首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An approximately 7 km thick, continuous sequence of granulite-facies rocks from the lower crust, which contains a lower granulite-pyriclasite unit and an upper metapelite unit, occurs in the NW Serre of the Calabrian massif. The lower crustal section is overlain by a succession of plutonic rocks consisting of blastomylonitic quartz diorite, tonalite, and granite, and is underlain by phyllonitic schists and gneisses.Discordant apparent zircon ages, obtained from granulites and aluminous paragneisses, indicate a minimum age of about 1,900 m.y. for the oldest zircon populations. The lower intersection point of the discordia with the concordia at 296±2 m.y. is also marked by concordant monazites. Therefore, the age of 296±2 m.y. is interpreted as the minimum age of granulite-facies metamorphism.Concordant zircon ages were obtained from a metamorphic quartz monzogabbronorite sill (298±5 m.y.) and an unmetamorphosed tonalite (295±2 m.y.); they are interpreted as the intrusion ages.Discordant zircon ages from a blastomylonitic quartz diorite gneiss, situated between the lower crustal unit and the non-metamorphosed tonalite, reveal recent or geologically young lead loss by diffusion. The 207Pb/206Pb ages of the two analysed size-fractions point to an intrusion age similar to that of the overlying tonalite.Rb-Sr mineral ages are younger in the granulite-pyriclasite unit than in the overlying metapelite unit. Feldspars from the granulite-pyriclasite unit yield ages of about 145 m.y. and those from the metapelite unit 176±5 m.y. In the same way, the biotite cooling ages range between 108 and 114 m.y. in the granulitepyriclasite and between 132 and 135 m.y. in the metapelite unit and the tonalite. Some still younger biotite ages are explained by the influence of tectonic shearing on the Rb-Sr systems. A muscovite from a postmetamorphic aplite in the metapelite unit yields a cooling age of 203±4 m.y.The Rb-Sr isotopic analyses from migmatite bands do not lie on an isochron, perhaps due to limited isotopic exchange between the small scale layers during the long cooling period after the peak of metamorphism.In the phyllonitic gneisses and schists a Hercynian metamorphism is indicated by a muscovite age of 268±4 m.y., whereas the biotite age of 43±1 m.y. from the same sample can be correlated with an Alpine greenschist-facies metamorphism.On the basis of the radiometric dates and of the P-T path of the lower crustal section deduced petrologically, the following model is presented: the end of the Hercynian granulite-facies metamorphism was accompanied by an uplift of the lower crustal rocks into intermediate crustal levels and by synchronous plutonic intrusions into the lower crust and higher crustal levels, but essentially into the latter. Substantial further uplift did not occur until after cooling from the temperature of the granulite-facies metamorphism to the biotite closing temperature. This cooling lasted for about 185 m.y. in the lower part and for about 160 m.y. in the upper part of the lower crust section.A comparison between the geologic evolutions of the NW Serre of Calabria and the Ivrea Zone of the Alps demonstrates striking similarities. The activity of deep seated faults in both areas at least since late Hercynian time raises the possibility that a fault precursor of the boundary of the Adriatic microplate already existed at this time.  相似文献   

