首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The environmental policies aimed at reducing nutrient emissions from the agricultural sectors in the Baltic states, Poland, Germany and Scandinavia are detailed. The emissions include leaching, run-off and erosion losses of nitrogen and phosphorus, volatile losses of ammonia, and farm waste discharges. Farm waste discharges and nitrate leaching from agricultural fields have received considerable attention during the last few decades, but more recently the remaining loss categories have also been recognized as substantial contributors of nutrients to the environment.

Environmental targets have been set in the Helsinki Commission (HELCOM) Ministerial Declaration of 15 February 1988, stating that a significant reduction (e.g. 50%) of the nutrient load to the Baltic Sea shall be reached before 1995. A similar target for the Oslo and Paris (OSPARCOM) Convention waters has been set by the North Sea ministers, while the EU Nitrate Directive expresses an environmental standard by setting an upper limit to nitrate concentrations in groundwater.

It is argued here that in most instances only marginal reductions in agricultural emissions will be achieved under the current policies before 1995 (or later). Exceptions are seen in transition economy countries where fertilizer consumption and livestock production have decreased significantly. As agriculture is a major source of nutrients to convention waters, the overall 50% reduction target will not be met. Furthermore, it is argued that there is scope for a considerable reduction of losses from agriculture and that the instruments to achieve the objectives are readily available. Measures should focus on the total input of nutrients to the agro-ecosystems and not so much attempt to regulate specific management practices. The more prominent instruments include the reduction or alteration of agricultural subsidies, market considerations and the use of environmental taxes (on fertilizers and nutrients in animal manure) combined with in-depth structural regulations. It is, however, necessary to generate further political willingness to ensure decisions and successful implementation of the various measures—a process which requires public attention.  相似文献   


2.
The discharge of nutrients is investigated in relation to their sources and effects in two case studies. The reduction of 47% in the phosphorus load from Denmark to marine areas between 1989 and 1993 has resulted in significantly lower phosphorus concentrations in most Danish coastal waters, and tendency to decrease can be seen in the Belt Sea and Kattegat as well. No general changes in nitrogen concentrations have been observed. This is due to the fact that more than 80% of the nitrogen load in Danish waters originate from diffuse agricultural sources.In the Pomeranian Bight strong nutrient gradients are generated by the mixing of Odra river water and coastal water. The spreading of the river plume could be exactly observed especially in winter, when biological activity is low. In general, different types of distribution, transport and modification patterns can be described.The annual input of nutrients from the catchment area to the Baltic Sea was estimated to be around 1000 kt N and 46 kt P. As a result, winter concentrations of phosphate and nitrate are characterized by positive overall trends in the surface layer in all subregions of the Baltic Proper for the period 1969 to 1993. These trends stem mainly from the strong increase in the 1970ies and early 1980ies. Thereafter, the concentrations of both nutrients fluctuate strongly around a high level. The drastic decrease in fertilizer consumption since the late 1980ies mainly caused by the great economic changes in the countries of the former East Bloc is not yet significantly reflected in decreasing winter concentrations, but first signs already have been found in the decrease in averaged phosphate concentrations in winter, especially in the Arkona and Bornholm Seas.  相似文献   

3.
In the last years more and more often detections of antimicrobially active compounds (“antibiotics”) in surface waters have been reported. As a possible input pathway in most cases municipal sewage has been discussed. But as an input from the realm of agriculture is conceivable as well, in this study it should be investigated if an input can occur via the pathway application of liquid manure on fields with the subsequent mechanisms surface run‐off/interflow, leaching, and drift. For this purpose a series of surface waters, soils, and liquid manures from North Rhine‐Westphalia (Northwestern Germany) were sampled and analyzed for up to 29 compounds by HPLC‐MS/MS. In each of the surface waters antibiotics could be detected. The highest concentrations were found in samples from spring (300 ng/L of erythromycin). Some of the substances detected (e.g., tylosin), as well as characteristics in the landscape suggest an input from agriculture in some particular cases. In the investigation of different liquid manure samples by a fast immunoassay method sulfadimidine could be detected in the range of 1…2 mg/kg. Soil that had been fertilized with this liquid manure showed a content of sulfadimidine extractable by accelerated solvent extraction (ASE) of 15 μg/kg dry weight even 7 months after the application. This indicates the high stability of some antibiotics in manure and soil.  相似文献   

