首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For many years, information on the solar mean magnetic field (SMMF) of the Sun—an important heliophysical and astrophysical parameter—was restricted to magnetographic measurements in only one spectral line, FeI λ525.02 nm. More informative observations of the Stokes-meter parameters of the SMMF were first initiated on a regular basis at the Sayan Solar Observatory. The availability of I and V data obtained simultaneously in several spectral lines has made it possible to study fundamentally new physical problems. In this paper, based on a comparison of SMMF observations in several spectral lines, we find high correlations in the data and important systematic differences in the magnetic-field strength B, which we interpret as a manifestation of kilogauss magnetic fields in fine-structure magnetic elements. Results of theoretical modeling of the SMMF strength ratios for the FeI λ525.02 nm-FeI λ524.70 nm and FeI λ630.15 nm-FeI λ630.25 nm lines are presented. The asymmetries of the V profiles of four lines near the FeI λ525.02 nm line are examined; these lines are important diagnostics for studies of small-scale dynamical processes. The Sayan Solar Observatory SMMF measurements are in good consistency with the Wilcox Solar Observatory data for 2003: for a comparison of N = 137 pairs of points in the two data sets, the correlation coefficient ρ is 0.92 for the linear regression between the datasets BWSO = 0.03(±0.05) + 0.93(±0.03)BSSO.  相似文献   

2.
Wind erosion causes serious problems and considerable threat in most regions of the world. Vegetation on the ground has an important role in controlling wind erosion by covering soil surface and absorbing wind momentum. A set of wind tunnel experiments was performed to quantitatively examine the effect of canopy structure on wind movement. Artificial plastic vegetations with different porosity and canopy shape were introduced as the model canopy. Normalized roughness length (Z 0/H) and shear velocity ratio (R) were analyzed as a function of roughness density (λ). Experiments showed that Z 0/H increases and R decreases as λ reaches a maximum value, λ max, while the values of Z 0/H and R showed little change with λ value beyond as λ max.  相似文献   

3.
This paper investigates, using the random field theory and Monte Carlo simulation, the effects of random field discretization on failure probability, p f, and failure mechanism of cohesive soil slope stability. The spatial sizes of the discretized elements in random field Δx, Δy in horizontal and vertical directions, respectively, are assigned a series of combinational values in order to model the discretization accuracy. The p f of deterministic critical slip surface (DCSS) and that of the slope system both are analyzed. The numerical simulation results have demonstrated that both the ratios of Δy/λ y (λ y  = scale of fluctuation in vertical direction) and Δx/λ x (λ x  = scale of fluctuation in horizontal direction) contribute in a similar manner to the accuracy of p f of DCSS. The effect of random field discretization on the p f can be negligible if both the ratios of Δx/λ x and Δy/λ y are no greater than 0.1. The normalized discrepancy tends to increase at a linear rate with Δy/λ y when Δx/λ x is larger than 0.1, and vice versa for p f of DCSS. The random field discretization tends to have more considerable influence on the p f of DCSS than on that of the slope system. The variation of p f versus λ x and λ y may exhibit opposite trends for the cases where the limit state functions of slope failure are defined on DCSS and on the slope system as well. Finally, the p f of slope system converges in a more rapid manner to that of DCSS than the failure mechanism does to DCSS as the spatial variability of soil property grows from significant to negligible.  相似文献   

4.
Observations of sunspot umbrae in the HeII λ304 Å and HeI λ10830 Å lines are analyzed and compared. Spectral observations in the HeI λ10830 line obtained on the Large Non-Eclipse Solar Coronograph of the Sayan Solar Observatory are used, together with HeII λ304 data obtained with the SOHO/EIT and CORONAS-f spacecraft. The contrast in the HeII λ304 line was chosen as an indicator of the UV flux. The dependences of the contrast in the HeII λ304 line and the parameters of the HeI λ10830 IR triplet on the sunspot area are obtained. The sunspot areas were determined using white-light images. A division of the dependences of the parameters of the HeI λ10830 and HeII λ304 lines on the sunspot area into two branches can be distinguished for leading and trailing sunspots. Possible origins of this behavior of the line parameters are discussed.  相似文献   