2.
The Santa Rosa mylonite zone developed predominantly from a granodiorite protolith in the eastern margin of the Peninsular Ranges batholith. A wide variation in K−Ar biotite dates within the zone is shown to reflect the times of cooling through closure temperatures whose variability is chiefly a result of deformation-induced reduction in grain size. We suggest that such variation generally may be exploited to place constraints on the timing of deformation episodes. Previous workers have shown that deformation in the Santa Rosa mylonite zone involved the formation of mylonites and an imbricate series of low-angle faults which divide the area into structural units. Field work, petrographic studies, and TEM analysis of deformation mechanisms in biotite show that the granodiorite mylonite, the lowermost structural unit, formed below the granodiorite solidus. The granodiorite mylonite varies from protomylonite to ultramylonite, with regions of high strain distributed heterogeneously within the zone. Previously reported biotite and hornblende K−Ar dates from the granodiorite protolith below (82–89 Ma) and the Asbestos Mountain granodiorite above (61–68 Ma) the mylonite zone indicate dramatically dissimilar thermal histories for the lowermost and uppermost structural units. Other workers' fission track dates on sphene, zircon, and apatite from the granodiorite mylonite and the Asbestos Mountain granodiorite suggest thermal homogenization and rapid cooling to ∼100° C by ca 60 Ma. Within and adjacent to the mylonite zone, K−Ar dates on 5 samples of biotite from variably deformed granodiorite range from 62–76 Ma; dates are not correlated with structural depth but clearly decrease with degree of deformation and concomitant grain size reduction. 40Ar/39Ar incremental heating analyses of biotite from the granodiorite protolith reveals no evidence of excess argon and produces a relatively flat age spectrum. 40Ar/39Ar incremental heating analysis of biotite from the granodiorite mylonite discloses discordance consistent with 39Ar recoil loss. K analysis of samples, allowing K−Ar dates to be calculated, is therefore recommended as an adjunct to 40Ar/39Ar step heating analysis in rocks that have experienced similar deformation. During mylonitization, biotite grain size reduction through intracrystalline cataclasis results in estimated grain dimensions as small as 0.05 μm locally within porphyroclasts as large as 1 mm. Because biotite compositions are relatively Uniform (Fe/[Fe+Mg+Mn+Ti+AlVI]=0.47–0.52) and show no systematic variation with grain size, compositional dependence of activation energy and diffusivity can be eliminated as sources of variation in Ar retention. Ar closure temperatures, calculated with appropriate diffusion parameters for the observed grain sizes, are in the range ∼220–280° C and define a cooling curve consistent with a thermal history intermediate between those of the granodiorite protolith below and the Asbestos Mountain granodiorite above the mylonite zone. Changes in the slope of the cooling curve indicate that the main deformation episode initiated at or above ca 330° C (∼80 Ma), above the closure temperature for thermally activated diffusion of argon in biotite, and continued to a minimum of ca 220–260° C (∼62 Ma).  相似文献   

3.
Linking ages to metamorphic stages in rocks that have experienced low‐ to medium‐grade metamorphism can be particularly tricky due to the rarity of index minerals and the preservation of mineral or compositional relicts. The timing of metamorphism and the Mesozoic exhumation of the metasedimentary units and crystalline basement that form the internal part of the Longmen Shan (eastern Tibet, Sichuan, China), are, for these reasons, still largely unconstrained, but crucial for understanding the regional tectonic evolution of eastern Tibet. In situ core‐rim 40Ar/39Ar biotite and U–Th/Pb allanite data show that amphibolite facies conditions (~10–11 kbar, 530°C to 6–7 kbar, 580°C) were reached at 210–180 Ma and that biotite records crystallization, rather than cooling, ages. These conditions are mainly recorded in the metasedimentary cover. The 40Ar/39Ar ages obtained from matrix muscovite that partially re‐equilibrated during the post peak‐P metamorphic history comprise a mixture of ages between that of early prograde muscovite relicts and the timing of late muscovite recrystallization at c. 140–120 Ma. This event marks a previously poorly documented greenschist facies metamorphic overprint. This latest stage is also recorded in the crystalline basement, and defines the timing of the greenschist overprint (7 ± 1 kbar, 370 ± 35°C). Numerical models of Ar diffusion show that the difference between 40Ar/39Ar biotite and muscovite ages cannot be explained by a slow and protracted cooling in an open system. The model and petrological results rather suggest that biotite and muscovite experienced different Ar retention and resetting histories. The Ar record in mica of the studied low‐ to medium‐grade rocks seems to be mainly controlled by dissolution–reprecipitation processes rather than by diffusive loss, and by different microstructural positions in the sample. Together, our data show that the metasedimentary cover was thickened and cooled independently from the basement prior to c. 140 Ma (with a relatively fast cooling at 4.5 ± 0.5°C/Ma between 185 and 140 Ma). Since the Lower Cretaceous, the metasedimentary cover and the crystalline basement experienced a coherent history during which both were partially exhumed. The Mesozoic history of the Eastern border of the Tibetan plateau is therefore complex and polyphase, and the basement was actively involved at least since the Early Cretaceous, changing our perspective on the contribution of the Cenozoic geology.  相似文献   