4.
To test if phytobenthic algae provide additional important information to macrophytes and phytoplankton for lake monitoring, we sampled two large lakes in Norway. In each lake, we analyzed water chemistry and phytoplankton above the deepest site, recorded macrophytes and non-diatom phytobenthic algae at 20 sites around the shoreline and estimated site-specific nutrient input from land cover. Since no ready-to-use phytobenthos index exists for lakes in Norway, we tested the PIT index developed for rivers, commonly perceived signs of disturbance such as high algal cover, and taxon richness as well as similarity patterns. Both lakes were nutrient poor, but had potential local nutrient inputs (villages, agriculture). In neither of the lakes did phytobenthos indicate a worse overall ecological status than macrophytes and phytoplankton. Our data therefore, did not suggest that it would be useful to add phytobenthos into surveillance monitoring of lakes in Norway. There was a loose correlation between macrophyte and phytobenthic site-specific taxon richness and similarities. This means that macrophytes and phytobenthos do indeed give partly redundant information. High algal cover was found at sites with both high and low phosphorus input. Using algal cover as indicator of site-specific nutrient input is therefore overly simplistic. Urban and cultivated areas were associated with a more eutrophic PIT. This indicates that the PIT, despite being developed for lotic waters, may be used to detect site specific nutrient input in lakes.  相似文献   

5.
6.
The river Odra is one of the biggest transboundary rivers in Central Europe. The basin is characterized by an area of 110 074 km?sk (upstream Krajnik Dolny) and a population of about 15.5 million inhabitants. Compared with the Westeuropean river basins the specific runoff of the Odra basin is low and amounts only 4.5 L km?sk s–1. The long term changes of the average annual nutrient transport of the Odra at Krajnik Dolny show for the period 1991 to 1994 a low reduction for phosphorus but no changes for nitrogen. For the period of 1991 to 1994 an inventory of the point sources produces emissions of 10.7 kt a–1 P and 54.4 kt a–1 N upstream of the station Krajnik Dolny/Schwedt. Emissions from agricultural land and urban areas represent the main diffuse sources. A range of 68 to 96 kt a–1 N and 3.3 to 3.9 kt a–1 P were estimated for the total diffuse emissions depending on the database and the method of modeling. The emission situation of the river is characterized by a high dominance of point sources in the case of phosphorus (about 73%). For nitrogen the diffuse emissions dominate the total emissions to an amount between 59 and 67%. Compared to the emissions the nutrient transport is low. An average load of 5.1 kt a–1 P and 70.1 kt a–1 N was observed at the station Krajnik Dolny for the period 1991 to 1994. The emission and load situation within the main tributaries of the river Odra is comparable to the whole basin. The big difference between the total emissions and the observed load refers to intensive retention and loss processes within the river system of the Odra.  相似文献   

7.
The history and rationale of environmental regulation with respect to nutrient emissions from Danish agriculture is briefly outlined, while the current regulation is detailed through reference to and statement of actual paragraphs in statutory orders. The present regulations mainly concern nitrogen losses in the form of farm waste discharges, ammonia volatilization from animal manure and nitrate leaching from agricultural land. Being an important nutrient, phosphorus is only considered implicitly in the regulations. The main elements of the regulations include provisions for storage capacity of animal manure, livestock density on a farm basis, and mandatory submission of fertilizer and crop rotation plans to the authorities. The fertilizer plans and the resulting agricultural practices with respect to the use of both commercial fertilizers and animal manures must comply with normative fertilizer values, stated as a function of the yield expectation of agricultural crops, and minimum utilization efficiencies of animal manure. It is thus a violation of Danish laws and regulations to apply more fertilizer than indicated by the normative values in the statutory orders (and violation of the provisions may be punished by fines). The current regulations apply advisory and regulatory instruments. Financial instruments are not used. It is therefore important that where aspects of the common agricultural policy have a potential to reduce nutrient emissions, this potential is used to the full.  相似文献   

