首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
利用Grimm1.108、Thermo RP 1400a、TSP以及CAWS-600等仪器,对2008年4月17日至23日发生在塔克拉玛干沙漠腹地的1次强沙尘暴过程的颗粒物质量浓度进行连续观测,结合天气资料分析得出:①Grimm1.108颗粒物分析仪监测结果表明,日平均浓度出现两个峰值区,主峰值出现在20日,次峰值出现在18日,而小时平均浓度高值区主要集中4月19日至20日,21日中午存在1个峰值区,其他时段浓度相对较低。②强沙尘暴发生时的分钟观测数据表明,随着风速的逐渐增强,沙尘暴强度逐渐增强,不同粒径颗粒物浓度达到最大值,>0.23 μm颗粒物总浓度为39 496.5 μg·m-3,>20.0 μm颗粒物总浓度为5 390.7 μg·m-3,随后浓度逐渐下降。③PM10和TSP的浓度变化同样反映沙尘天气的过程和强度,沙尘暴前期大气中颗粒物浓度远低于强沙尘暴期间,随沙尘天气减弱,颗粒物浓度明显下降。④沙尘天气过程中大气颗粒物浓度变化具有以下规律:晴天<浮尘天气<浮尘、扬沙天气<沙尘暴天气。风速大小直接影响大气中颗粒物浓度,风速越大颗粒物浓度越高。气温、相对湿度和气压是影响沙尘暴强度的重要因素,也间接影响大气中颗粒物浓度的变化。  相似文献   

2.
半干旱区沙尘天气近地层湍流通量及起沙研究   总被引:4,自引:3,他引:1  
周悦  牛生杰  邱玉珺 《中国沙漠》2010,30(5):1194-1199
利用2005年春季朱日和气象站20 m气象塔的观测资料,结合同期的PM10质量浓度资料,分析了半干旱地区不同沙尘天气下近地层湍流通量的变化特征以及PM10质量浓度与起沙之间的关系。结果表明,动量通量在15:00左右达到极大值;感热通量在白天为正值,中午12:00左右达到峰值,而晚上变为负值,并在凌晨达到谷值;由于3月份下垫面湿度大,导致潜热通量经常全天为正值,并在16:00左右达到峰值;PM10质量浓度与摩擦速度的二次方呈正比,临界起沙风速和临界摩擦速度分别为7 m·s-1和0.7 m·s-1。  相似文献   

3.
塔克拉玛干沙漠腹地沙尘气溶胶质量浓度垂直分布特征   总被引:4,自引:0,他引:4  
 利用Grimm 1.108、Thermo RP 1 400 a以及TSP等仪器于2009年1月至2010年2月对塔克拉玛干沙漠腹地塔中不同高度沙尘气溶胶质量浓度进行连续观测,结合天气资料进行分析。结果表明:①80 m高度PM10质量浓度最高,80 m高度PM2.5和PM1.0质量浓度明显低于4 m高度PM10,80 m高度PM1.0质量浓度最低。频繁的沙尘天气是影响不同粒径的沙尘气溶胶浓度含量的主要因素。②夜间至日出,PM质量浓度逐渐降低,最低基本上出现在08:00,随后质量浓度逐渐增大,18:00前后浓度达到最高值,然后又逐步降低。其规律与风速的昼夜变化完全一致。③TSP月平均质量浓度高值主要集中在3—9月,其中4月和5月浓度最高,随后逐渐减低。3—9月也是PM月平均质量浓度的高值区域,4 m高度PM10月平均质量浓度最高发生在5月,其浓度为846.0 μg·m-3。80 m高度PM10浓度远高于PM2.5和PM1.0浓度,PM2.5和PM1.0浓度相差较小。风沙天气对大气中的不同粒径粒子的浓度含量影响较大,风沙天气越多,粗颗粒含量越高,反之则细颗粒越多。④沙尘天气过程中不同粒径沙尘气溶胶质量浓度变化具有晴天<浮尘天气<扬沙天气<沙尘暴天气的规律。各种沙尘天气中,PM10/TSP表现为晴好天气高于浮尘天气,浮尘天气远高于扬沙和沙尘暴天气。⑤沙尘天气过程中,沙尘气溶胶浓度随着粒径的减小,浓度逐渐降低。不同高度、不同粒径的沙尘气溶胶质量浓度每隔3~4 d形成一个峰值区,与每隔3~4 d出现沙尘天气强度增强过程直接相关。  相似文献   