4.
Hornblende incremental heating 40Ar/39Ar data were obtained from augen gneiss and amphibolite of the Sveconorwegian Province of S. Norway. In the Rogaland-Vest Agder and Telemark terranes, four pyroxene-rich samples, located close (≤ 10 km) to the anorthosite-charnockite Rogaland Igneous Complex, define an age group at 916 + 12/ − 14 Ma and six samples distributed in the two terranes yield another group at 871 + 8/ − 10 Ma. The first age group is close to the reported zircon U---Pb intrusion age of the igneous complex (931 ± 2 Ma) and the regional titanite U---Pb age (918 ± 2 Ma), whereas the second group overlaps reported regional mineral Rb---Sr ages (895-853 Ma) as well as biotite K---Ar ages (878-853 Ma). In the first group, the comparatively dry parageneses of low-P thermal metamorphism (M2) associated with the intrusion of the igneous complex are well developed, and hornblende 40Ar/39Ar ages probably record a drop in temperature shortly after this phase. In other hornblende + biotite-rich samples, with presumably a higher fluid content, the hornblende ages are probably a response to hornblende-fluid interaction during a late Sveconorwegian metamorphic or hydrothermal event. A ca 220 m.y. diachronism in hornblende 40Ar/39Ar ages is documented between S. Telemark (ca 870 Ma) and Bamble (ca 1090 Ma). Differential uplift between these terranes was mostly accommodated by shearing along the Kristiansand-Porsgrunn shear zone. The final stage of extension along this zone occurred after intrusion of the Herefoss post-kinematic granite at 926 ± 8 Ma. On the contrary, the southern part of the Rogaland-Vest Agder and Telemark terranes share a common cooling evolution as mineral ages are similar on both sides of the Mandal-Ustaoset Line the tectonic zone between them. The succession within 20 m.y. of a voluminous pulse of post-tectonic magmatism at 0.93 Ga, a phase of high-T-low-P metamorphism at 0.93-0.92 Ga, and fast cooling at a regional scale ca 0.92 Ga, suggests that the southern parts of Rogaland-Vest Agder and Telemark were affected by an event of post-thickening extension collapse at that time. This event is not recorded in Bamble.  相似文献   

5.
Biotite, hornblende and muscovite from 2700 m.y. old rocks in northeastern Minnesota near the contact of the 1150 m.y. Duluth Complex have been analyzed by 40Ar/39Ar technique to determine whether spectrum ages can be used to distinguish partial loss of radiogenic argon due to a reheating event. Biotite and hornblende give plateau ages comparable to the ordinary K-Ar ages for all samples including those with intermediate ages. Muscovite gives plateau ages for the samples with less than 11% argon loss. An intermediate muscovite with a conventional K-Ar age of 1850 m.y. gives progressively older 40Ar/39Ar ages for higher temperature fractions.Microprobe analysis reveals no systematic correlation between biotite chemistry and loss of argon in the contact zone. This suggests that the rate-controlling process for the loss of argon from biotite in the contact zone may be volume diffusion or recrystallization without a measurable change in major element composition. Biotites with intermediate ages give plateaus because the rate-controlling processes in the vacuum furnace are related to dehydroxylation and delamination and are unrelated to the process causing loss of argon in the contact zone.The data for the muscovites are not easily interpreted, in part because of the limited number of samples. The hornblende data show a correlation between argon loss and change in major element composition suggesting that recrystallization may be a rate-controlling process for the loss of argon from hornblende in the contact zone. The small number of samples precludes a definitive statement.  相似文献   

