首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
钱伯辰  周洪楠 《天体物理学报》1995,15(1):99-100,T002
用上海天文台佘山观测站的1.56m望远镜和CCD照相机,观测到彗-木碰撞的六次事件。本文给出由撞击引起的木卫闪光K=12的光变曲线和一些碰撞后木星的照片。  相似文献   

2.
陈激  张亚辉 《天文学报》1997,38(3):225-230
本文采用R矩阵传播方法,通过求解CS近似下的耦合方程,计算了星际分子云条件下正-NH3分子和He碰撞的超精细跃迁碰撞截面和速率系数,为研究天体的信息提供需用的基础数据。  相似文献   

3.
裴春传  曾琴 《天文学报》1995,36(2):213-215
继本文作者对星际A型CH3CN与H2含超精细能级的碰撞过程的研究之后,又计算了星际分子云条件下E型CH3CN与H2的碰撞跃迁速率系数。为研究分子云与恒星形成区的物理、化学性质提供了有用的基础分子数据。  相似文献   

4.
本文作者利用IOS近似模型,计算了星际分子云条件下A型CH3CN-H2含超精细能级的碰撞跃迁速率系数。温度范围是20K-140K。为研究分子云与恒星形成区的物理、化学性质提供了有用的基础分子数据。  相似文献   

5.
裴春传  曾琴 《天文学报》1995,36(1):7-20
本文作者利用IOS近似模型,计算了星际分子云条件下A型CH3CN-H2含超精细能级的碰撞跃迁速率系数,温度范围是20K-140K,为研究分子云与恒星形成区的物理、化学性质提供了有用的基础分子数据。  相似文献   

6.
Shoemaker-Levy9号彗星与木星碰撞,是人类有史以来第一次有预报的天体大碰撞。有关观测的初步结果,很快通过新闻报道和电子网络传遍了全世界。本文通过对其14号、11号核撞击木星的大量报道的综合分析,对彗木碰撞的物理过程、彗木碰撞时刻的确定等重要问题进行了探讨。这对于分析和改进对这类碰撞的预报,确定撞击时刻和撞击点位置,以及今后研究撞击黑斑的变化,都有一定的意义。  相似文献   

7.
Shoemaker-Levy9号童星于1994年7月与木星碰撞己成为事实.本文依据众多碰撞时刻的观测报道,并结合碰撞预报,对其进行了系统研究.分析了用不同观测技术和观测手段所给出的碰撞时刻的报道,强调了碰撞物理过程的重要性.最后,按照统一的物理模式初步确定了各个碎核的碰撞时刻.并归算出木星南纬碰撞带区的自转速度约为9h55min-周,说明它没有受到营核连续撞击的影响.本文还将各管核撞击点在水面上的位置与预报做了比较.  相似文献   

8.
Shoemaker-Levy0号彗星于1994年7月与木星碰撞已成为事实。本文依据众多碰撞时刻的观测报道,并结合碰撞预报,对其进行了系统研究。分析了用不同观测技术和观测手段所给出的碰撞时刻的报道,强调了碰撞物理过程的重要性。最后,按照统一的物理模式初步确定了各个碎核的碰撞时刻。并归算出木星南纬碰撞带区的自转速度约为9h55min一周,说明它没有受到彗核连续撞击的影响。本文还将各彗核撞击点在木面上的  相似文献   

9.
空间无碰撞激波的数值研究   总被引:2,自引:0,他引:2  
王水  陆全明 《天文学进展》1997,15(3):218-230
无碰撞激波是空间等离子体和宇宙等离子体中的重要物理现象。文中评述了数值研究空间无碰撞激波的两种方法-粒子模拟和混合模拟,给出了准垂直和准平行无碰撞激波的数值研究结果。还指出了一些尚未解决的研究问题。  相似文献   

10.
提出了用深度神经网络代替快速傅里叶变换法求解无碰撞引力N体数值模拟方法PM-Tree(Partical Mesh Tree)中的势能,以提升PM-Tree方法的效率,验证深度学习方法加速无碰撞引力N体数值模拟的可行性.无碰撞引力N体数值模拟对研究星系、暗物质晕以及宇宙大尺度结构的形成和演化有重要意义.无碰撞引力N体数值...  相似文献   

11.
Planetary impact craters have a high degree of radial symmetry. This hampers efforts to identify the azimuthal impact direction for most craters – the radially symmetric component of an impact crater swamps any asymmetries that may be present. We demonstrate how the asymmetric component can be isolated and the direction of the asymmetries quantified using a two-dimensional eigenfunction expansion over a circular domain. The complex coefficients of expansion describe the magnitude and phase (angular alignment) of each term. From the analysis of hypervelocity impact craters formed in the laboratory, with impact angles ranging from 0° to 50° from the surface normal, we show that asymmetries which reveal the impact direction are still present at just 10° from the surface normal, and that the phase of one complex coefficient of expansion, c 11, indicates the impact direction. Analysis of the lunar crater Hadley shows bilateral symmetry in the radially asymmetric component, which may be due to oblique impact. The 31-km lunar ray crater Kepler has morphological features that indicate the azimuthal impact direction. Coefficient c 11 gives an azimuthal impact direction similar to that expected from the morphology, although post-impact gravitational collapse and slumping obscure the result to some degree. Ray craters may provide a means of testing the method for smaller 'simple' craters when data are available.  相似文献   