4.
甘肃河西沙尘暴对兰州市空气污染的影响   总被引:27,自引:22,他引:27  
通过对1975-1997年甘肃河西沙尘暴发生日数和兰州市同期颗粒物污染资料进行统计分析,结果表明:两者有很好的正相关关系,其中,70年代后期和1986年前后甘肃河西沙尘暴的多发年份正好与兰州市同期TSP的高污染浓度相对应;在沙尘暴频繁发生的春季,两者的正相关性更显著(相关系数达0.706),其年际变化趋势几乎完全一致。甘肃河西4月份是全年沙尘暴发生日数最多的月份,使得兰州市在该月份的IP浓度也出现全年的次峰值,从而导致IP浓度的年变化成为双峰型(污染严重的12月份出现主峰值),这有别于SO2等其它几种主要污染物均呈单峰型(12月份出现峰值)的年变化特征。春季河西大风沙尘暴发生期间,兰州市的TSP浓度会明显升高,此种天气过程结束后,TSP浓度迅速降低,这表明春季河西地区大风沙尘暴天气是影响兰州市区颗粒物污染浓度日变化的主要因素。总之,诸方面的分析结果均表明,甘肃河西沙尘暴对兰州市大气颗粒物污染所产生的重要影响是不可忽视的。  相似文献   

5.
额济纳地区沙尘气溶胶质量浓度特征初步分析   总被引:1,自引:1,他引:1  
为更好地理解亚洲沙尘源区气溶胶特征,在巴丹吉林沙漠边缘额济纳地区进行了野外观测。通过对沙尘源区之一的额济纳地区沙尘气溶胶的长期临测,获得了其区域代表性沙尘气溶胶理化特征。其TSP年变化以5月最大,9月最小,这与气象条件密切相关。针对典型天气过程的观测结果表明,不同天气条件(背景大气、浮尘、扬沙和沙尘暴)下TSP浓度存在倍数关系和量级的差异,其质量浓度随粒径的分布特征也明显不同。总体上讲,额济纳地区清洁大气中沙尘气溶胶浓度量级为10^2μg/m^3,而浮尘,扬沙及沙尘暴期间沙尘气溶胶质量浓度量级为10^2μg/m^3,超强沙尘暴沙尘质量浓度可达量级为10^4μg/m^4,在不同风向影响下,气溶胶粒径分布呈现不同特征;与沙坡头、敦煌地区相比,具有其独特的区域特性。  相似文献   

6.
利用塔克拉玛干沙漠腹地塔中地区2010年6月10日-2012年3月20日地表臭氧浓度连续自动观测数据,结合相应气象要素资料,对地表臭氧质量浓度的日、周、月、季节变化与不同天气条件下日变化特征进行了分析,同时探讨了影响臭氧浓度变化的主要因素。结果表明:①臭氧浓度日变化具有明显的单峰型日变化规律,夜间变化平缓,白天变化剧烈。09:00前后达到最低值,18:00前后达到最高值,出现时间稍迟于其他城市地区。②臭氧浓度变化具有“周末效应”现象。最高值出现在星期日,最低值出现在星期三;星期一至星期三浓度逐渐降低,星期四又逐渐上升。③最高月平均浓度出现在2010年6月,其浓度为89.6 μg·m-3,最低月平均浓度出现在2012年1月,其浓度为32.0 μg·m-3,2010年6-12月,浓度逐月降低。④春、夏季臭氧浓度较高,秋季和冬季明显低于春季和夏季,与大中型城市变化特征基本一致。⑤臭氧浓度日变化最剧烈的是晴天,其次为小雨天气,阴天日变化平缓。沙尘暴出现前,臭氧小时平均浓度变化较小,沙尘暴开始时浓度下降,且下降速度较快。⑥辐射变化也具有单峰型日变化规律,臭氧浓度变化明显晚于辐射变化,太阳辐射的强弱直接影响光化学反应速度,从而导致臭氧浓度的变化。⑦沙尘天气臭氧日平均浓度高于有间隙小雨天气和晴天。相对湿度、风速、风向、日照日数同时影响近地面臭氧浓度的变化,臭氧污染的发生是多种因素共同作用的结果。  相似文献   