8.
Socio-economic development in Europe has exerted increasing pressure on the marine environment. Eutrophication, caused by nutrient enrichment, is evident in regions of all European seas. Its severity varies but has, in places, adversely impacted socio-economic activities. This paper aims to evaluate the effectiveness of recently adopted policies to reduce anthropogenic nutrient inputs to European seas. Nitrogen and phosphorus budgets were constructed for three different periods (prior to severe eutrophication, during severe eutrophication and contemporary) to capture changes in the relative importance of different nutrient sources in four European seas suffering from eutrophication (Baltic Proper, coastal North Sea, Northern Adriatic and North-Western Black Sea Shelf). Policy success is evident for point sources, notably for P in the Baltic and North Seas, but reduction of diffuse sources has been more problematic.  相似文献   

9.
太湖西南部河流流域的营养盐排放   总被引:3,自引:1,他引:2  
以MONERIS河流系统模型为基础,建立了由农业土地营养盐平衡模型、流域营养盐排放模型及河道营养盐滞留模型3个模型组成的模型系统.该系统被用来计算太湖西南部河流流域的营养盐排放量.利用实测的河流系统的负荷数据,对模型系统进行验证.验证结果表明,N、P计算负荷与实测负荷的偏差分别在10%及30%以内.利用该系统,对1992-1996年及1997-2001年间的营养盐排放量进行计算.计算结果表明,1997-2001年间的氮的年平均排放量为5646 t/a,该排放量比前5年的年均排放量减少827 t/a.从磷的排放量来看,1997-2001年间的年排放量为554 t/a,比前5年的均值减少45 t/a.分析结果表明,与1992-1996年相比,1997-2001年间的点源排放量及农业土地营养盐剩余量的减少是流域营养盐排放量减少的主要原因.  相似文献   

10.
Studies worldwide have indicated that agricultural pollution is the main source of nitrogen and phosphorus (N and P) in surface waters. A systematic understanding of N and P sources and sinks in agricultural systems is important for selecting the appropriate remedial strategies to control nutrient losses and water pollution. Based on nationwide data and a long-term monitoring program in Southeast China, the nationwide spatial and temporal patterns of N and P losses and the relationships between such losses and N and P inputs and rainfall were analyzed. The results showed that the annual nutrient losses from agricultural systems in China strongly varied, and the N/P values ranged from 0.01 to 51.0, with a majority at approximately 0–20, and an arithmetic mean of 9.73; these values mostly overlap the suitable range of N/P (6–15) for red bloom algae.  相似文献   

11.
长江输出溶解态无机磷的通量模型灵敏度分析及情景预测   总被引:3,自引:1,他引:2  
研究河流向河口及沿海海域输送的物质通量是一项国际性前沿课题.基于人类活动影响流域营养盐输移的定量分析,应用Global NEWS模型模拟1970-2003年长江输出溶解态无机磷(DIP)的通景,对其不同来源的贡献率进行了分析,并基于千年生态系统评估对未来社会经济发展规划的情景,对2050年长江输出DIP的通量进行预测....  相似文献   

12.
蟹、鱼网围混养对草型湖泊氮磷平衡的影响   总被引:31,自引:3,他引:28  
施炜纲  王博  周昕 《湖泊科学》1999,11(4):363-368
富营养化是当今的水污染治理难题,而农业非点源磷污染与水体富营养化的发生有着密切的关系,目前农田生态系统中广泛存在的磷素投入过量和由此导致的土壤磷素积累加剧了磷素向水体的流失。本文根据国内外最新研究成果,分析了农田土壤磷素流失对水体富营养化的影响,指出了减轻农业非点源磷污染的重要性,对目前所采用的农业非点源磷污染重点控制区的确定方法和一些主要防治措施的效果进行了评述。  相似文献   

13.
The Odra Estuary is one of the most polluted coastal waters of the southern Baltic. To investigate how and whether the estuary acts as a filter and transformation area for the fluviogenic material, different models were developed and an intensive monitoring programme was carried out. Summarizing different methodological approaches, it could be shown that the total system filter capacity reaches 2...5% for nutrients and 10...15% for some heavy metals related to the current mean annual input. In the western part of the estuary, the retention is more important and amounts to 10...40% of the annual nutrient yield. Carbon flux studies revealed that both a reduction of the inputs and more internal and external nutrient sinks are needed to reverse the anthropogenic eutrophication process.  相似文献   