6.
The Late Triassic Central Patagonian Batholith is a key element in paleogeographic models of West Gondwana just before to the break-up of the supercontinent. The preexisting classification of units of this batholith was mainly based on isotopic and geochemical data. Here we report the results of field mapping and petrography, backed up by three new 40Ar/39Ar biotite ages, which reveal previously unnoticed relationships of the rocks in the batholith. Based on the new information we present a reorganization of units where the batholith is primarily formed by the Gastre and the Lipetrén superunits. The Gastre Superunit is the oldest magmatic suite and is composed of I-type granites which display evidence of felsic and mafic magma interaction. It is formed by 4 second-order units: 1) equigranular hornblende–biotite granodiorites, 2) porphyritic biotite–hornblende monzogranites, 3) equigranular biotitic monzogranites and 4) hornblende quartz-diorites. Emplacement depth of the Gastre Superunit is bracketed between 6 and 11 km (1.8–3 kbar), and the maximum recorded temperatures of emplacement are comprised between 660 and 800 °C. The recalculated Rb/Sr age is 222 ± 3 Ma and the porphyritic biotite–hornblende monzogranites yielded a 40Ar/39Ar age in biotite of 213 ± 5 Ma. On the other hand, the Lipetrén Superunit is made up by fine-grained biotitic monzo- and syenogranites that postdate magma hybridization processes and intrude all the other units. The recalculated Rb/Sr age for this suite is identical to a 40Ar/39Ar age in biotite extracted from one of its monzogranites (206.4 ± 5.3 and 206 ± 4 Ma, respectively). This and the observed textural features suggest very fast cooling related to a subvolcanic emplacement. An independent unit, the “Horqueta Granodiorite”, which has previously been considered as the record of a Jurassic intrusive stage in the Central Patagonian Batholith, gave a 40Ar/39Ar age in biotite of 214 ± 2 Ma. This and the reexamination of available isotopic data allow propose that this granodiorite unit is part of the Late Paleozoic intrusives in the region. The Late Triassic Central Patagonian Batholith is overlain by 190–185 Ma volcano-sedimentary rocks, suggesting that it was exposed sometime between the latest Triassic and earliest Jurassic times, roughly coeval with a major accretionary episode in the southwestern margin of Gondwana.  相似文献   

7.
The La Hague region of northwest France exposes Palaeo-Proterozoic Icartian gneisses which were reworked and intruded by calc-alkaline plutonic rocks during the Cadomian Orogeny (about 700–500 Ma). 40Ar/39Ar mineral cooling ages have been determined to clarify the timing of the regional metamorphism of orthogneisses and the emplacement of quartz diorite plutons in this region. Metamorphic amphiboles within Icartian gneisses display discordant 40Ar/39Ar apparent age spectra interpreted to result from limited Variscan (about 350–300 Ma) overprinting of intracrystalline argon systems which initially cooled through post-metamorphic hornblende closure temperatures during the Cadomian at about 600 Ma. Igneous hornblendes from the weakly foliated Jardeheu and Moulinet quartz diorites record isotope correlation ages of 599 ± 2 and 561 ± 2 Ma, respectively. Igneous hornblende and biotite from foliated quartz diorite on the nearby Channel Island of Alderney record isotope correlation ages of about 560 Ma. The results imply that metamorphic and plutonic events in the La Hague-Alderney region were approximately contemporaneous with those recorded on Guernsey and Sark, which are thus likely to have formed part of the same tectonic block during the Cadomian Orogeny.  相似文献   

8.
New 40Ar/39Ar thermochronology results and thermal modeling support the hypothesis of Hollister et al. (2004), that reheating of the mid-Cretaceous Ecstall pluton by intrusion of the Coast Mountains Batholith (CMB) was responsible for spatially variable remagnetization of the Ecstall pluton. 40Ar/39Ar ages from hornblende and biotite from 12 locations along the Skeena River across the northern part of the Ecstall pluton decrease with proximity to the Quottoon plutonic complex, the nearest member of the CMB to the Ecstall pluton. The oldest 40Ar/39Ar ages are found farthest from the Quottoon plutonic complex, and are 90 ± 3 Ma for hornblende, and 77.9 ± 1.2 Ma for biotite. The youngest 40Ar/39Ar ages are found closest to the Quottoon plutonic complex, and are 51.6 ± 1.2 Ma for hornblende, and 45.3 ± 1.7 Ma for biotite. No obvious relationship between grain size and age is seen in the Ecstall pluton biotites. Spatial trends in 40Ar/39Ar ages are consistent with model results for reheating by a thermal wall at the location of the Quottoon plutonic complex. Although no unique solution is suggested, our results indicate that the most appropriate thermal history for the Ecstall pluton includes both reheating and northeast side up tilting of the Ecstall pluton associated with intrusion of the Quottoon plutonic complex. Estimates of northward translation from shallow paleomagnetic inclinations in the western part of the Ecstall pluton are reduced to ∼3000 km, consistent with the Baja-BC hypothesis, when northeast side up tilting is accounted for.  相似文献   

