首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hydrolysis of silicic acid, Si(OH)4, was studied in a simplified seawater medium (0.6 M Na(Cl)) at 25°C. The measurements were performed as potentiometric titrations (hydrogen electrode) in which OH was generated coulometrically. The total concentration of Si(OH)4, B, and log[H+] were varied within the limits 0.00075 B 0.008 M and 2.5 -log[H+] 11.7, respectively. Within these ranges the formation of SiO(OH)3 and SiO2(OH)22− with formation constants log β−11(Si(OH)4 SiO(OH)3 + H+) = −9.472 ±0.002 and log β−21(Si(OH)4 SiO2(OH)22− + 2H+) = −22.07 ± 0.01 was established. With B > 0.003 M polysilicate complexes are formed, however, with -log[H+] 10.7 their formation does not significantly affect the evaluated formation constants. Data were analyzed with the least squares computer program LETAGROPVRID.  相似文献   

2.
We present new quantitative data on the sorting of sediments on a sandy seabed under standing waves. Starting from a flat bed composed of a homogeneous mixture of a coarse and a fine sand with mean diameters 0.11 and 0.21 mm, we observed simultaneous ripple and sand bar formation and sand sorting on the seabed. Over days of wave action, sand bars formed with crests beneath the surface wave nodes and flat plateaus flanked by mounds beneath the antinodes. Bar crests were composed of sand coarser on average than 0.21 mm, while the flat plateaus were covered by sand finer on average than 0.11 mm. Comparison with two experiments involving sand beds of more homogeneous size distributions shows that the mounds are characteristic of the motion of fine suspensions.  相似文献   

3.
Total mass flux, size distribution of sediment particles and some chemical components such as total carbon (TC), total nitrogen (TN) and calcium carbonate (CaCO3) were monitored monthly using a multi-cup sediment traps at seven coral reef sites (6 reef flat and 1 reef slope) of the Marine Protected Areas around Ishigaki, Kohama, Kuroshima and Iriomote Islands in the southern Ryukyus, Japan from September 2000 to September 2001. The size distribution of trapped sediments revealed mostly uni-modal fine sand to mud in the reef flat and gravelly to coarse sand in the reef slope. The total mass flux ranged between 0.54 to 872 gm−2d−1, and showed a pronounced seasonality (high in summer-autumn and low in spring) at each site, which was consistent with the rainfall and typhoon regime. Exceptionally high values were observed on the reef slope (Iriomote) in February–March 2001 (1533 gm−2d−1) owing to a large amount of bottom sediment re-suspension. On the reef flat (Todoroki South and North; Ishigaki), values obtained in July–August 2001 (872 gm−2d−1) and August–September 2001 (800 gm− 2d−1) indicate the high terrestrial discharge from Todoroki River. Trapped sediment particles consist of CaCO3 (1.2–27.1%) and a non-carbonate fraction (98.8–72.9%), which contains total carbon (4.9–26%), carbonate carbon (CO2-C) (0.2–3.1%) and non-carbonate carbon (NC-C) (7.9–25.6%). Total nitrogen content was in the range 0.02–0.48%. TN is contained mainly in the carbonate fraction and NC-C may be contained in the non-carbonate fraction. The low TN/OC ratio of the trapped sediments suggests that they were mostly of terrestrial origin and that both fractions migrated. The high total mass flux derived from Todoroki River exceeded the threshold at which a lethal effect on coral community is caused. The results stress the importance of conducting seasonal studies of sedimentation over more than one year and at more than one location in south Japan coral reef ecosystems to gain an understanding of the processes controlling the total mass fluxes and their nutrients content, also to develop an awareness of how to prevent the damage of coral reef ecosystems and, if it does occur, to allow mitigation measures to be undertaken.  相似文献   