14.
In the Baltic Sea eutrophication processes have accelerated in the past 50 years of the 20th century and presently there exists a major ecological problem for this sea. The Polish coastal zone of the southern Baltic Sea is the recipient of riverine inputs from two major sources, namely the Odra and Vistula, as well as a number of smaller rivers along the central coast. Hence, the entire coastal zone remains under severe anthropogenic pressure. The variability of nutrient concentrations, especially the winter nutrient pool in the euphotic zone, summer level of total nitrogen and total phosphorus, together with such eutrophication indicators as water oversaturation with oxygen and the summer oxygen minimum, were analysed in the data time series 1959-2001. The temporal trends were investigated using linear regression and the non-parametric Whirsch test. The future characteristics of the Baltic Sea are discussed taking into account the development of driving forces.  相似文献   

15.
The water quality of rivers in the eastern part of the Humber Basin, north-eastern England is described from a baseflow survey (11–13 August 2006) of a wide range of water quality determinants, and long-term nutrient records of the Environment Agency of England and Wales (EA). The baseflow survey shows that the rivers are oversaturated with respect to dissolved CO2 and calcite. They are sodium, potassium, lithium, boron, chloride, sulphate and fluoride bearing from a combination of atmospheric, within-catchment, agricultural and sewage effluent sources. Nitrate concentrations are uniform for rivers draining permeable bedrock but decrease for clay drainage areas. Soluble reactive phosphorus (SRP) concentrations are variable across the catchments reflecting the importance and variability of point sources and within-river processing. The EA data show annual oscillations for both NO3 and SRP concentrations. Average NO3 concentrations vary between 3.3 and 18.8 mgN/l and concentrations are low during the summer months. Average SRP concentrations vary between 23 and 1959 μg/l. Highest SRP concentrations generally occur when there is effluent input from sewage treatment works and agricultural point sources (e.g. overflow from slurry tanks, farmyard washings). Despite many of the rivers being nutrient rich, they are generally of good biological quality when point source inputs are not important.  相似文献   

16.
Export coefficient modelling was used to model the impact of agriculture on nitrogen and phosphorus loading on the surface waters of two contrasting agricultural catchments. The model was originally developed for the Windrush catchment where the highly reactive Jurassic limestone aquifer underlying the catchment is well connected to the surface drainage network, allowing the system to be modelled using uniform export coefficients for each nutrient source in the catchment, regardless of proximity to the surface drainage network. In the Slapton catchment, the hydrological pathways are dominated by surface and lateral shallow subsurface flow, requiring modification of the export coefficient model to incorporate a distance–decay component in the export coefficients. The modified model was calibrated against observed total nitrogen and total phosphorus loads delivered to Slapton Ley from inflowing streams in its catchment. Sensitivity analysis was conducted to isolate the key controls on nutrient export in the modified model. The model was validated against long-term records of water quality, and was found to be accurate in its predictions and sensitive to both temporal and spatial changes in agricultural practice in the catchment. The model was then used to forecast the potential reduction in nutrient loading on Slapton Ley associated with a range of catchment management strategies. The best practicable environmental option (BPEO) was found to be spatial redistribution of high nutrient export risk sources to areas of the catchment with the greatest intrinsic nutrient retention capacity. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
Hans W. Paerl   《Limnologica》1999,29(3):249
Coastal waters comprise only about 15% of the world's ocean area, yet account for nearly half of its primary and secondary production (Wollast 1991). This disparity can in part be traced to anthropogenic nutrient, specifically nitrogen (N), loading. Regionally, N-sensitive coastal waters are experiencing unprecedented nutrient-driven eutophication, deteriorating water quality (i.e. hypoxia, anoxia, toxicity), habitat loss and declines in desirable fish stocks and yields. In most coastal regions externally-supplied “new” nutrient inputs are growing, diversifying and changing as a result of urbanization, industrial and agricultural development. In some cases (e.g. Eastern Europe), declining economic condition shave led to a reversal of this scenario. A need exists to identify key nutrient sources (and changes therein) supporting eutrophication and its socio-economic consequences. While we are addressing and managing terrestrial (i.e. point and non-point source runoff) “new” nutrient inputs, key “out of sight out of mind” anthropogenic nutrient sources and their effects on eutrophication remain poorly understood and managed. These include atmospheric deposition and groundwater, which can account for as much as half the “new” N entering North American (U.S. Atlantic East Coast) and European (Baltic Sea) coastal waters. Here, I will examine these emerging nutrient sources and their roles in shallow coastal biogeochemical and trophodynamics alterations. Technological and conceptual tools and approaches aimed at improving our functional understanding of these and other “new” nutrient-eutrophication interactions are discussed.  相似文献   