9.
In order to characterize the post-Svecofennian tectonothermal evolution of the Fennoscandian Shield, 40Ar–39Ar biotite and some 40Ar–39Ar muscovite geochronological data are reported from a total of 30 surface outcrop and 1,000 m long borehole samples at Forsmark, central Sweden. The 13 surface samples were collected across 3 branches of a major WNW to NW trending system of deformation zones, whereas the boreholes were drilled within a tectonic lens, in between two of these zones. The 40Ar–39Ar biotite ages indicate that the present erosion surface, in central Sweden, cooled below c. 300°C at 1.73–1.66 Ga, and that the rocks could have accommodated strain in a brittle manner between 1.8 and 1.7 Ga. The variation in surface ages is suggested to be due to fault along the large WNW to NW trending deformation zones, following the establishment of a sub-Cambrian peneplain. The minor variation of ages within a single crustal block may be due to disturbance along ENE to NNE trending fracture zones. Possible cooling paths, derived from 40Ar–39Ar hornblende, muscovite and biotite ages, were calculated for the time interval from 1.80 to 1.67 Ga, when the area cooled from c. 500 to 300°C. Cooling rates of 1.9–4°C/m.y. have been attained. Between 1.68 and 1.64 Ga, uplift rates of c. 22 m/m.y. were calculated from borehole 40Ar–39Ar biotite data. Tectonothermal histories, inferred from the combined cooling and uplift rates, are related to simple cooling after the Svecofennian orogeny, to crustal movement in response to far-field effects of c. 1.7 Ga orogenic activities further to the west or to a combination of these possibilities.  相似文献   

10.
西昆仑库地韧性剪切带的40Ar/39Ar年龄   总被引:12,自引:4,他引:12       下载免费PDF全文
西昆仑库地以南有一套变质变形较强的岩系,前人依照区域对比关系将其划为前寒武的古老基底。对西昆仑早期构造演化的论述均基于该观点,但没有提供确凿的同位素年代学证据。笔者通过野外观察、室内研究,确认库地以南的变质变形岩系是大型韧性推覆剪切作用的产物。通过对新生变质矿物角闪石和黑云母单矿物的40Ar/39Ar年龄分析,确定剪切变质年龄为426-451Ma,说明库地的变质变形岩系是形成于早古生代晚期的一条大型韧性剪切带,这对于解释西昆仑的早期构造演化具有重要意义。  相似文献   

11.
The paragenic minerals plagioclase,perthite,biotite,hornblende and pyroxene in acid-granite alkali-granite,monzonite and volcanic rocks collected from seven areas different in thermal history have been determined.On the basis of 14 plateau age spectra and isochron ages of paragenic miner-als in conjunction with the observed mineral textures ,the suitability of plateau age spectra of plagioclase and perthite and their thermo-chronological significance are discussed in this paper.The results indicate that undisturbed feldspar gives satisfactory^40Ar-^39Ar plateau ages in consis-tence with those of paragenic minerals.This means that feldspars from the undisturbed area are suita-ble for ^40Ar-^39Ar dating .On the other hand,the age spectra of feldspars as well as of biotite,pyroxene and hornblende affected by tectonic or thermodynamic events appear unsmooth at varying temperatures,thus complicating their interpretation.Feldspars may give an emplacement age of a rock and /or that of the latest thermodynamic event,depending on the intensity of the event and the retentivity of Ar in the mineral.  相似文献   