7.
藏北高原安多地区高山草甸土的母质成因及其成土模式   总被引:3,自引:0,他引:3  
基于对藏北高原安多地区高山草甸士的粒度组成及理化性质的研究,探讨了该地区高山草甸土的母质成因及成土模式.分析结果表明,安多地区高山草甸土的粒度分布以20μm为界线呈双峰态分布.主峰峰值粒径在90 μm左右,较细峰呈宽阔细尾分布,峰值粒径在3~6 μm之间.高山草甸土的各粒级组成(<2μm、2~20 μm、20 ~ 300 μm、300 ~2 000 μm)沿剖面变化很小.高山草甸土主要由极细砂组成(50~ 125 μm),平均粒径集中在60~90 μm,明显比黄土高原黄土、川西黄土、成都粘土的粗.高山草甸土粒度分布特征与土壤底部的薄层粗骨性残留古风化层相比存在显著差别,而与该区域河谷沉积、风尘沉积具有相似的特征.总之,各实验数据指示,安多地区高山草甸土具有土层厚、质地均匀、无砾石和层理不发育的特点,与基岩原地风化形成的高山草甸土存在明显差别,其成土母质来源于风尘沉积.该区高山草甸土成土过程符合风尘“加积型”土壤发育模式,而风尘沉积在高山草甸土的形成和发育过程中发挥了重要的作用.  相似文献   

8.
乌鲁木齐大气颗粒物的时空分布规律   总被引:1,自引:0,他引:1       下载免费PDF全文
依据峡口城市乌鲁木齐市2013-2016年6个环境监测站逐时的6类污染物数据,分析大气污染物的时空分布规律。总体来看,乌鲁木齐市以颗粒物污染为主,即PM10、PM2.5污染严重。从季节上来看,乌鲁木齐污染物浓度大多冬季高、夏季低,春秋季次之。春、夏、秋、冬PM2.5的浓度依次为59.8、40.5、67.8、139.6 μg·m-3,而PM10则是148.6、119.7、146.4、209.4 μg·m-3,粗细粒子浓度在春秋季的细微变化凸显在春季沙尘天气的影响。从日变化方面来看,污染物多呈现为双峰型结构。PM10、PM2.5春夏秋3个季节都是在子夜1:00时浓度最高,9:00~10:00时次之,但是冬季日最高值则出现在17:00时左右,次峰值出现在21:00~22:00时。从空间分布来看,颗粒物浓度总体上是中心城区低、四周高的分布格局;从PM2.5浓度占PM10浓度比重分析来看,冬季比重最高,达70%,以城区及城北最为明显,达73%,日变化分布则主要集中在下午至夜间,且冬季比重达71%。  相似文献   