4.
The direct photooxidation of coloured dissolved organic matter (CDOM) to dissolved inorganic carbon (DIC) may provide a significant sink for organic carbon in the ocean. To calculate the rate of this reaction on a global scale, it is essential to know its quantum yield, or photochemical efficiency. We have determined quantum yield spectra, φ(λ), (moles DIC/mole photons absorbed) for 14 samples of seawater from environments ranging from a turbid, eutrophic bay to the Gulf Stream. The spectra vary among locations, but can be represented quite well by three pooled spectra for zones defined by location and salinity: inshore φ(λ)=e−(6.66+0.0285(λ−290)); coastal φ(λ)=e−(6.36+0.0140(λ−290)); and open ocean φ(λ)=e−(5.53+0.00914(λ−290)). Production efficiency increases offshore, which suggests that the most highly absorbing and quickly faded terrestrial chromophores are not those directly responsible for DIC photoproduction.  相似文献   

5.
Based on similarity analyses, a series of experiments have been conducted with a newly established hydro-elastic facility to investigate the transverse vortex-induced vibrations (VIVs) of a submarine pipeline near an erodible sandy seabed under the influence of ocean currents. Typical characteristics of coupling processes between pipe vibration and soil scour in the currents have been summarized for Case I: pipe is laid above seabed and Case II: pipe is partially embedded in seabed on the basis of the experimental observations. Pipe vibration and the corresponding local scour are usually two coupled physical processes leading to an equilibrium state. The influence of initial gap-to-diameter ratio (e0/D) on the interaction between pipe vibration and local scour has been studied. Experimental results show that the critical values of Vr for the initiation of VIVs of the pipe near an erodible sand bed get bigger with decreasing initial gap-to-diameter ratio within the examined range of e0/D (−0.25<e0/D<0.75). The comparison of the pipe vibrations near an erodible soil with those near a rigid boundary and under wall-free conditions indicates that the vibration amplitudes of the pipe near an erodible sand bed are close to the curve fit under wall-free conditions; nevertheless, for the same stability parameter, the maximum amplitudes for the VIV coupled with local scour increase with the increase of initial gap-to-diameter ratio.  相似文献   

6.
A mussel bed was sampled monthly at four intertidal levels (mid: 2.15; mid-low: 1.65; low: 1.2 and sublittoral fringe: 0.7 m from chart datum) from July 1979 to July 1980 at Pointe-Mitis in the St. Lawrence estuary. A strong spring reduction of abundance (both in density and biomass) suggested that the mussel bed was being degraded. Community perturbation was attributed to ice scour. Partial reestablishment of the mussel bed (all age classes) was observed during late spring and early summer and occurred mainly at the mid-low intertidal level. Changes in the size structure of the mussel bed with level suggest that the annual windstorm regime may be an important factor in the dynamics of the bed. Mean body mass decreased at the three lower shore levels but increased at the highest shore level. Overall, net secondary production (assessed by the increment-summation method) was negative due to the decrease in mean body mass. Annual production rates (kJ m−2 y−1) from the mid intertidal level to the sublittoral fringe were 1130, − 4072, − 4013 and − 3258, respectively, while P/B ratios (y−1) were 0.17, − 0.69, − 0.50 and − 0.45. The calculated production and the productivity (potential production) are compared and used to provide insight into the condition of the mussel bed.  相似文献   

7.
To characterize more fully the nature of the fluorophores present in the dissolved organic matter found in seawater, steady state and time-resolved measurements of the luminescence quenching of a number of samples of marine dissolved organic matter with known quenchers, such as iodide, acrylamide and methyl viologen (MV) (1,1′-dimethyl-4,4′-bipyridinium), were compared. Quenching characteristics of these systems were analyzed using Stern-Volmer plots for both intensity and lifetime measurements. The bimolecular quenching constants, κq, for these quenchers were found to decrease in the order MV2+q 1010M−1s−1) > Iq 2 × 109 M−1 s−1) >CH2CHCONH2q 2 × 108 M−1 s−1) for the samples measured. The results also show that different samples are quenched to differing extents by the quenchers studied, that ionic strength alters the quenching constants, and that both static and diffusional quenching mechanisms may operate.Such studies are appropriate to the quantification of the reactivity of the singlet states of the chromophores found within marine dissolved organic matter. Although excess energy of the singlet state may be readily transferred to another chemical species, the combination of competing physical deactivation paths and the low concentrations of efficient quenches in the oceans serves to lessen the direct chemical impact of this process.  相似文献   