12.
Abstract— Contrary to the previous interpretation of a single allochthonous impactite lithology, combined field, optical, and analytical scanning electron microscopy (SEM) studies have revealed the presence of a series of impactites at the Haughton impact structure. In the crater interior, there is a consistent upward sequence from parautochthonous target rocks overlain by parautochthonous lithic (monomict) breccias, through allochthonous lithic (polymict) breccia, into pale grey allochthonous impact melt breccias. The groundmass of the pale grey impact melt breccias consists of microcrystalline calcite, silicate impact melt glass, and anhydrite. Analytical data and microtextures indicate that these phases represent a series of impact‐generated melts that were molten at the time of, and following, deposition. Impact melt glass clasts are present in approximately half of the samples studied. Consideration of the groundmass phases and impact glass clasts reveal that impactites of the crater interior contain shock‐melted sedimentary material from depths of >920 to <1880 m in the pre‐impact target sequence. Two principal impactites have been recognized in the near‐surface crater rim region of Haughton. Pale yellow‐brown allochthonous impact melt breccias and megablocks are overlain by pale grey allochthonous impact melt breccias. The former are derived from depths of >200 to <760 m and are interpreted as remnants of the continuous ejecta blanket. The pale grey impact melt breccias, although similar to the impact melt breccias of the crater interior, are more carbonate‐rich and do not appear to have incorporated clasts from the crystalline basement. Thus, the spatial distribution of the crater‐fill impactites at Haughton, the stratigraphic succession from target rocks to allochthonous impactites, the recognition of large volumes of impact melt breccias, and their probable original volume are all analogous to characteristics of coherent impact melt layers in comparatively sized structures formed in crystalline targets.  相似文献   

13.
Abstract— The Lockne impact event took place in a Middle Ordovician (455 Ma) epicontinental sea. The impact resulted in an at least 13.5 km wide, concentric crater in the sea floor. Lockne is one of very few locations where parts of an ejecta layer have been preserved outside the crater structure. The ejecta from the Lockne impact rests on progressively higher stratigraphic levels with increasing distance from the crater, hence forming a slightly inclined discontinuity surface in the pre‐impact strata. We report on a ~30 cm thick sandy layer at Hallen, 45 km south of the crater centre. This layer has a fining upward sequence in its lower part, followed by low‐angle cross‐laminations indicating two opposite current directions. It is rich in quartz grains with planar deformation features and contains numerous, up to 15 cm large, granite clasts from the crystalline basement at the Lockne impact site. The layer is within a sequence dated to the Baltoniodus gerdae conodont subzone. The dating is corroborated by chitinozoans indicating the latest Kukruse time below and the late Idavere above the impact layer. According to the chitinozoans biostratigraphy, some erosion may have occurred because of deposition of the impact layer. The Hallen outcrop, today 45 km from the centre of the Lockne crater, is at present the most distant accessible occurrence of ejecta from the Lockne impact. It is also the most distant location so far found where the resurge of water towards the crater has affected the bottom sediments. A greater crater diameter than hitherto assumed, thus representing greater impact energy, might explain the extent of the ejecta blanket. Fluidisation of ejecta, to be expected at a marine‐target impact, might furthermore have facilitated the wide distribution of ejecta.  相似文献   

14.
The Deep Impact flyby spacecraft includes a 1.05 to 4.8 μm infrared (IR) spectrometer. Although ice was not observed on the surface in the impact region, strong absorptions near 3 μm due to water ice are detected in IR measurements of the ejecta from the impact event. Absorptions from water ice occur throughout the IR dataset beginning three seconds after impact through the end of observations, ∼45 min after impact. Spatially and temporally resolved IR spectra of the ejecta are analyzed in conjunction with laboratory impact experiments. The results imply an internal stratigraphy for Tempel 1 consisting of devolatilized materials transitioning to unaltered components at a depth of approximately one meter. At greater depths, which are thermally isolated from the surface, water ice is present. Up to depths of 10 to 20 m, the maximum depths excavated by the impact, these pristine materials consist of very fine grained (∼1±1 μm) water ice particles, which are free from refractory impurities.  相似文献   