12.
The effects of deformation on radiogenic argon (40Ar) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ∼15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 °C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.Infrared (IR) laser (CO2) heating of individual 1.5-2.5 mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/39Ar plateau ages of 311 ± 2 Ma (2σ). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar loss of 0-35% in muscovite and 2-3% 40Ar loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/39Ar ages (±4-10%, 1σ) of deformed muscovites range from 309 ± 13 to 264 ± 7 Ma, consistent with 0-16% 40Ar loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/39Ar ages of deformed biotite vary from 301 to 217 Ma, consistent with up to 32% 40Ar loss. No spatial correlation is observed between in situ40Ar/39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar loss in the experimentally treated muscovite can be utilized to predict average 40Ar diffusion dimensions. Maximum 40Ar/39Ar ages obtained by UV laser ablation overlap those of the undeformed muscovite, indicating argon loss of <1% and an average effective grain radius for 40Ar diffusion ?700 μm. The UV laser ablation and IR laser incremental 40Ar/39Ar ages indicating 40Ar loss of 16% and 35%, respectively, are consistent with an average diffusion radius ?100 μm. These results support a hypothesis of grain-scale 40Ar diffusion distances in undeformed mica and a heterogeneous mechanical reduction in the intragrain effective diffusion length scale for 40Ar in deformed mica. Reduction in the effective diffusion length scale in naturally deformed samples occurs most probably through production of mesoscopic and submicroscopic defects such as, e.g., stacking faults. A network of interconnected defects, continuously forming and annealing during dynamic deformation likely plays an important role in controlling both 40Ar retention and intragrain distribution in deformed mica. Intragrain 40Ar/39Ar ages, when combined with estimates of diffusion kinetics and distances, may provide a means of establishing thermochronological histories from individual micas.  相似文献   

13.
The geochronology and genesis of the Qingyang batholith were investigated using40Ar/39Ar and Rb-Sr isotopic techniques. The Qingyang is a composite batholith consisting of two major rock types granodiorite and granite in the Yangtze fold belt.40Ar/39Ar spectra for biotite and amphibole separates are internally concordant. The concordance of the minerals and spectra indicate no thermal disturbance of the ages, and rapid cooling of the rocks. The granodiorite has an age of 137.6±1.4 m.y. and the granite 122.7±1.2 m.y. Whole-rock Rb-Sr analysis yields ages consistent with the40Ar/39Ar dates. Thus, the Qingyang batholith was formed in two major stages in the late Jurassic and early Cretaceous. The batholith is not Triassic as was previously proposed. Special40Ar/39Ar analysis of two granodiorite samples has precisely documented a 1.0 m.y. apparent age difference between these samples. Several factors could account for this difference, but different emplacement times seem most convincible. The granodiorite and granite show little variation in initial87Sr/86Sr ratio (about 0.7085). The high initial Sr ratios suggest that the magmas were formed by anatexis of older crustal materials.  相似文献   

14.
Abstract 40Ar/39Ar data (on hornblende, muscovite and K-feldspar) are presented for samples from the western Grenville Province taken along a 140-km traverse from the Grenville Front into the Britt domain. Our interpretation is based on 28 new analyses, synthesized with 20 previously reported from the traverse area. In regions where comparisons are possible, muscovite and (large domain) K-feldspar apparent ages appear similar (at c. 920–930 Ma), but throughout the traverse, these are c. 60–70 Myr younger than the hornblende ages. The inferred cooling rate over the c. 350–500°C temperature range, c.2°C Myr-1, is appropriate for exhumation controlled by post-orogenic erosional unroofing. At the Grenville Front Tectonic Zone (GFTZ) — Britt domain boundary there is a c. 25-Myr offset in both hornblende and muscovite/K-feldspar ages. We interpret the lower ages in the Britt domain to reflect variations in crustal thickness and geothermal gradient between the flank and interior of a thick orogen. The argon data from the GFTZ are interpreted in the context of an asymmetric crustal-scale antiformal structure developed during a late episode of convergence. Hornblende from rocks on either side of the core of the antiform has an apparent age of c. 990 Ma, our estimate of the age of the compressional event. In the west, we infer that these date the short-lived thermal event associated with the development of the crustal-scale antiform previously postulated. In the east, the ages reflect the cooling of material brought toward the surface in the flank of the antiform. Hornblendes from the antiform core appear to contain excess radiogenic argon. We suggest that this was the ambient argon in rocks transported from depth that was subsequently trapped when the rocks cooled rapidly.  相似文献   