8.
Experiments on sand mounds in oscillatory flow, undertaken in controlled, large-scale laboratory conditions, have produced well-defined data sets for model comparison. Three bathymetries with different levels of submergence, including a surface-piercing case, were tested. The maximum slope was about 1:5.5. Sediment transport is due to bed load with ripple formation. The principal time-dependent bulk parameters are the vertical distance of the centre of gravity above the base and the volume of the mound. A semi-implicit finite-volume depth-averaged hydrodynamic model is used to drive morphodynamics, using van Rijn's sediment flux model generalized to take account of bed slope, and some justification is given for depth-averaged modeling in these conditions. Starting the model runs with the conditions at the end of the first cycle avoided initial atypical physical behaviour. In general good predictions were obtained with an angle of repose reduced from the standard value of about 30° for stationary beds to 15°. For these situations, morphodynamics was largely unaffected by a hydrodynamic roughness height in the range 2.5D50 to 51D50, with larger values accounting for ripple roughness. The reduced angle of repose may be physically expected with mobile beds but this specific value is only expected to be suited to this form of bed motion. In one case an exaggerated ripple formed near the top of the mound reducing agreement with experiment. For the submerged case with normal ripple structure excellent predictions were obtained. For the initially surface-piercing mound, the time of submergence was better predicted with a 30° angle of repose, presumably due to the prominent influence of the near stationary bed near the wet/dry interface, although long term predictions were better predicted with 15°. The occurrence of vortex shedding in the first cycle modeled was in agreement with experimental observation.  相似文献   

9.
A three-dimensional hydrodynamic model has been developed to simulate water mass circulation in estuarine systems. This model is based on the primitive equation in Cartesian coordinates with a terrain-following structure, coupled with a Mellor–Yamada 2.5 turbulence scheme. A fractional-step method is applied and the subset of equations is solved with finite volume and finite element methods. A dry–wet process simulates the presence of the tidal flat at low water. River inputs are introduced using a point-source method. The model was applied to a partially mixed, macrotidal, temperate estuary: Southampton Water, UK. The model is validated by comparisons with sea surface elevation, ADCP measurements and salinity data collected in 2001. The mean spring range 2(M2 + S2) and the mean neap range 2(M2 − S2) are modelled with an error relative to observation of 12 and 16%, respectively. The unique tidal regime of the system with the presence of the ‘young flood stand’ corresponding to the slackening conditions occurring at mid flood and ‘double high water’ corresponding to an extension of the slackening conditions at high tide is accurately reproduced in the model. The dynamics of the modelled mean surface and bottom velocity closely match the ADCP measurements during neap tides (rms of the difference is 0.09 and 0.01 m s−1 at the bottom and at the surface, respectively), whereas at spring the difference is greater (rms of the difference is 0.25 and 0.20 m s−1 at bottom and surface, respectively). The spatial and temporal variation of the degree of stratification as indicated by salinity distributions compares well with observations.  相似文献   

10.
In situ measurements of ammonium and carbon dioxide fluxes were performed using benthic chambers at the end of spring and the end of summer in two soft-bottom Abra alba communities of the western English Channel (North Brittany): the muddy sand community (5 m, about 10% of surface irradiance) and the fine-sand community (19 m, about 1% of surface irradiance). High rates of ammonium regeneration were measured in the two communities at the end of summer (296.03±40.07 and 201.7±62.74 μmolN m−2 h−1, respectively) as well as high respiration rates (2.60±0.94 and 2.23±0.59 mmolC m−2 h−1, respectively). Significant benthic gross primary production (up to 6.11 mmolC m−2 h−1) was measured in the muddy sand community but no benthic primary production was measured in the fine-sand community. It suggests that microphytobenthic production values used in simulations previously published for these two communities were overestimated while values of community respiration were underestimated. The study confirms that this benthic system is heterotrophic and strengthens the idea that an important pelagic-benthic coupling is required for the functioning in such coastal ecosystems.  相似文献   

