ~ 10 s, for the energy ratios. The same apparent Q (Q ~ 40 f, where f is the frequency expressed in Hz) that is found for other neighbouring central Mediterranean regions (e.g., Ancona, on the central Italian Adriatic coast; Valnerina, in the central Apennines; Irpinia, in the southern Apennines) is also found for the southern Yugoslavian coast, in the band 1–25 Hz up to a maximum range of ~ 120 km from the focus. This strong frequency dependence is probably connected with the type of small-scale heterogeneity and the same geological age and level of tectonic activity peculiar to all these seismotectonic areas.In order to compare the apparent Q of the whole S wave train, ~ 10 s long, with the (intrinsic) apparent Q of the single direct S wave (usually 1 s or less), the maximum entropy method is applied in the energy spectrum computation for shorter wave trains. The use of shorter time windows does not reveal any significant variation in the tendency of Q to increase linearly with frequency as the length of the time window containing the sample of the S waves decreases. This seems to indicate that scattering-dependent Q is generally inseparable from intrinsic Q in the lithosphere when estimates based on variations with distance of the seismic signal spectrum are used. While the type of linear growth with frequency does not seem to undergo any variations (it remains of the Q = qf type), the data show there are a considerable decrease in the coefficient of proportionality Q with decreasing duration of the window of S waves analysed, probably as a result of variations in seismic attenuation with depth.  相似文献   

13.
The application of standard array processing techniques to the study of coda presents difficulties due to the design criteria of these techniques. Typically the techniques are designed to analyze isolated, short arrivals with definite phase velocity and azimuth and have been useful in the frequency range around 1 Hz. Coda is long in time and may contain waves of different types, phase velocities and azimuths. Nonetheless, it has proved possible to use or adapt array methods to answer two questions: what types of waves are present in coda and where are they scattered? Most work has been carried out on teleseismicP coda; work on local coda has lagged due to lack of suitable data and the difficulties of dealing with high frequencies. The time domain methods of beamforming and Vespagram analysis have shown that there is coherent energy with a high phase velocity comparable toP orPP in teleseismicP coda. These methods can detect this “coherent” coda because it has a fairly definite phase velocity and the same, or close to, azimuth as firstP orPP. This component must consist ofP waves and is either scattered near the source, or reflected in the mantle path as apdpP or precursorPP reflection. The Fourier transform method of the frequency-wavenumber spectrum has been adapted by integrating around circles of constant phase velocity (constant total wavenumber) to produce the wavenumber spectrum, which shows power as a function of wavenumber, or phase velocity. For teleseismicP coda, wavenumber spectra demonstrate that there is a “diffuse” coda of shear,Lg or surface waves scattered from teleseismicP near the receiver. Wavenumber spectra also suggest that the coherent coda is produced by near-source scattering in the crust, not mantle reflection, since it is absent or weak for deep-focus events. Crustal earthquakes have a very strong coherent component of teleseismic coda, suggesting scattering from shear to teleseismicP near the source. Three-component analysis of single-station data has shown the presence of off-azimuth arrivals and may lead to the identification of waves scattered from a single scatterer.  相似文献   

14.
地震波在穿越地下散射体群时会产生多级散射波,分析其地震响应特征,可推断散射体的分布情况和性质。本文从二维标量波动方程出发,结合地震散射理论和波恩近似理论,推导了多级散射波方程。在此基础上,采用高阶有限差分法对双点散射体模型和复杂散射体模型进行数值模拟,分析了多级散射波的传播规律和波场特征,并通过抽取多级散射记录和各级散射记录的单道记录与参考单道记录的对比,验证了本文推导散射波方程的准确性。   相似文献   

15.
A simple model of single acoustic scattering is used to study the dependence of the shape of local earthquake coda on the anelastic and scattering structures of the lithosphere. The model is applied to the coda of earthquakes located near Stone Canyon, central California, and provides an explanation for the features observed in the data, which include an interesting temporal variation in the coda shape. A surficial layer with aQ of 50 and thickness of 10 or 25 km underlain by a zone with aQ of 1000 extending to the bottom of the lithosphere, together with a scattering scale length,a, that varies with depthz according to the relationa=0.3 exp[-(z/45)2] are found to constitute the simplest structure of the medium compatible with the coda data and with body and surface wave attenuation data. The profile of heterogeneity sizes implies that the scattering strength increases strongly with depth, a constraint required by the necessity to boost the energy of the later coda without forcing the intrinsicQ to be excessively high in the uppermost mantle. This constraint is viewed as an artifact of the single scattering model which overstimates the scattering coefficient due to the neglect of multiple scattering. The observed temporal variation of the signal is difficult to explain by a simple change of the intrinsicQ at some depth. Rather, it is suggested that the scattering properties at depth changed with time through a variation of the fractional rms velocity fluctuation on the order of one percent.  相似文献   

