首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Multiscale finite-volume method for density-driven flow in porous media   总被引:1,自引:0,他引:1  
The multiscale finite-volume (MSFV) method has been developed to solve multiphase flow problems on large and highly heterogeneous domains efficiently. It employs an auxiliary coarse grid, together with its dual, to define and solve a coarse-scale pressure problem. A set of basis functions, which are local solutions on dual cells, is used to interpolate the coarse-grid pressure and obtain an approximate fine-scale pressure distribution. However, if flow takes place in presence of gravity (or capillarity), the basis functions are not good interpolators. To treat this case correctly, a correction function is added to the basis function interpolated pressure. This function, which is similar to a supplementary basis function independent of the coarse-scale pressure, allows for a very accurate fine-scale approximation. In the coarse-scale pressure equation, it appears as an additional source term and can be regarded as a local correction to the coarse-scale operator: It modifies the fluxes across the coarse-cell interfaces defined by the basis functions. Given the closure assumption that localizes the pressure problem in a dual cell, the derivation of the local problem that defines the correction function is exact, and no additional hypothesis is needed. Therefore, as in the original MSFV method, the only closure approximation is the localization assumption. The numerical experiments performed for density-driven flow problems (counter-current flow and lock exchange) demonstrate excellent agreement between the MSFV solutions and the corresponding fine-scale reference solutions.  相似文献   

2.
Most practical reservoir simulation studies are performed using the so-called black oil model, in which the phase behavior is represented using solubilities and formation volume factors. We extend the multiscale finite-volume (MSFV) method to deal with nonlinear immiscible three-phase compressible flow in the presence of gravity and capillary forces (i.e., black oil model). Consistent with the MSFV framework, flow and transport are treated separately and differently using a sequential implicit algorithm. A multiscale operator splitting strategy is used to solve the overall mass balance (i.e., the pressure equation). The black-oil pressure equation, which is nonlinear and parabolic, is decomposed into three parts. The first is a homo geneous elliptic equation, for which the original MSFV method is used to compute the dual basis functions and the coarse-scale transmissibilities. The second equation accounts for gravity and capillary effects; the third equation accounts for mass accumulation and sources/ sinks (wells). With the basis functions of the elliptic part, the coarse-scale operator can be assembled. The gravity/capillary pressure part is made up of an elliptic part and a correction term, which is computed using solutions of gravity-driven local problems. A particular solution represents accumulation and wells. The reconstructed fine-scale pressure is used to compute the fine-scale phase fluxes, which are then used to solve the nonlinear saturation equations. For this purpose, a Schwarz iterative scheme is used on the primal coarse grid. The framework is demonstrated using challenging black-oil examples of nonlinear compressible multiphase flow in strongly heterogeneous formations.  相似文献   

3.
4.
Control-volume discretizations using multipoint flux approximations (MPFA) were developed in the last decade. This paper gives an introduction to these methods for quadrilateral grids in two and three dimensions. The introduction is kept on a basic level, and a brief summary to more advanced results is given. Only the O-method with surface midpoints as continuity points is discussed. Flux expressions are derived both in physical and in curvilinear space. Equations for calculation of the transmissibility coefficients are given, and an explicit solution is shown for constant coefficients. K-orthogonality, stability and monotonicity are discussed, and an iterative solution technique is presented. Two numerical examples close the paper.  相似文献   

5.
We propose a new single-phase local upscaling method that uses spatially varying multipoint transmissibility calculations. The method is demonstrated on two-dimensional Cartesian and adaptive Cartesian grids. For each cell face in the coarse upscaled grid, we create a local fine grid region surrounding the face on which we solve two generic local flow problems. The multipoint stencils used to calculate the fluxes across coarse grid cell faces involve the six neighboring pressure values. They are required to honor the two generic flow problems. The remaining degrees of freedom are used to maximize compactness and to ensure that the flux approximation is as close as possible to being two-point. The resulting multipoint flux approximations are spatially varying (a subset of the six neighbors is adaptively chosen) and reduce to two-point expressions in cases without full-tensor anisotropy. Numerical tests show that the method significantly improves upscaling accuracy as compared to commonly used local methods and also compares favorably with a local–global upscaling method.  相似文献   