11.
Alkenone unsaturation indices (UK37 and UK′37) have long been used as proxies for surface water temperature in the open ocean. Recent studies have suggested that in other marine environments, variables other than temperature may affect both the production of alkenones and the values of the indices. Here, we present the results of a reconnaissance field study in which alkenones were extracted from particulate matter filtered from the water column in Chesapeake Bay during 2000 and 2001. A multivariate analysis shows a strong positive correlation between UK37 (and UK′37) values and temperature, and a significant negative correlation between UK37 (and UK′37) values and nitrate concentrations. However, temperature and nitrate concentrations also co-vary significantly. The temperature vs. UK37 relationships (UK37=0.018 (T)−0.162, R2=0.84, UK′37=0.013 (T)−0.04, R2=0.80) have lower slopes than the open-ocean equations of Prahl et al. [1988. Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions. Geochimica et Cosmochimica Acta 52, 2303–2310] and Müller et al. [1998. Calibration of the alkenone paleotemperature index UK′37 based on core-tops from the eastern South Atlantic and the global ocean (60°N–60°S). Geochimica et Cosmochimica Acta 62, 1757–1772], but are similar to the relationships found in controlled studies with elevated nutrient levels and higher nitrate:phosphate (N:P) ratios. This implies that high nutrient levels in Chesapeake Bay have either lowered the UK37 vs. temperature slope, or nutrient levels are the main controller of the UK37 index. In addition, particularly high abundances (>5% of total C37 alkenones) of the tetra-unsaturated ketone, C37:4, were found when water temperatures reached 25 °C or higher, thus posing further questions about the controls on alkenone production as well as the biochemical roles of alkenones.  相似文献   

12.
We analysed the alkenone unsaturation ratio (UK′37) in 87 surface sediment samples from the western South Atlantic (5°N–50°S) in order to evaluate its applicability as a paleotemperature tool for this part of the ocean. The measured UK′37 ratios were converted into temperature using the global core-top calibration of Müller et al. (1998) and compared with annual mean atlas sea-surface temperatures (SSTs) of overlying surface waters. The results reveal a close correspondence (<1.5°C) between atlas and alkenone temperatures for the Western Tropical Atlantic and the Brazil Current region north of 32°S, but deviating low alkenone temperatures by −2° to −6°C are found in the regions of the Brazil–Malvinas Confluence (35–39°S) and the Malvinas Current (41–48°S). From the oceanographic evidence these low UK′37 values cannot be explained by preferential alkenone production below the mixed layer or during the cold season. Higher nutrient availability and algal growth rates are also unlikely causes. Instead, our results imply that lateral displacement of suspended particles and sediments, caused by strong surface and bottom currents, benthic storms, and downslope processes is responsible for the deviating UK′37 temperatures. In this way, particles and sediments carrying a cold water UK′37 signal of coastal or southern origin are transported northward and offshore into areas with warmer surface waters. In the northern Argentine Basin the depth between displaced and unaffected sediments appears to coincide with the boundary between the northward flowing Lower Circumpolar Deep Water (LCDW) and the southward flowing North Atlantic Deep Water (NADW) at about 4000 m.  相似文献   

13.
Suspended particulate matter (SPM) concentration and properties (particle size and settling velocity), water column and boundary layer dynamics were measured during a 60-d period at a site in 110 m water depth in the northern North Sea. The site was in stratified waters and measurements were made during September–November as the seasonal thermocline was progressively weakening. SPM concentration was low, c. 1 mg dm−3 in the surface mixed layer and maximum values of 2 mg dm−3 in the bottom mixed layer. The bottom layer was characterised by larger mean particle size. SPM signals in the two layers were decoupled at the start of the period, when the thermocline was strong, but were increasingly coupled as the thermocline progressively weakened. A spring-neap cycle of resuspension and deposition of SPM was observed in the bottom mixed layer. Bed shear stresses were too small to entrain the bottom sediment (a fine sand) but were competent to resuspend benthic fluff: threshold bed shear stress and threshold current velocity at 10 mab were 0.02–0.03 Pa. and 0.18 m s−1, respectively. Maximum SPM concentration in the bottom layer preceded peak spring tide currents by 3 d. Simulation of fluff resupension by the PROWQM model confirms that this was due to a finite supply of benthic fluff: the fluff layer was stripped from the seabed so that fluff supply was zero by the time of peak spring flow. SPM was redeposited over neap tides. Fluff resuspension must have been enhanced by intermittent inertial currents in the bottom layer but unequivocal evidence for this was not seen. There was some resuspension due to wave activity. Settling velocity spectra were unimodal or bimodal with modal values of 2×10−4–2×10−3 mm s−1 (long-term suspension component) and 0.2–5.7 mm s−1 (resuspension component). The slowest settling particles remained in suspension at peak spring tides after the fluff layer had been exhausted. There was evidence of particle disaggregation during springs and aggregation during neaps.  相似文献   