9.
利用Thermo RP 1400a对塔克拉玛干沙漠腹地塔中及周边的哈密与和田进行了长达6 a多的沙尘气溶胶PM10连续观测,结合气象资料,分析了该区域沙尘气溶胶PM10的基本特征及影响因素。其结果是:①在哈密、塔中与和田,浮尘、扬沙日数呈上升趋势,沙尘暴日数变化不明显,沙尘天气出现的频率和强度是影响沙漠地区沙尘气溶胶PM10浓度的主要因素。②PM10质量浓度具有明显的区域分布特征,塔克拉玛干沙漠东缘的哈密最低,其次为沙漠南缘的和田,最高的为沙漠腹地的塔中。③每年3—9月是哈密PM10质量浓度的高值时段;塔中与和田PM10质量浓度高值时段分布在3—8月,平均浓度分别在500~1 000 μg·m-3之间变化。④哈密、塔中与和田PM10季节平均浓度变化特征,春季>夏季>秋季>冬季;PM10平均浓度最高的塔中,春季在1 000 μg·m-3左右变化,夏季在400~900 μg·m-3之间,秋冬两季浓度较低基本上在200~400 μg·m-3之间变化。⑤哈密、塔中与和田沙尘暴季节PM10浓度远高于非沙尘暴季节,沙尘暴季节浓度基本上为非沙尘暴季节浓度的两倍以上;塔中2004年和2008年沙尘暴季节平均浓度分别是非沙尘暴季节的6.2倍和3.6倍。⑥沙尘天气过程中PM10质量浓度变化具有以下规律,晴天<浮尘天气<浮尘、扬沙天气<沙尘暴天气。⑦风速大小直接影响大气中PM10浓度,风速越大浓度越高。气温、相对湿度和气压是影响沙尘暴强度的重要因素,也间接影响大气中PM10浓度的变化。  相似文献   

10.
塔克拉玛干沙漠腹地冬季大气边界层O3廓线分析   总被引:3,自引:2,他引:1  
为了揭示塔克拉玛干沙漠腹地冬季大气边界层O3的浓度变化特征,利用系留气艇于2008年1月18—25日在塔中地区进行了大气边界层O3观测试验,结合相关资料,初步分析了塔中地区冬季边界层O3浓度垂直分布特征及其与温度、湿度的关系。其结果是:①塔中地区臭氧浓度集中分布在10~50 ppb之间,其中试验期间观测到O3最大浓度值56.1 ppb,最小浓度为2.6 ppb,臭氧的最大浓度基本都在40 ppb左右,日平均浓度为34.4 ppb。②大气边界层O3的浓度廓线可分为峰值型、均匀型、增长型3种,其中均匀型所占比重最大。③大气边界层O3浓度与温度、湿度密切相关,逆温及空气中水汽的增加会导致臭氧浓度降低。④大气边界层O3有明显的日变化,越贴近地面日变化越明显,其变化特征与太阳辐射有着密切关系。臭氧浓度夜晚较低,日出后开始增加,午后达到一天中的最大值;随着日落,臭氧浓度开始减小,在清晨达到最小值;臭氧浓度日最大值出现在17:00,最小值出现在08:00。  相似文献   

11.
利用2019年冬季吐鲁番和2020年冬季若羌共14次完整机载探测气溶胶资料,结合宏观天气资料及大气污染数据,研究飞机爬升或降落阶段两地上空气溶胶粒子数浓度、粒子平均粒径的垂直变化规律,分析不同高度的粒子谱分布特征。结果表明:(1) 两地冬季气溶胶粒子数浓度及粒子直径存在明显差异。在无明显天气过程下,若羌气溶胶粒子数浓度均值(5354·cm-3)明显高于吐鲁番(3948·cm-3);粒子平均粒径来看,均值差异不大,但吐鲁番出现大直径粒子(0.16 μ m)数量高于若羌(0.13 μ m)。2019年12月15日大风后最为明显,粒子直径最大值达到0.21 μ m,这与沙尘气溶胶多有关联。从垂直变化情况来看,两地气溶胶粒子数浓度均随高度增加而升高,若羌各层普遍高于吐鲁番,但吐鲁番近地面粒子直径随高度增加有明显下降,若羌整层变化很小。(2) 吐鲁番、若羌气溶胶粒子数浓度和粒子平均粒径受大风、降水等天气过程以及逆温层的影响十分明显。两地高层均主要为输入型气溶胶,低层差异主要是由于吐鲁番地区人为源气溶胶粒子的排放导致的大气环境污染。(3) 吐鲁番、若羌两地粒子谱分布在0.10~3.00 μ m范围内变化趋势大体一致,主要以小粒径为主,谱分布受天气过程影响变化较为明显。(4) 从三模态粒径相似度对比可以得出,无论是吐鲁番还是若羌,在第一模态中数谱分布差异不大,若羌平均相似度为50.330%,略高于吐鲁番46.770%。有明显天气过程时,吐鲁番气溶胶数谱在二、三模态相似度(小于0.020%)急剧下降,而若羌第二模态相似度仍满足置信度95%,但第三模态中变化凸显,相似度不足0.020%。  相似文献   