15.
Almost every meteorite impact occurs at an oblique angle of incidence, yet the effect of impact angle on crater size or formation mechanism is only poorly understood. This is, in large part, due to the difficulty of inferring impactor properties, such as size, velocity and trajectory, from observations of natural craters, and the expense and complexity of simulating oblique impacts using numerical models. Laboratory oblique impact experiments and previous numerical models have shown that the portion of the projectile’s kinetic energy that is involved in crater excavation decreases significantly with impact angle. However, a thorough quantification of planetary-scale oblique impact cratering does not exist and the effect of impact angle on crater size is not considered by current scaling laws. To address this gap in understanding, we developed iSALE-3D, a three-dimensional multi-rheology hydrocode, which is efficient enough to perform a large number of well-resolved oblique impact simulations within a reasonable time. Here we present the results of a comprehensive numerical study containing more than 200 three-dimensional hydrocode-simulations covering a broad range of projectile sizes, impact angles and friction coefficients. We show that existing scaling laws in principle describe oblique planetary-scale impact events at angles greater than 30° measured from horizontal. The displaced mass of a crater decreases with impact angle in a sinusoidal manner. However, our results indicate that the assumption that crater size scales with the vertical component of the impact velocity does not hold for materials with a friction coefficient significantly lower than 0.7 (sand). We found that increasing coefficients of friction result in smaller craters and a formation process more controlled by impactor momentum than by energy.  相似文献   

16.
Abstract— We studied 42 impact‐melt clasts from lunar feldspathic regolith breccias MacAlpine Hills (MAC) 88105, Queen Alexandra Range (QUE) 93069, Dar al Gani (DaG) 262, and DaG 400 for texture, chemical composition, and/or chronology. Although the textures are similar to the impactmelt clasts identified in mafic Apollo and Luna samples, the meteorite clasts are chemically distinct from them, having lower Fe, Ti, K, and P, thus representing previously unsampled impacts. The 40Ar‐39Ar ages on 31 of the impact melts, the first ages on impact‐melt samples from outside the region of the Apollo and Luna sampling sites, range from ~4 to ~2.5 Ga. We interpret these samples to have been created in at least six, and possibly nine or more, different impact events. One inferred impact event may be consistent with the Apollo impact‐melt rock age cluster at 3.9 Ga, but the meteorite impact‐melt clasts with this age are different in chemistry from the Apollo samples, suggesting that the mechanism responsible for the 3.9 Ga peak in lunar impact‐melt clast ages is a lunar‐wide phenomenon. No meteorite impact melts have ages more than 1s? older than 4.0 Ga. This observation is consistent with, but does not require, a lunar cataclysm.  相似文献   

17.
We report paleomagnetic directions from the target rocks of the Tunnunik impact structure, as well as from lithic impact breccia dikes that formed during the impact event. The target sedimentary rocks have been remagnetized after impact‐related tilting during a reverse polarity interval. Their magnetization is unblocked up to 350 °C. The diabase dikes intruding into these sediments retained their original magnetization which unblocks above 400 °C. The impact breccia records a paleomagnetic direction similar to that of the overprints in the target sedimentary rocks. The comparison of the resulting virtual geomagnetic pole for the Tunnunik impact structure with the apparent polar wander path for Laurentia combined with biostratigraphic constraints from the target sedimentary rocks is most consistent with an impact age in the Late Ordovician or Silurian, around 430–450 Ma, soon after the deposition of the youngest impacted sedimentary rocks. Our results from the overprinted sedimentary rocks and diabase dikes imply that the postimpact temperature of the studied rocks was about 350 °C.  相似文献   

18.
19.
Abstract— We have analyzed fluorine and boron in nine tektites from all four strewn fields, and in a suite of impact glasses and target rocks from the Zhamanshin and Darwin impact craters, as well as Libyan Desert Glass and Aouelloul impact glass samples. Fluorine and boron are useful indicators for the volatilization and temperature history of tektites and impact glasses. Tektites from different strewn fields show a limited range of F and B contents and have F/B ratios near unity. Most splash-form tektites have lower average F and B contents than Muong Nong type tektites, which is similar to the relation between irghizites and zhamanshinites. The F and B contents in target rocks from the Zhamanshin and Darwin impact craters are similar to normal terrestrial sediments. Fluorine in impact glasses and tektites is more depleted compared to their (known or inferred) target rocks than is boron, which is caused by the higher volatility of F. The F/B ratios therefore decrease with increasing temperature of formation (suggesting that irghizites were formed at a higher temperature than zhamanshinites, and Muong Nong type tektites at a lower temperature than splash-form tektites). Mixing of local country rocks together with partial loss of the volatiles F and B can reproduce the F and B contents of impact glasses.  相似文献   

20.
Abstract– 40Ar/39Ar dating of recrystallized feldspar glass particles separated from clast‐rich impact melt rocks from the approximately 10 km Paasselkä impact structure (SE Finland) yielded a Middle to Late Triassic (Ladinian‐Karnian) pseudo‐plateau age of 228.7 ± 3.0 (3.4) Ma (2σ). This new age makes Paasselkä the first known Triassic impact structure dated by isotopic methods on the Baltic Shield. The new Paasselkä impact age is, within uncertainty, coeval with isotopic ages recently obtained for the Lake Saint Martin impact structure in Canada, indicating a new Middle to Late Triassic impact crater population on Earth. The comparatively small crater size, however, suggests no relationship between the Paasselkä impact and a postulated extinction event at the Middle/Late Triassic boundary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号