15.
The 40Ar/39Ar dating technique is based on the knowledge of the age of neutron fluence monitors (standards). Recent investigations have improved the accuracy and precision of the ages of most of the Phanerozoic-aged standards (e.g. Fish Canyon Tuff sanidine (FCs), Alder Creek sanidine, GA1550 biotite and LP-6 biotite); however, no specific study has been undertaken on the older standards (i.e. Hb3gr hornblende and NL-25 hornblende) generally used to date Precambrian, high Ca/K, and/or meteoritic rocks.In this study, we show that Hb3gr hornblende is relatively homogenous in age, composition (Ca/K) and atmospheric contamination at the single grain level. The mean standard deviation of the 40Ar?/39ArK (F-value) derived from this study is 0.49%, comparable to the most homogeneous standards. The intercalibration factor (which allows direct comparison between standards) between Hb3gr and FCs is RFCsHb3gr = 51.945 ± 0.167. Using an age of 28.02 Ma for FCs, the age of Hb3gr derived from the R-value is 1073.6 ± 5.3 Ma (1σ; internal error only) and ± 8.8 Ma (including all sources of error). This age is indistinguishable within uncertainty from the K/Ar age previously reported at 1072 ± 11 Ma [Turner G., Huneke, J.C., Podosek, F.A., Wasserburg, G.J., 1971. 40Ar-39Ar ages and cosmic ray exposure ages of Apollo 14 samples. Earth Planet. Sci. Lett. 12, 19-35].The R-value determined in this study can also be used to intercalibrate FCs if we consider the K/Ar date of 1072 Ma as a reference age for Hb3gr. We derive an age of 27.95 ± 0.19 Ma (1σ; internal error only) for FCs which is in agreement with the previous determinations. Altogether, this shows that Hb3gr is a suitable standard for 40Ar/39Ar geochronology.  相似文献   

16.
The Porgera gold deposit, Papua New Guinea, is associated with sodic-alkalic, hypabyssal intrusions of alkali basaltic to mugearitic composition. The intrusions were emplaced into Cretaceous mudstones and siltstones in the latest Miocene, and both igneous and sedimentary rocks are mineralized. Three types of veins occur: (1) magnetite-sulfide - Au-carbonate veins; (2) base-metal sulfide - Au-carbonate veins; and, economically most important, (3) quartz-roscoelite-Au veins and breccias. Magmatic hornblende and biotite, hydrothermal biotite from alteration selvages associated with the magnetite-sulfide - Au veins, and roscoelite were dated using the laser 40Ar/39Ar step-heating technique. Magmatic biotite yielded a date of 5.99ǂ.11 Ma (2C error; MSWD=3.7), and two samples of magmatic hornblende provided dates of 6.35ǂ.23 Ma (MSWD=1.0) and 6.3ǂ.7 Ma (MSWD=2.6). Hydrothermal biotite provided a date of 5.98ǂ.13 Ma (MSWD=2.7), and analyses of two roscoelite samples yielded dates of 5.92ǂ.09 Ma (MSWD=2.0) and 5.92ǂ.17 Ma (MSWD=2.0). The date of the magmatic biotite is interpreted to represent the age of the intrusions more accurately than the hornblende dates because small amounts of excess 40Ar were present in the hornblende samples. The date for hydrothermal biotite is interpreted to be the age of the alteration associated with the magnetite-sulfide - Au veins (the paragenetically earliest veins), and thus reflects the age of the onset of the mineralizing activity at Porgera. Based on the two dates for roscoelite, the age of the main ore deposition event is interpreted to be 5.92ǂ.08 Ma. The apparent ages for the intrusive and the mineralizing events are thus identical within error, and suggest that the magmatic and ore-forming system at Porgera was short-lived.  相似文献   