6.
Uncertainty quantification is typically accomplished by simulating multiple geological realizations, which can be very expensive computationally if the flow process is complicated and the models are highly resolved. Upscaling procedures can be applied to reduce computational demands, though it is essential that the resulting coarse-model predictions correspond to reference fine-scale solutions. In this work, we develop an ensemble level upscaling (EnLU) procedure for compositional systems, which enables the efficient generation of multiple coarse models for use in uncertainty quantification. We apply a newly developed global compositional upscaling method to provide coarse-scale parameters and functions for selected realizations. This global upscaling entails transmissibility and relative permeability upscaling, along with the computation of a-factors to capture component fluxes. Additional features include near-well upscaling for all coarse parameters and functions, and iteration on the a-factors, which is shown to improve accuracy. In the EnLU framework, this global upscaling is applied for only a few selected realizations. For 90 % or more of the realizations, upscaled functions are assigned statistically based on quickly computed flow and permeability attributes. A sequential Gaussian co-simulation procedure is incorporated to provide coarse models that honor the spatial correlation structure of the upscaled properties. The resulting EnLU procedure is applied for multiple realizations of two-dimensional models, for both Gaussian and channelized permeability fields. Results demonstrate that EnLU provides P10, P50, and P90 results for phase and component production rates that are in close agreement with reference fine-scale results. Less accuracy is observed in realization-by-realization comparisons, though the models are still much more accurate than those generated using standard coarsening procedures.  相似文献   

7.
8.
The use of upscaled models is attractive in many-query applications that require a large number of simulation runs, such as uncertainty quantification and optimization. Highly coarsened models often display error in output quantities of interest, e.g., phase production and injection rates, so the direct use of these results for quantitative evaluations and decision making may not be appropriate. In this work, we introduce a machine-learning-based post-processing framework for modeling the error in coarse-model results in the context of uncertainty quantification. Coarse-scale models are constructed using an accurate global single-phase transmissibility upscaling procedure. The framework entails the use of high-dimensional regression (random forest in this work) to model error based on a number of error indicators or features. Many of these features are derived from approximations of the subgrid effects neglected in the coarse-scale saturation equation. These features are identified through volume averaging, and they are generated by solving a fine-scale saturation equation with a constant-in-time velocity field. Our approach eliminates the need for the user to hand-design a small number of informative (relevant) features. The training step requires the simulation of some number of fine and coarse models (in this work we perform either 10 or 30 training simulations), followed by construction of a regression model for each well. Classification is also applied for production wells. The methodology then provides a correction at each time step, and for each well, in the phase production and injection rates. Results are presented for two- and three-dimensional oil–water systems. The corrected coarse-scale solutions show significantly better accuracy than the uncorrected solutions, both in terms of realization-by-realization predictions for oil and water production rates, and for statistical quantities important for uncertainty quantification, such as P10, P50, and P90 predictions.  相似文献   

9.
We present a variational multiscale mixed finite element method for the solution of Darcy flow in porous media, in which both the permeability field and the source term display a multiscale character. The formulation is based on a multiscale split of the solution into coarse and subgrid scales. This decomposition is invoked in a variational setting that leads to a rigorous definition of a (global) coarse problem and a set of (local) subgrid problems. One of the key issues for the success of the method is the proper definition of the boundary conditions for the localization of the subgrid problems. We identify a weak compatibility condition that allows for subgrid communication across element interfaces, a feature that turns out to be essential for obtaining high-quality solutions. We also remove the singularities due to concentrated sources from the coarse-scale problem by introducing additional multiscale basis functions, based on a decomposition of fine-scale source terms into coarse and deviatoric components. The method is locally conservative and employs a low-order approximation of pressure and velocity at both scales. We illustrate the performance of the method on several synthetic cases and conclude that the method is able to capture the global and local flow patterns accurately.  相似文献   