16.
Based on the scattering coda model by which local and regional earthquakes are interpreted (K. Aki, 1969), and using observational coda data of 68 aftershocks of the 1985 Luquan, Yunnan earthquake registered by the VGK seismographs installed at 12 stations in the Yunnan regional short-period network, theQ-values of coda waves are calculated respectively for 6 time intervals. It is observed that within the frequency range of 0.40–1.65 Hz of the observed data, theQ-values are closely related with the frequencies and the calculated codaQ ranges between 80–240 with the coefficient of frequency dependence η=0.45. The calculated source factorsB(f> p) of the coda waves which indicate the scattering strength are mostly within the order 10?23–10?24. Areas with lowQ-values present high scattering. It should be noted that by comparing data obtained before and after the Luquan earthquake, clear changes can be detected in theQ-values measured at stations close to the epicentral region, and that theQ-values of the aftershock coda are less than about one half of the pre-shock values. It may be mentioned that the time-dependent regional variations of theQ-values might possibly bring about practical significance in earthquake prediction. Moreover, aftershock focal parameters are determined. Through discussions on the quantitative relations between the focal parameters, we get: 1gE=1.59M L+ 11.335;E=(2.10 × 10?5)M 0; length of focal rupturea=0.40?0.80 km for 3.0≤M L<5.0 events; stress drop Δσ=(6.0–130) ×105 Pa. Through interpretation of the data, we have also learned the important characteristics that there is no linear relation between the stress drops and the earthquake magnitudes.  相似文献   

17.
—Northeastern Venezuela has been studied in terms of coda wave attenuation using seismograms from local earthquakes recorded by a temporary short-period seismic network. The studied area has been separated into two subregions in order to investigate lateral variations in the attenuation parameters. Coda-Q ?1 (Q c ?1) has been obtained using the single-scattering theory. The contribution of the intrinsic absorption (Q i ?1) and scattering (Q s ?1) to total attenuation (Q t ?1) has been estimated by means of a multiple lapse time window method, based on the hypothesis of multiple isotropic scattering with uniform distribution of scatterers. Results show significant spatial variations of attenuation the estimates for intermediate depth events and for shallow events present major differences. This fact may be related to different tectonic characteristics that may be due to the presence of the Lesser Antilles subduction zone, because the intermediate depth seismic zone may be coincident with the southern continuation of the subducting slab under the arc.  相似文献   

18.
The seismic quality factor (Q c) and the attenuation coefficient (δ) in the earth’s crust in southwest (SW) Anatolia are estimated by using the coda wave method based on the decrease of coda wave amplitude by time on the seismogram. The quality factor Q o, the value of Q c at 1 Hz, and its frequency dependency η are determined from this method depending on the attenuation properties of scattered coda waves. δ is determined from the observations of amplitude variations of seismic waves. In applying the coda wave method, firstly, a type curve representing the average pattern of the individual coda decay curves for 0.75, 1.5, 3.0, 6.0, 12.0, and 24.0 Hz values was estimated. Secondly, lateral variation of coda Q and the attenuation coefficients for three main tectonic patterns are estimated. The shape of the type curve is controlled by the scattering and attenuation in the crustal volume sampled by the coda waves. The Q o and η values vary from 30 to 180 and from 0.55 to 1.25, respectively for SW Anatolia. In SW Anatolia, coda Qf relation is described by and δ = 0.008 km−1. These results are expected to help in understanding the degree of tectonic complexity of the crust in SW Anatolia.  相似文献   

19.
The physical implication of coda amplitude ratio is discussed in term of energy ratio. The digitized data recorded at the station of Beijing Telemetered Seismograph Network between 1989 and 1990 are used to calculate amplitude ratios of coda to direct S wave, and energy ratios. The spectral energy ratios are used to estimate the coda Q and mean free path l in the Beijing area, as well as the two quality factors Q i and Q S separately due to intrinsic absorption and scattering attenuation. The decay of seismic waves in their propagation seems mainly resulted from the intrinsic absorption in Beijing region. The temporal variations of amplitude ratio and energy ratio at Changli station during the above two years are inspected; some of them largely depart from their mean value. It may reflect the seismogenic process, but using the data lasting longer time with more case histories needs further study. This study is sponsored by the Key Project of State Science and Technology of China, No. 96-918.  相似文献   

20.
Scattering attenuation in short wavelengths has long been interesting to geophysicists. Ultrasonic coda waves, observed as the tail portion of ultrasonic wavetrains in laboratory ultrasonic measurements, are important for such studies where ultrasonic waves interact with small-scale random heterogeneities on a scale of micrometers, but often ignored as noises because of the contamination of boundary reflections from the side ends of a sample core. Numerical simulations with accurate absorbing boundary can provide insight into the effect of boundary reflections on coda waves in laboratory experiments. The simulation of wave propagation in digital and heterogeneous porous cores really challenges numerical techniques by digital image of poroelastic properties, numerical dispersion at high frequency and strong heterogeneity, and accurate absorbing boundary schemes at grazing incidence. To overcome these difficulties, we present a staggered-grid high-order finite-difference (FD) method of Biot’s poroelastic equations, with an arbitrary even-order (2L) accuracy to simulate ultrasonic wave propagation in digital porous cores with strong heterogeneity. An unsplit convolutional perfectly matched layer (CPML) absorbing boundary, which improves conventional PML methods at grazing incidence with less memory and better computational efficiency, is employed in the simulation to investigate the influence of boundary reflections on ultrasonic coda waves. Numerical experiments with saturated poroelastic media demonstrate that the 2L FD scheme with the CPML for ultrasonic wave propagation significantly improves stability conditions at strong heterogeneity and absorbing performance at grazing incidence. The boundary reflections from the artificial boundary surrounding the digital core decay fast with the increase of CPML thicknesses, almost disappearing at the CPML thickness of 15 grids. Comparisons of the resulting ultrasonic coda Q sc values between the numerical and experimental ultrasonic S waveforms for a cylindrical rock sample demonstrate that the boundary reflection may contribute around one-third of the ultrasonic coda attenuation observed in laboratory experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号