5.
Effective soil thermal conductivity (λ eff) describes the ability of a multiphase soil to transmit heat by conduction under unit temperature gradient. It is a critical parameter for environmental science, earth and planetary science, and engineering applications. Numerous models are available in the literature, but their applicability is generally restricted to certain soil types or water contents (θ). The objective of this study was to develop a new model in the similar form of the Johansen 1975 model to simulate the λ eff(θ) relationship of soils of various soil textures and water contents. An exponential type model with two parameters is developed and a new function for calculating dry soil thermal conductivity is presented. Performance of the new model and six other normalized models were evaluated with published datasets. The results show that the new model is able to well mimic λ eff(θ) relationship of soils from sand to silt loam and from oven dry to full saturation. In addition, it has the best performance among the seven models under test (with root-mean-square error of 0.059 W m?1 °C?1, average deviations of 0.0009 W m?1 °C?1, and Nash–Sutcliffe efficiency of 0.994). The new model has potential to improve the reliability of soil thermal conductivity estimation and be incorporated into numerical modeling for environmental, earth and engineering studies.  相似文献   

6.
The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall (P) and runoff (Q) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall–runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient (λ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall–runoff dataset and 0.108 and 0 for the ordered rainfall–runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.  相似文献   

7.
This paper presents a seismic hazard evaluation and develops an earthquake catalogue for the Constantine region over the period from 1357 to 2014. The study contributes to the improvement of seismic risk management by evaluating the seismic hazards in Northeast Algeria. A regional seismicity analysis was conducted based on reliable earthquake data obtained from various agencies (CRAAG, IGN, USGS and ISC). All magnitudes (M l, m b) and intensities (I 0, I MM, I MSK and I EMS) were converted to M s magnitudes using the appropriate relationships. Earthquake hazard maps were created for the Constantine region. These maps were estimated in terms of spectral acceleration (SA) at periods of 0.1, 0.2, 0.5, 0.7, 0.9, 1.0, 1.5 and 2.0 s. Five seismogenic zones are proposed. This new method differs from the conventional method because it incorporates earthquake magnitude uncertainty and mixed datasets containing large historical events and recent data. The method can be used to estimate the b value of the Gutenberg-Richter relationship, annual activity rate λ(M) of an event and maximum possible magnitude M max using incomplete and heterogeneous data files. In addition, an earthquake is considered a Poisson with an annual activity rate λ and with a doubly truncated exponential earthquake magnitude distribution. Map of seismic hazard and an earthquake catalogue, graphs and maps were created using geographic information systems (GIS), the Z-map code version 6 and Crisis software 2012.  相似文献   

8.
The He/H abundances in HII regions in Blue Compact Dwarf Galaxies are redetermined using the new recombination coefficients of Benjamin et al. The electron number density n e in the He+ region, optical depth τ3889 in the HeI λ3889 Å line, and coefficient of underlying stellar absorption aHeI are determined using the self-consistent method of Olive and Skillman. The primordial helium abundance and its enrichment are found using the helium abundances obtained in this paper and heavy-element abundances from our recent paper I: Y p = 0.244 ± 0.004 and dY/dZ = 8.8 ± 4.6.  相似文献   

9.
The principal objective in Vertical Seismic Profile (VSP) processing is the separation of the downgoing and upgoing wavefields. Several methods have been suggested in this area. This paper presents a new approach based on the gray-scale Hough transform (GSHT) which is an extension of the conventional Hough transform used to detect straight lines and other curves. The technique, we suggest here, directly maps the gray-scale VSP image, including the downgoing and upgoing linear events, in image coordinate space (x,t,g) to the gray Hough parameter counting space (θ,ρ,g), where θ and ρ are the polar parameters and g is the gray-scale value. In this new space, the downgoing events appear in the negative angles θ quadrant and the upgoing in the positive quadrant, owning to their opposite apparent velocities. The inverse GSHT algorithm, we developed in this study, is performed for extracting separately these two wavefields by considering the straight lines that satisfy the corresponding filtering conditions. The experimental results on synthetic VSP datasets are convincing. The wave separation is well performed, even in the presence of loud noise levels, with signal to noise ratio improvement and amplitude preservation, in contrast to median filtering.  相似文献   