14.
We determined the range of the tidal variations in nutrient flux across the sediment–water interface and elucidated mechanisms of the flux variation in two estuarine intertidal flats (one sand, one mud) in northeastern Japan. Nutrient flux was measured using in situ light and dark chambers, which were incubated for 2 h, 2–6 times per day. Results showed that nutrient concentration in overlying water varied by tide and was also affected by sewage-treated water inflow. The nutrient fluxes responded quickly to the tidal variation in overlying water chemistry and the range of the variation in flux was as large as the seasonal-scale variation reported in previous studies. In the sand flat, salinity increase likely enhanced benthos respiration and led to increases in both O2 consumption and PO43− regeneration under low illumination, while benthic microalgae were likely to actively generate O2, uptake PO43− and suppress PO43− release under high illumination (>900 μmol photons m−2 s−1). Also in the mud flat, PO43− flux was related with O2 flux, although the range of temporal variation in PO43− flux was small. In both the flats, NH4+ flux was always governed by NH4+ concentration in the overlying water; either an increase in NH4+ uptake or a decrease in NH4+ release was observed as the NH4+ concentration rose due to inflow of river water or input of sewage-treated water. Although NO3 tended to be released in both tidal flats when low NO3 concentration seawater dominated, their relationship was likely to be weakened under conditions of low oxygen consumption and suppressed denitrification. It is likely that tidal variation in nutrient flux is governed more by the nutrient concentration than other factors, such as benthic biological processes, particularly in the case where nutrient concentration in the overlying water is relatively high and with wide amplitude.  相似文献   

15.
Biologically dominated lower Chesapeake Bay and the physically dominated York River subestuary are contrasted in terms of the dynamics of sediment mixing, strata formation and sea-bed particle residence times. Two lower bay sites were examined; both are located within the bay stem plains and are characterized by muddy sand and an abundance of large, deep-dwelling organisms. X-radiographs indicate extensive biological reworking of sediments, with no long-term preservation of physical stratification.210Pb profiles reveal low sediment accumulation rates at both lower bay sites (<0·1 cm year−1), but significant differences in biological mixing depths (25vs40 cm) and biodiffusivity (>80vs6–30 cm2year−1). In contrast, the York River site, located within a partially-filled palaeochannel, is predominantly mud with a depauperate benthic community dominated by small, short-lived, shallow-dwelling organisms. Although210Pb accumulation rates at the York River site (<0·2 cm year−1) are similar to those measured in the lower bay, there is little bioturbation. In addition, transient bed forms at the York River site form laterally persistent, linear ridges and furrows sub-parallel to the channel, spaced 10–20 m apart. These observations, coupled with evidence of episodic erosion and deposition from radioisotope and porosity profiles, and X-radiographs, suggest that the upper 60–120 cm of the sea-bed are dominated by physical mixing. Deep mixing and low accumulation rates result in long residence times of particles in the mixed upper portion of the sea-bed (102year) at both locations, despite different mixing controls [i.e. biological (diffusive)vsphysical (advective)].  相似文献   

16.
A model is presented for flux evaluation of trace metals in situ. For the practically feasible simplified model, mere estimation of metals in various dissolved states (e.g. Cr(III) and Cr(VI)) and in particulate phase, in a single vertical profile at least, together with temperature, salinity, O2, titration alkalinity (TA), Ca2+, NO3, HPO42− and H4SiO4 parameters enable evaluation of the amount of metal removed in situ, to a first approximation. From the evaluated net metal removed (MR), estimation could be made for removal constants, i.e. removal times (t), residence times (τ) and removal rate constants (ψ), not only for the average ocean but also for the oxygen-minimum zone. Besides, MR can be used to calculate t, τ and ψ of various species of the metal concerned, that are not yet available. The present model evaluates t, τ and ψ for total chromium from a single station, which are consistent with the reported values, and shows that chromium is removed with fast-settling particulate matter. This study also reveals that t, τ and ψ values of 0.001 years 7 years and 0.150 y−1, respectively, for Cr(III) in the oxygen-minimum zone and 0.006 y, 211 y and 0.005 y−1 in the marine environment, respectively.  相似文献   