10.
Super-resolution or sub-pixel mapping is the process of providing fine scale land cover maps from coarse-scale satellite sensor information. Such a procedure calls for a prior model depicting the spatial structures of the land cover types. When available, an analog of the underlying scene (a training image) may be used for such a model. The single normal equation simulation algorithm (SNESIM) allows extracting the relevant pattern information from the training image and uses that information to downscale the coarse fraction data into a simulated fine scale land cover scene. Two non-exclusive approaches are considered to use training images for super-resolution mapping. The first one downscales the coarse fractions into fine-scale pre-posterior probabilities which is then merged with a probability lifted from the training image. The second approach pre-classifies the fine scale patterns of the training image into a few partition classes based on their coarse fractions. All patterns within a partition class are recorded by a search tree; there is one tree per partition class. At each fine scale pixel along the simulation path, the coarse fraction data is retrieved first and used to select the appropriate search tree. That search tree contains the patterns relevant to that coarse fraction data. To ensure exact reproduction of the coarse fractions, a servo-system keeps track of the number of simulated classes inside each coarse fraction. Being an under-determined stochastic inverse problem, one can generate several super resolution maps and explore the space of uncertainty for the fine scale land cover. The proposed SNESIM sub-pixel resolution mapping algorithms allow to: (i) exactly reproduce the coarse fraction, (ii) inject the structural model carried by the training image, and (iii) condition to any available fine scale ground observations. Two case studies are provided to illustrate the proposed methodology using Landsat TM data from southeast China.  相似文献   

11.
We propose a methodology, called multilevel local–global (MLLG) upscaling, for generating accurate upscaled models of permeabilities or transmissibilities for flow simulation on adapted grids in heterogeneous subsurface formations. The method generates an initial adapted grid based on the given fine-scale reservoir heterogeneity and potential flow paths. It then applies local–global (LG) upscaling for permeability or transmissibility [7], along with adaptivity, in an iterative manner. In each iteration of MLLG, the grid can be adapted where needed to reduce flow solver and upscaling errors. The adaptivity is controlled with a flow-based indicator. The iterative process is continued until consistency between the global solve on the adapted grid and the local solves is obtained. While each application of LG upscaling is also an iterative process, this inner iteration generally takes only one or two iterations to converge. Furthermore, the number of outer iterations is bounded above, and hence, the computational costs of this approach are low. We design a new flow-based weighting of transmissibility values in LG upscaling that significantly improves the accuracy of LG and MLLG over traditional local transmissibility calculations. For highly heterogeneous (e.g., channelized) systems, the integration of grid adaptivity and LG upscaling is shown to consistently provide more accurate coarse-scale models for global flow, relative to reference fine-scale results, than do existing upscaling techniques applied to uniform grids of similar densities. Another attractive property of the integration of upscaling and adaptivity is that process dependency is strongly reduced, that is, the approach computes accurate global flow results also for flows driven by boundary conditions different from the generic boundary conditions used to compute the upscaled parameters. The method is demonstrated on Cartesian cell-based anisotropic refinement (CCAR) grids, but it can be applied to other adaptation strategies for structured grids and extended to unstructured grids.  相似文献   

12.
We present the latest enhancement of the nonlinear monotone finite volume method for the near-well regions. The original nonlinear method is applicable for diffusion, advection-diffusion, and multiphase flow model equations with full anisotropic discontinuous permeability tensors on conformal polyhedral meshes. The approximation of the diffusive flux uses the nonlinear two-point stencil which reduces to the conventional two-point flux approximation (TPFA) on cubic meshes but has much better accuracy for the general case of non-orthogonal grids and anisotropic media. The latest modification of the nonlinear method takes into account the nonlinear (e.g., logarithmic) singularity of the pressure in the near-well region and introduces a correction to improve accuracy of the pressure and the flux calculation. In this paper, we consider a linear version of the nonlinear method waiving its monotonicity for sake of better accuracy. The new method is generalized for anisotropic media, polyhedral grids and nontrivial cases such as slanted, partially perforated wells or wells shifted from the cell center. Numerical experiments show noticeable reduction of numerical errors compared to the original monotone nonlinear FV scheme with the conventional Peaceman well model or with the given analytical well rate.  相似文献   