10.
Laboratory measurements are required to study geophysical properties of the subsurface because of lacking direct observation of Earth’s crust. In this research, compressional (P) and shear (S) wave velocity measurements have been conducted on cylindrical specimens of Quartz-micaschist cored using rock blocks taken from the zinc and lead Angouran mine, Zanjan, northwest of Iran. Cylindrical rock specimens were prepared from the blocks by coring in 0°, 30°, 45°, 60°, and 90° into the foliation direction. P- and S-wave velocities were measured along the cylindrical specimens with different foliation orientations. Percent variations of the P- and S-wave velocities (Thomsen’s anisotropic parameters ε and γ) and constant dynamic modulus of test results have been determined. Percent variations of the P-wave velocity (ε) increase with an increase of the foliation angle with respect to the propagating waves direction by a parabolic function as it shows P-wave velocity differences up to a maximum value of 50 %. Thomsen’s anisotropic parameter of γ has also the same function with the foliation angle. Meanwhile, foliation orientation has a much greater influence on ε than γ for foliation angle from 45° to 90° as \( \frac{\varepsilon }{\gamma } \) ratio increases with an increase of foliation angle. Values of dynamic elastic modulus (E), Poisson’s ratio (ν), shear modulus (μ), bulk modulus (K), and Lamé’s constant (λ) increase with the increase of foliation angle with the parabolic function. The results show that dynamic elastic modulus, Poisson’s ratio, shear modulus, bulk modulus, and Lamé’s constant have anisotropic behavior in relation with the foliation orientation.  相似文献   

11.
A newly opened excavation in the Cassina beds of the Lower Meride Limestone (Monte San Giorgio UNESCO World Heritage List, Canton Ticino, Switzerland), has yielded a pachypleurosaurid (Reptilia: Sauropterygia) specimen which is identified as Neusticosaurus peyeri. The resulting co-occurrence of N. peyeri and N. edwardsii, the latter so far regarded as the sole species of the genus present in this horizon, challenges the hypothesis of a single anagenetic lineage in Neusticosaurus species from Monte San Giorgio. In addition, it leads to a reconsideration of the phylogenetic inferences about Neusticosaurus evolution in the Monte San Giorgio area. The stratigraphic distribution of the Neusticosaurus species in the Monte San Giorgio basin is updated on the basis of recent finds.  相似文献   

12.
The accuracies of three different evolutionary artificial neural network (ANN) approaches, ANN with genetic algorithm (ANN-GA), ANN with particle swarm optimization (ANN-PSO) and ANN with imperialist competitive algorithm (ANN-ICA), were compared in estimating groundwater levels (GWL) based on precipitation, evaporation and previous GWL data. The input combinations determined using auto-, partial auto- and cross-correlation analyses and tried for each model are: (i) GWL t?1 and GWL t?2; (ii) GWL t?1, GWL t?2 and P t ; (iii) GWL t?1, GWL t?2 and E t ; (iv) GWL t?1, GWL t?2, P t and E t ; (v) GWL t?1, GWL t?2 and P t?1 where GWL t , P t and E t indicate the GWL, precipitation and evaporation at time t, individually. The optimal ANN-GA, ANN-PSO and ANN-ICA models were obtained by trying various control parameters. The best accuracies of the ANN-GA, ANN-PSO and ANN-ICA models were obtained from input combination (i). The mean square error accuracies of the ANN-GA and ANN-ICA models were increased by 165 and 124% using ANN-PSO model. The results indicated that the ANN-PSO model performed better than the other models in modeling monthly groundwater levels.  相似文献   

13.
Two-dimensional simulations of time-dependent solar magnetogranulation are used to analyze the horizontal magnetic fields and the response of the synthesized Stokes profiles of the IR FeI λ1564.85 nm line to the magnetic fields. The 1.5-h series of MHD models used for the analyses reproduces a region of the magnetic network in the photosphere with an unsigned magnetic flux density of 192 G at the solar surface. According to the magnetic-field distribution obtained, the most probable absolute strength of the horizontal magnetic field at an optical depth of τ 5 = 1(τ 5 denotes τ at λ = 500 nm) is 50 G, while the mean value is 244 G. On average, the horizontal magnetic fields are stronger than the vertical fields to heights of about 400 km in the photosphere due to their higher density and the larger area they occupy. The maximum factor by which the horizontal fields are greater is 1.5. Strong horizontal magnetic flux tubes emerge at the surface as spots with field strengths of more than 500 G. These are smaller than granules in size, and have lifetimes of 3–6 min. They form in the photosphere due to the expulsion of magnetic fields by convective flows coming from deep subphotospheric layers. The data obtained qualitatively agree with observations with the Hinode space observatory.  相似文献   