17.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   

18.
40Ar/39Ar age spectra and 40Ar/36Ar vs 39Ar/36Ar isochrons were determined by incremental heating for 11 terrestrial rocks and minerals whose geology indicates that they represent essentially undisturbed systems. The samples include muscovite, biotite, hornblende, sanidine, plagioclase, dacite, diabase and basalt and range in age from 40 to 1700 m.y. For each sample, the 40Ar/39Ar ratios, corrected for atmospheric and neutron-generated argon isotopes, are the same for most of the gas fractions released and the age spectra, which show pronounced plateaus, thus are consistent with models previously proposed for undisturbed samples. Plateau ages and isochron ages calculated using plateau age fractions are concordant and appear to be meaningful estimates of the crystallization and cooling ages of these samples. Seemingly anomalous age spectrum points can be attributed entirely to small amounts of previously unrecognized argon loss and to gas fractions that contain too small (less than 2 per cent) a proportion of the 39Ar released to be geologically significant. The use of a quantitative abscissa for age spectrum diagrams is recommended so that the size of each gas fraction is readily apparent. Increments containing less than about 4–5 per cent of the total 39Ar released should be interpreted cautiously. Both the age spectrum and isochron methods of data reduction for incremental heating experiments are worthwhile, as each gives slightly different but complementary information about the sample from the same basic data. Use of a least-squares fit that allows for correlated errors is recommended for 40Ar/36Ar vs 39Ar/36Ar isochrons. The results indicate that the 40Ar/39Ar incremental heating technique can be used to distinguish disturbed from undisturbed rock and mineral systems and will be a valuable geochronological tool in geologically complex terranes.  相似文献   

19.
The Bottle Lake Complex is a composite granitic batholith emplaced into Cambrian to Lower Devonian metasedimentary rocks. Both plutons (Whitney Cove and Passadumkeag River) are very coarse grained hornblende and biotite-bearing granites showing petrographic and geochemical reverse zonation. Two linear whole rock Rb/Sr isochrons on xenolith-free Whitney Cove and Passadumkeag River samples indicate ages of 379±5 m.y. and 381±4 m.y., respectively, in close agreement with published K-Ar ages for biotite from Whitney Cove of 377 m.y. and 379 m.y., and for hornblende 40Ar/39Ar determinations from Passadumkeag River which indicate an age of 378±4 m.y. The initial Sr isotopic ratio for Whitney Cove is 0.70553 and for Passadumkeag River is 0.70414. A whole-rock isochron on a suite of xenoliths from the Passadumkeag River granite indicates a whole rock Rb-Sr age of 496±14 m.y., with an initial Sr isotopic ratio of 0.70262.Two types of zircon exhibiting wide petrographic diversity are evident in variable proportions throughout the batholith. One of these types is preferentially found in a mafic xenolith and it is widely dispersed in the host granites forming discrete grains and probably as inclusions in the other type of zircon. U-Pb analyses of zircons give concordia intercept ages of 399±8 m.y. for Whitney Cove, 388±6 m.y. for Passadumkeag River, 415 m.y. for a mafic xenolith in Passadumkeag River, and 396±32 for combined Whitney Cove and Passadumkeag River granite. The zircons show a spread of up to 20 m.y. in the 207Pb/206Pb ages. Omitting the finest zircon fraction in the Passadumkeag River results in a concordia intercept age of 381±3 m.y., in better agreement with the whole-rock Rb-Sr and mineral K-Ar ages. For the Whitney Cove pluton, exclusion of the finest fraction does not bring the zircon age into agreement with the Rb-Sr data.Age estimates by the whole rock Rb-Sr, mineral K-Ar and Ar-Ar methods suggest that the crystallization age of the plutons is about 380 m.y., slightly younger than the U-Pb zircon intercept ages. A possible reason for this discrepancy is that the zircons contain inherited lead. Thus, zircon U-Pb ages might represent a mixture of newly developed zircon and older inherited zircon, whereas the Rb-Sr whole rock age (380 m.y.) reflects the time of crystallization, and the argon ages result from rapid cooling after emplacement.  相似文献   

20.
LA-ICP-MS U-Pb analyses performed on zircon grains from the Lizio granite yielded an emplacement age of 316 ± 6 Ma. Typical S-C structures show that the Lizio granite was emplaced contemporaneously with dextral shearing along the northern branch of the South Armorican Shear Zone and that it was therefore active at that time. 40Ar/39Ar analyses performed on muscovite grains yielded plateau dates ranging between 311.5 and 308.2 Ma. Muscovite chemistry is typical of primary magmatic muscovite, which precludes a late fluids-induced resetting of the K-Ar isotopic system. 40Ar/39Ar dates thus likely correspond to the cooling ages below the argon closure temperature. Considering the uncertainties on the measured ages, we can propose that either the Lizio granite cooled down quickly in less than a million of years or that it remained in a hot environment for several millions of years after its emplacement. This latter scenario could have been sustained by shear heating during dextral shearing along the northern branch of the South Armorican Shear Zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号