13.
Combining a geological model with a geomechanical model, it generally turns out that the geomechanical model is built from units that are at least a 100 times larger in volume than the units of the geological model. To counter this mismatch in scales, the geological data model's heterogeneous fine-scale Young's moduli and Poisson's ratios have to be “upscaled” to one “equivalent homogeneous” coarse-scale rigidity. This coarse-scale rigidity relates the volume-averaged displacement, strain, stress, and energy to each other, in such a way that the equilibrium equation, Hooke's law, and the energy equation preserve their fine-scale form on the coarse scale. Under the simplifying assumption of spatial periodicity of the heterogeneous fine-scale rigidity, homogenization theory can be applied. However, even then the spatial variability is generally so complex that exact solutions cannot be found. Therefore, numerical approximation methods have to be applied. Here the node-based finite element method for the displacement as primary variable has been used. Three numerical examples showing the upper bound character of this finite element method are presented.  相似文献   

14.
Large-scale flow models constructed using standard coarsening procedures may not accurately resolve detailed near-well effects. Such effects are often important to capture, however, as the interaction of the well with the formation can have a dominant impact on process performance. In this work, a near-well upscaling procedure, which provides three-phase well-block properties, is developed and tested. The overall approach represents an extension of a recently developed oil–gas upscaling procedure and entails the use of local well computations (over a region referred to as the local well model (LWM)) along with a gradient-based optimization procedure to minimize the mismatch between fine and coarse-scale well rates, for oil, gas, and water, over the LWM. The gradients required for the minimization are computed efficiently through solution of adjoint equations. The LWM boundary conditions are determined using an iterative local-global procedure. With this approach, pressures and saturations computed during a global coarse-scale simulation are interpolated onto LWM boundaries and then used as boundary conditions for the fine-scale LWM computations. In addition to extending the overall approach to the three-phase case, this work also introduces new treatments that provide improved accuracy in cases with significant flux from the gas cap into the well block. The near-well multiphase upscaling method is applied to heterogeneous reservoir models, with production from vertical and horizontal wells. Simulation results illustrate that the method is able to accurately capture key near-well effects and to provide predictions for component production rates that are in close agreement with reference fine-scale results. The level of accuracy of the procedure is shown to be significantly higher than that of a standard approach which uses only upscaled single-phase flow parameters.  相似文献   

15.
Flow in a porous medium can be described by a set of non-linear partial differential equations. The pressure variable satisfies a maximum principle, which guarantees that the solution will have no oscillations. A discretisation of the pressure equation should preserve this monotonicity property. Whether a numerical method is monotone will depend both on the medium and on the grid. We study monotonicity of Multi-point Flux Approximation methods on triangular grids. We derive necessary conditions for monotonicity on uniform grids. Further, we study the robustness of the methods on rough grids, and quantify the violations of the maximum principle. These investigations are done for single phase flow, however, they are supported by two-phase simulations.  相似文献   

16.

We study the gravity driven flow of two fluid phases in a one dimensional homogeneous porous column when history dependence of the pressure difference between the phases (capillary pressure) is taken into account. In the hyperbolic limit, solutions of such systems satisfy the Buckley-Leverett equation with a non-monotone flux function. However, solutions for the hysteretic case do not converge to the classical solutions in the hyperbolic limit in a wide range of situations. In particular, with Riemann data as initial condition, stationary shocks become possible in addition to classical components such as shocks, rarefaction waves and constant states. We derive an admissibility criterion for the stationary shocks and outline all admissible shocks. Depending on the capillary pressure functions, flux function and the Riemann data, two cases are identified a priori for which the solution consists of a stationary shock. In the first case, the shock remains at the point where the initial condition is discontinuous. In the second case, the solution is frozen in time in at least one semi-infinite half. The predictions are verified using numerical results.