14.
A high-pressure single-crystal X-ray diffraction study has been carried out on a P21/c natural Mg-rich pigeonite sample with composition ca. Wo6En76Fs18 using a diamond anvil-cell. The unit-cell parameters were determined at 14 different pressures to 7.14 GPa. The sudden disappearance of the b-type reflections (h + k = odd) and a strong discontinuity (about 2.8%) in the unit-cell volume indicated a first-order P21/cC2/c phase transition between 4.66 and 4.88 GPa. The P(V) data of the P21/c phase were fitted to 4.66 GPa by a third-order Birch–Murnaghan equation of state (BM3 EoS), whereas the limited number of experimental data collected within the C2/c phase between 4.88 and 7.14 GPa were fitted using the same equation of state but with K′ constrained to the value obtained for the P21/c fitting. The equation of state coefficients are V 0 = 424.66(6) Å3, K T0 = 104(2) GPa and K′ = 8(1) for the P21/c phase, and V 0 = 423.6(1) Å3, K T0 = 112.4(8) GPa, and K′ fixed to 8(1) for the C2/c phase. The axial moduli for a, b, and c for the P21/c phase were obtained using also a BM3-EoS, while for the C2/c phase only a linear calculation could be performed, and therefore the same approach was applied for comparison also to the P21/c phase. In general the C2/c phase exhibits axial compressibilities (β c > β a >> β b) lower than those of the P21/c phase (β b > β c ≈ β a; similar to those found in previous studies in clinopyroxenes and orthopyroxenes). The lower compressibility of the C2/c phase compared with that of the P21/c could be ascribed to the greater stiffness along the b direction. A previously published relationship between P c and M2 average cation radius (i.r.) has been updated using all the literature data on P21/c clinopyroxene containing large cations at M2 site and our new data. The following weighted regression was obtained: P c (GPa) = 26(4) ? 28(5) ×  i.r (Å), R 2 = 0.97. This improved equation can be used to predict the critical pressure of natural P21/c clinopyroxene samples just knowing the composition at M2 site.  相似文献   

15.
Equations of motion containing a small parameter μ are derived for stars at the peripheries of open star clusters. The parameter μ is obtained for six numerical open-cluster models. The general analytical solution of these equations of motion for μ = 0 is found. An iterative method is used to derive the frequencies of the stellar motions for first-order expansions in μ of the solutions of the equations of motion for stars at the cluster periphery. Applications of the results are discussed.  相似文献   

16.
A criterion for the choice of optimal softening length ε for the potential and the choice of time step dt for N-body simulations of a collisionless stellar system is analyzed. Plummer and Hernquist spheres are used as models to analyze how changes in various parameters of an initially equilibrium stable model depend on ε and dt. These dependences are used to derive a criterion for choosing ε and dt. The resulting criterion is compared to Merritt’s criterion for choosing the softening length, which is based on minimizing the mean irregular force acting on a particle with unit mass. Our criterion for choosing ε and dt indicate that ε must be a factor of 1.5–2 smaller than the mean distance between particles in the densest regions to be resolved. The time step must always be adjusted to the chosen ε (the particle must, on average, travel a distance smaller than 0.5 ε during one time step). An algorithm for solving N-body problems with adaptive variations of the softening length is discussed in connection with the task of choosing ε, but is found not to be promising.  相似文献   

17.
Water inflow into deep excavations is a key parameter in the evaluation of environmental impact, and a simplified method is needed to calculate the inflow with adequate accuracy, especially for a deep excavation with a cutoff wall around it. This paper presents a model for calculating inflow based on the method of fragments, assuming two-dimensional sectional flow. The effects of cutoff wall thickness (w), wall penetration, and excavation width on the inflow are well considered in this model. Explicit formulas for the form factor are given. The accuracy and scope of this method are discussed. The method can be applied in both flooding and no flooding cases. Extensive verification shows that, for the flooding case and when one of four conditions is satisfied, the error of the proposed method will be within 10%. These conditions are b/d?≥?0.8 or w/d?≥?0.03 or s/d?≥?0.2 or s1/d?≥?0.2, for which b is the half width of the excavation, d is the thickness of the soil layer underlying the wall, and s and s1 are the wall penetration depths on the non-excavation side and excavation side, respectively. For the case of no flooding and when the ratio of the distance from the recharge boundary to the aquifer thickness (a/T) is?≥2, the error does not exceed 15%.  相似文献   

