首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We present an RI photometric survey covering an area of 430 arcmin2 around the multiple star σ Orionis. The observations were conducted with the 0.8 m IAC‐80 Telescope at the Teide Observatory. The survey limiting R and I magnitudes are 22.5 and 21, and completeness magnitudes 21 and 20, respectively. We have selected 53 candidates from the I vs. RI colour‐magnitude diagram (I = 14–20) that follow the previously known photometric sequence of the cluster. Adopting an age of 2–4 Myr for the cluster, we find that these objects span a mass range from 0.35 M to 0.015 M. We have performed J‐band photometry of 52 candidates and Ks photometry for 12 of them, with the result that 50 follow the expected infrared sequence for the cluster, thus confirming with great confidence that the majority of the candidates are bona fide members. JHKs photometry from the Two Micron All Sky Survey (2MASS) is available for 50 of the candidates and are in good agreement with our data. Out of 48 candidates, which have photometric accuracies better than 0.1 mag in all bands, only three appear to show near‐infrared excesses. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
6.
In this work we present detailed photometric results of the trapezium like galactic nearby OB clusters NGC 1502 and NGC 2169 carried out at the University Observatory Jena. We determined absolute BVRI magnitudes of the mostly resolved components using Landolt standard stars. This multi colour photometry enables us to estimate spectral type and absorption as well as the masses of the components, which were not available for most of the cluster members in the literature so far, using models of stellar evolution. Furthermore, we investigated the optical spectrum of the components ADS 2984A and SZ Cam of the sextuple system in NGC 1502. Our spectra clearly confirm the multiplicity of these components, which is the first investigation of this kind at the University Observatory Jena (© 2009 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
We report here results from a new search for orbital motion of the accretion powered X-ray pulsar 4U 1626–67 using two different analysis techniques. X-ray light curve obtained with the Proportional Counter Array of the Rossi X-ray Timing Explorer during a long observation carried out in February 1996, was used in this work. The spin period and the local period derivative were first determined from the broad 2–60 keV energy band light curve and these were used for all subsequent timing analysis. In the first technique, the orbital phase dependent pulse arrival times were determined for different trial orbital periods in the range of 500 to 10,000 s. We have determined a 3σ upper limit of 13 lt-ms on the projected semimajor axis of the orbit of the neutron star for most of the orbital period range, while in some narrow orbital period ranges, covering about 10% of the total orbital period range, it is 20lt-ms. In the second method, we have measured the pulse arrival times at intervals of 100 s over the entire duration of the observation. The pulse arrival time data were used to put an upper limit on any periodic arrival time delay using the Lomb-Scargle periodogram. We have obtained a similar upper limit of 10 lt-ms using the second method over the orbital period range of 500–10,000 s. This puts very stringent upper limits for the mass of the compact object except for the unlikely case of a complete face-on orientation of the binary system with respect to our line-of-sight. In the light of this measurement and the earlier reports, we discuss the possibility of this system being a neutron star with a supernovae fall-back accretion disk.  相似文献   

8.
A method for inverting the statistical star counts equation, including proper motions, is presented; in order to break the degeneracy in that equation, it uses the supplementary constraints required by dynamical consistency. The inversion gives access to both the kinematics and the luminosity function of each population in three régimes: the singular ellipsoid, the constant ratio Schwarzschild ellipsoid plane-parallel models and the epicyclic model. This more realistic model is tailored to account for the local neighbourhood density and velocity distribution.
The first model is fully investigated, both analytically and by means of a non-parametric inversion technique, while the second model is shown to be formally its equivalent. The effect of noise and incompleteness in apparent magnitude is investigated. The third model is investigated by a     non-parametric inversion technique where positivity of the underlying luminosity function is explicitly accounted for.
It is argued that its future application to data such as the Tycho catalogue (and in the upcoming satellite GAIA ) could lead – provided that the vertical potential and or the asymmetric drift or w are known – to a non-parametric determination of the local neighbourhood luminosity function without any reference to stellar evolution tracks. It should also yield the proportion of stars for each kinematic component and a kinematic diagnostic to split the thin disc from the thick disc or the halo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号