  相似文献   

17.
This paper analyzes the adjoint equations and boundary conditions for porous media flow models, specifically the Buckley-Leverett equation, and the compressible two-phase flow equations in mass conservation form. An adjoint analysis of a general scalar hyperbolic conservation law whose primal solutions include a shock jump is initially presented, and the results are later specialized to the Buckley-Leverett equation. The non-convexity of the Buckley-Leverett flux function results in adjoint characteristics that are parallel to the shock front upstream of the shock and emerge from the shock front downstream of the shock. Thus, in contrast to the behavior of Burgers’ equation where the adjoint is continuous at a shock, the Buckley-Leverett adjoint, in general, contains a discontinuous jump across the shock. Discrete adjoint solutions from space-time discontinuous Galerkin finite element approximations of the Buckley-Leverett equation are shown to be consistent with the derived closed-form analytical solutions. Furthermore, a general result relating the adjoint equations for different (though equivalent) primal equations is used to relate the two-phase flow adjoints to the Buckley-Leverett adjoint. Adjoint solutions from space-time discontinuous Galerkin finite element approximations of the two-phase flow equations are observed to obey this relationship.  相似文献   

18.
The present paper proposes a new family of multiscale finite volume methods. These methods usually deal with a dual mesh resolution, where the pressure field is solved on a coarse mesh, while the saturation fields, which may have discontinuities, are solved on a finer reservoir grid, on which petrophysical heterogeneities are defined. Unfortunately, the efficiency of dual mesh methods is strongly related to the definition of up-gridding and down-gridding steps, allowing defining accurately pressure and saturation fields on both fine and coarse meshes and the ability of the approach to be parallelized. In the new dual mesh formulation we developed, the pressure is solved on a coarse grid using a new hybrid formulation of the parabolic problem. This type of multiscale method for pressure equation called multiscale hybrid-mixed method (MHMM) has been recently proposed for finite elements and mixed-finite element approach (Harder et al. 2013). We extend here the MH-mixed method to a finite volume discretization, in order to deal with large multiphase reservoir models. The pressure solution is obtained by solving a hybrid form of the pressure problem on the coarse mesh, for which unknowns are fluxes defined on the coarse mesh faces. Basis flux functions are defined through the resolution of a local finite volume problem, which accounts for local heterogeneity, whereas pressure continuity between cells is weakly imposed through flux basis functions, regarded as Lagrange multipliers. Such an approach is conservative both on the coarse and local scales and can be easily parallelized, which is an advantage compared to other existing finite volume multiscale approaches. It has also a high flexibility to refine the coarse discretization just by refinement of the lagrange multiplier space defined on the coarse faces without changing nor the coarse nor the fine meshes. This refinement can also be done adaptively w.r.t. a posteriori error estimators. The method is applied to single phase (well-testing) and multiphase flow in heterogeneous porous media.  相似文献   

19.
We use a simple 2D model of a layered reservoir with three unknown parameters: the throw of a fault, and high and low permeabilities. Then consider three different cases where in each case two parameters are kept fixed and the third one is varied within a specific range. Using a weighted sum of squares of the difference in production for the objective function, we plot it against the varying parameter for each case. It mainly shows a complex function with multiple minima. We see that geological ‘symmetry’ and also vertical spreading are some sources of non-monotonicity in the production and transmissibility curves. These result in a multi-modal objective function and consequently non-unique history matches. The behaviour of the system in the forecast period is also studied, which shows that a good history matched model could give a bad forecast.  相似文献   

20.
粒度分布数据的计算机光滑插值绘线方法   总被引:3,自引:0,他引:3  
黄建东 《沉积学报》1995,13(3):132-136
以一种单调光滑的分段插值函数为基础,在计算机上实现了光滑的粒度分布累积频率曲线和频率分布曲线的绘制。这一方法为编制软件在计算机上实现粒度分析数据高效高质量的系统处理提供了基础,为粒度分布特征的普遍表述向更精确、更全面的方向深化提供了途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号