18.
We have used 46 high-resolution echelle spectra of the Wolf-Rayet star HD 192163 taken in 2005–2009 at the Cassegrain focus of the 2-m Zeiss-2000 telescope of the Shamakha Astrophysical Observatory to study profiles of the five strongest emission lines (HeII 4859, HeII 5411, CIV 5808, HeI 5875, (HeII + Hα) 6560). We also obtained four echelle spectrograms of the Wolf-Rayet star HD 191765 for a comparative study of the NaI 5890 (D2) and NaI 5896 (D1) interstellar absorption lines. The echelle spectrograms were reduced using the DECH20 code. We determined the equivalent widths, radial velocities, central intensities, and half-widths of the emission lines. We detected variations in the violetwing of the (HeII + Hα) 6560 emission band (between λ ~ 6496 Å and λ ~ 6532 Å). Our statistical analysis of the radial velocities available for the (HeII + Hα) 6560 emission band reveals a peak at the ~1% level at the frequency ν = 0.195 d?1, corresponding to the period P = 5.128d. We also studied the NaI 5890 (D2) and NaI 5896 (D1) interstellar absorption lines, which are important for understanding the nature of the nebula NGC 6888, whose origin is related to HD 192163. Asymmetric profiles were found for the NaI 5890 and NaI 5896 interstellar absorption lines, interpreted as reflecting a contribution from NGC 6888 to these lines. We suggest that the detected profile variations of the (HeII + Hα) 6560 emission band and the periodic variations of its Doppler shifts (P = 5.128d) are due to the existence of a low-mass K-M star companion to the Wolf-Rayet star. HD 192163 is a possible evolutionary progenitor of a low-mass X-ray binary.  相似文献   

19.
Rainfall infiltration is the main factor that causes slope instability. To study the effect of hydraulic parameters on the final saturation line and stability of slopes, a numerical slope model is established with a saturated–unsaturated seepage analysis method. Analysis results show the following, (1) When parameter a increases, the effective rainfall duration decreases linearly, and the ultimate safety factor increases gradually; when parameter m increases, the effective rainfall duration increases linearly, and the ultimate safety factor decreases linearly; when parameter n increases, both the effective rainfall duration and the ultimate safety factor decrease first and then remain stable. (2) When the saturated permeability coefficient decreases, the effective rainfall duration presents a crescent trend, and the ultimate safety factor decreases first and then remains the same after rainfall intensity exceeds the saturated permeability coefficient of soil. (3) When rainfall intensity is less than the saturated permeability coefficient of soil, the location of the final saturation line rises as the saturated permeability coefficient decreases and is thus independent of parameters a, m, and n.  相似文献   

20.
The present study aimed to investigate and optimize the promising antagonistic activity of the exogenous Enterococcus faecium S29 (EU 158188) isolated from the heavily polluted coastal waters of Alexandria, Egypt. Statistical designs, mutations and immobilization were used as optimization procedures. Cells grown in Luria-Bertani and/or UV-treated medium showed optimum activity compared to those grown under basal conditions or ethidium bromide treatment as well as wild-type variants. Immobilization decreased the antagonistic activity of E. faecium compared to their free cells. Ethyl acetate extract (12 organic compounds) exhibited the highest antimicrobial activity and was dominated by phenol (52.11%) and 1, 2 Benzenedicarboxylic acid, diisooctyl ester (29.44%) with molecular weights 94 and 390.28, respectively. Thin-layer chromatography (TLC) fractionation of the bioactive compounds showed two spots with RF: 0.32 and 0.61 with the latter exhibits a broad spectrum of antagonistic activity against six reference pathogens {Staphylococcus aureus (ATCC 6538), Streptococcus faecalis (ATCC 8043), Pseudomonas aeruginosa (ATCC 8739), Escherichia coli (ATCC 8739), Micrococcus luteus (ATCC 10240) and Candida albicans}. The yellow gelatinous purified compound was characterized by an aromatic odor; λ max = 0.629 at 210 nm and IR spectrum [IR (K Br): 1750 ester].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号