18.
Poland largely encompases the estuary of the Vistula and Odra rivers, which drain into the Baltic Sea. Only a very small area of the south-east part of the country is within the Black Sea Basin. Poland contributes significantly to the pollution of the Baltic Sea, with biogenic nutrients and organic substances. Poland includes more than half the coastal inhabitants of the Baltic Sea, and they use 40% of the arable land situated there. The contribution to the pollution of this sea with nitrogen, phosphorus and organic substances is approximately 30, 40 and 22%, respectively. The main sources of nutrients are untreated sewage and the runoff and leakage of fertilizers from agricultural land. The natural conditions in Poland are poorer than in Western Europe due to the prevalence of light soils and a short growing period with frequent droughts. After correcting the synthetic index for soil and climate, it was estimated that for each inhabitant of Poland there are 0.3 ha of farmland, which is comparable to that of Western Europe. For the maintenance of the population, intensive agricultural production must be accompanied by environmental protection regulations. Polish agriculture is not only a polluter but also a recipient of pollution, especially the deposits of sulphur and heavy metals emitted by industry and municipal areas. The estimated annual emission of sulphur dioxide is about 4 million t, which equals an average deposit of about 90 kg of sulphur per hectare of farmland. The pedological processes and acid deposits cause more than 60% of agricultural land in Poland to be acidic. The contamination of soils with heavy metals in general is lower than in Western Europe, but in some areas (e.g. Upper Silesia) it exceeds the safe limits.  相似文献   

19.
Agricultural, forestry-impacted and natural catchments are all vectors of nutrient loading in the Nordic countries. Here, we present concentrations and fluxes of total nitrogen (totN) and phosphorus (totP) from 69 Nordic headwater catchments (Denmark: 12, Finland:18, Norway:17, Sweden:22) between 2000 and 2018. Catchments span the range of Nordic climatic and environmental conditions and include natural sites and sites impacted by agricultural and forest management. Concentrations and fluxes of totN and totP were highest in agricultural catchments, intermediate in forestry-impacted and lowest in natural catchments, and were positively related %agricultural land cover and summer temperature. Summer temperature may be a proxy for terrestrial productivity, while %agricultural land cover might be a proxy for catchment nutrient inputs. A regional trend analysis showed significant declines in N concentrations and export across agricultural (−15 μg totN L−1 year−1) and natural (−0.4 μg NO3-N L−1 year−1) catchments, but individual sites displayed few long-term trends in concentrations (totN: 22%, totP: 25%) or export (totN: 6%, totP: 9%). Forestry-impacted sites had a significant decline in totP (−0.1 μg P L−1 year−1). A small but significant increase in totP fluxes (+0.4 kg P km−2 year−1) from agricultural catchments was found, and countries showed contrasting patterns. Trends in annual concentrations and fluxes of totP and totN could not be explained in a straightforward way by changes in runoff or climate. Explanations for the totN decline include national mitigation measures in agriculture international policy to reduced air pollution and, possibly, large-scale increases in forest growth. Mitigation to reduce phosphorus appears to be more challenging than for nitrogen. If the green shift entails intensification of agricultural and forest production, new challenges for protection of water quality will emerge possible exacerbated by climate change. Further analysis of headwater totN and totP export should include seasonal trends, aquatic nutrient species and a focus on catchment nutrient inputs.  相似文献   

20.
The quantification of diffuse input loads of nutrients to rivers is a challenge due to limited observed data. This study aimed to develop a simple model that can relate in-stream nutrient concentrations due to diffuse sources with land cover categories within a catchment affecting a river reach. A previously developed point-diffuse model was used to distinguish the diffuse nutrient signature within South African Department of Water Affairs historical monitoring flow and water quality data for selected river gauges. The diffuse signature was related to land cover categories within respective catchments using Principal Component Analysis (PCA), and influential land cover categories were used to construct land cover models relating land cover categories with in-stream nutrient concentrations. Generally, the land cover categories affecting diffuse signatures of nutrients as indicated by PCA were expected. Using land cover information, the developed land cover models performed well in re-creating the diffuse in-stream nutrient signature as determined by the point-diffuse model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号