12.
利用2008年4-6月在张掖气候观象台的黑碳仪观测资料,结合同时期的PM10浓度和气象要素观测结果,分析了河西走廊干旱区的气溶胶吸收系数变化特征。讨论了气溶胶总体特征、日变化特征、局地风对吸收性气溶胶的输送以及沙尘天气下气溶胶吸收系数变化特征,并估算了沙尘气溶胶的质量吸收系数。结果表明,观测期间气溶胶吸收系数(532 nm)的平均值(标准差)为11.9 Mm-1(10.1 Mm-1)。一日内气溶胶吸收系数有明显的日变化,早(08:00)晚(21:00)有两个峰值,且夜间的气溶胶吸收系数值较白天要高。风向的昼夜转换是影响气溶胶吸收系数日变化的一个重要原因。沙尘气溶胶也有一定的吸收性,其质量吸收系数估算为0.016 m2·g-1。  相似文献   

13.
王祎頔  王真祥 《干旱区地理》2018,41(5):1088-1096
对上海市2012-2016年PM2.5质量浓度、气象因素数据资料进行整理统计,通过定性分析与定量计算相结合的方法,揭示近年来上海市PM2.5浓度的变化特征及其污染状况;采用相关性分析,从温度、气压、相对湿度、风向、风速和降水量等方面探讨了PM2.5浓度与气象因素之间的关联性。结果表明:上海市近5 a空气质量主要为优和良,污染天数所占全年比例在减少。PM2.5浓度呈现出夏季低,冬季高的季节特征,而且8月PM2.5浓度最低,处于16~36 μg·m-3;PM2.5的日变化呈现出双峰双谷结构,浓度峰值出现于8~9时和19~20时,且后者浓度更高。气温、气压、相对湿度的阈值分别出现在9.8℃、1 021.6 hPa、83%,最大PM2.5在阈值处出现显著变化;最大PM2.5浓度与累积风速和降水量呈现出对数关系,并且东北风和东南风的累积风速达到350 m·s-1以上时,PM2.5浓度基本减少至35 μg·m-3;降水量越大,PM2.5浓度越低。  相似文献   

14.
以中国风沙高发区河西走廊为研究对象,应用河西走廊敦煌、酒泉、张掖和民勤4站2006—2017年逐日19:00每50 m加密高空资料和07:00规定层、特性层高空资料,分别采用平滑位温法、T-LnP法,统计分析了该区边界层高度的变化特征及其影响因子、边界层高度与风沙强度的关系,得出边界层高度与风沙强度成正比。进一步从地面风速、相对湿度、地气温差日变化得到春季午后风沙天气多发和强发的主要成因,得到了沙尘暴不同环流形势下的边界层高度持征,以及高空风速≥15 m·s-1的最低高度与风沙强度的关系,从而为风沙天气预报提供技术帮助。结果表明:河西走廊年均边界层高度1 700~2 200 m,4—6月较高,在3 000 m以上,敦煌4—5月在3 500 m以上。边界层高度与最高气温、最低气温和0 cm最高地温较密切,与最高气温、极大风速成正比。边界层高度随着风沙强度的增强而增高,4月强沙尘暴和大风的边界层高度均大于3 100 m。春季风速随着风沙强度的增强而增大,最大风速集中时间在12:00—18:00,春季13:00—14:00风速最大、相对湿度最小、地气温差最大,因而也是风沙天气出现最多和强度最强的时段。沙尘暴持续时间越短,边界层越高,4—6月下午的沙尘暴较高,为2 800~3 100 m。沙尘暴不同环流形势的边界层高度中西风槽型整体较低;平直西风型4、6月和8月较高,均达3 100 m以上,8月为3 580 m;而西北气流型高于西风槽型,5—6月大于3 200 m。不同风沙强度高空风速≥15 m·s-1的最低高度,冬春季较低,夏秋季高;浮尘较高为4 884 m,大风伴沙尘最低为2 471 m,大风沙尘暴07:00较19:00高600 m左右,明显较边界层高1 000~2 000 m。  相似文献   

15.
利用乌鲁木齐市5座100 m气象塔10层风速观测资料,分析了乌鲁木齐市城区和郊区近地层风速季节变化和日变化特征。结果表明:(1)乌鲁木齐市风速最大值出现在14:00-16:00,最小值多在夜间或上午。冬季风速最小、夏季最大;冬季风速始终处于较为稳定、有微小波动的低值区;夏季风速表现出一定的变化趋势。(2)夏季风速在一年里波动最大,随地势降低波动减小,南郊最大(1.5~6.4 m·s-1),北郊最小(1.3~4.6 m·s-1);秋季和春季风速波动次之;冬季风速波动最小,南郊最大(1.3~4.6 m·s-1),北郊最小(0.7~2 m·s-1)。(3)近地层100 m内城区和北郊风速随高度变化较小,冬季基本为1~2 m·s-1,而南郊风速随高度增加变化幅度最大,从1 m·s-1增加到4 m·s-1以上;愈近地面,城区与郊区风速相差愈大,近地面城区平均风速明显低于郊区,春季、夏季、秋季和冬季分别低5%~32%、8%~30%、15%~37%、14%~48%。(4)近地层风速廓线在近中性层结时一般符合对数风速廓线模式,对数律显著性不强的时段主要在正午前后。  相似文献   

16.
The spatial trends of dustfall of different sizes over northern China during April and May 2001,and March 2002,and their influencing factors,were analyzed.We divided the dustfall into seven grades based on particle size.Total dustfall and dustfall for each grade were highest in desert regions then in regions undergoing desertification,and the total dustfall,dustfall 100 μm and dustfall 250 μm were higher in western agricultural regions closer to desert areas than in eastern agricultural regions.The spatial trends in dustfall 300 μm in diameter were most strongly correlated with dust events,and the content of coarse particles increased with increasing severity of dust events.Because the spatial trend for dust events appears to be controlled by geomorphic conditions,vegetation coverage,soil moisture,and the distance from dust source,dustfall 300 μm in diameter appears to have the same controlling factors as dust events,but the control decreases with increasing particle size.Wind,the driving force for dust emissions,also influenced the spatial trends in dustfall 200 μm in diameter,and especially for dustfall 50 to 100 μm in diameter.Although dustfall 300 μm in diameter and precipitation were not strongly spatially correlated,there is some evidence that high precipitation decreased deposition by restraining blowing sand.The coarser the dustfall,the weaker the correlation with wind speed;however,transport of larger particles still occurs,and further research will be required to test the possibility that this dust is entrained mainly by the small-scale dust devils that are commonly observed in the study area.  相似文献   

17.
Ambient air particulate matter concentrations were measured at three locations in semi-arid SE Spain during 2005-2007. Sites representative of urban and rural background levels, as well as one representative of a rural area influenced by local mineral industry, were selected.The contribution of coarse particle resuspension (mainly crustal) in the area was assessed by studying the influence of wind speed, human activity and African dust outbreaks on the daily mass concentration and the aerosol number size distribution. Wind and soil characteristics in the area, typical of many semi-arid environments, are not conducive to major dust entrainment events.Twenty-four hour PM10 mass concentrations, subjected to air quality regulation, present a net decrease as wind speeds increase at the three study sites. Size-resolved measurements in the diameter range 0.25-32 μm with higher temporal resolution, however, show a net increase in the coarse particle concentrations with increasing wind speed, while the smallest particles are diluted. Although suspension is found to occur at all wind speeds, threshold values for an increase in particulate concentration can be identified and show some dependence on the particle size.African dust outbreaks, human activity and wind speed are (in this order) the main contributors for increasing particle sizes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号