17.
Extensive artificial waterways have replaced natural wetlands and created new estuarine habitats on the southern Queensland coast, Australia. Economically important fish species found in adjacent natural wetlands of mangrove, saltmarsh and seagrass also occur in the artificial waterways. Stable isotope analyses (δ13C, δ15N) were used to test whether the relative importance of basal sources of energy varied for foodwebs found in artificial (canals and tidal lakes) and natural waterways. None of the fish species differed in their isotope values between artificial waterways. In contrast, isotopic signatures of snub-nosed garfish (Arrhamphus sclerolepis; Hemiramphidae) varied greatly between natural and artificial waterways, having highly enriched δ13C values (−10.5‰) in natural wetlands, demonstrating reliance on seagrass (−11.4‰), and significantly less enriched values (−19.0‰) in artificial waterways, consistent with either local algal sources (−19.8 to −20.4‰) or a mixture of seagrass and other less enriched autotrophs from adjacent natural wetlands. Isotopic signatures of sand whiting (Sillago ciliata; Sillaginidae) were also significantly more enriched in natural (−18.2‰) than artificial (−21.0‰) habitats, but means were not far enough apart to distinguish between different sources of nutrition. δ13C values of yellowfin bream (Acanthopagrus australis; Sparidae) did not differ between artificial and natural habitats (about −20‰ in both). δ15N values of fish varied among habitats only for A. sclerolepis, which in artificial waterways had values enriched by 2‰ over those in natural waterways. This was consistent with a shift from seagrass (relatively depleted δ15N) as a source in natural habitat to algal sources (relatively enriched δ15N) in artificial habitats. This study provides some of the first evidence that at least some fish species rely on different autotrophs in artificial waterways than in adjacent natural wetlands.  相似文献   

18.
A suite of selected Tertiary mudstones was studied to improve the knowledge about microstructure and related transport processes in mudstones. Samples were investigated by mercury- and Wood's metal injection, SEM, XRD, and grain size analysis. Wood's metal injection has the advantage of visualising the ‘frozen’ injection process. The smallest pore casts observed were down to 40 nm in diameter, while the largest, bottle-shaped pores were up to 5 μm in diameter. Bottle-shaped pores occurred in all the samples, usually around silt or sand grains. One sample, which had a porosity of 28.5% according to mercury injection data, had not been impregnated by the molten alloy. We suggest this to reflect a strong deformation of the clay fabric by the high pressure without intrusion into the matrix. This raises questions about the reliability of mercury injection data for very fine-grained, highly porous sediments.After excluding these very fine-grained samples and one very calcareous sample regressions were found which relate porosity (φ), clay content (C), and sand content (S) to capillary displacement pressure (Pd(Hg)): Pd(Hg)=−25.05+0.63 C+0.29S (R2=0.92), and Pd(Hg)=−10.24+0.47 C−0.15φ (R2=0.88).  相似文献   

19.
The effect of a sudden increase in salinity from 10 to 37 in porewater concentration and the benthic fluxes of ammonium, calcium and dissolved inorganic carbon were studied in sediments of a small coastal lagoon, the Albufera d'Es Grau (Minorca Island, Spain). The temporal effects of the changes in salinity were examined over 17 days using a single diffusion-reaction model and a mass-balance approach. After the salinity change, NH4+-flux to the water and Ca-flux toward sediments increased (NH4+-flux: 5000–3000 μmol m−2 d−1 in seawater and 600/250 μmol m−2 d−1 in brackish water; Ca-flux: −40/−76 meq m−2 d−1 at S=37 and −13/−10 meq m−2 d−1 at S=10); however, later NH4+-flux decreased in seawater, reaching values lower than in brackish water. In contrast, Ca-flux presented similar values in both conditions. The fluxes of dissolved inorganic carbon, which were constant at S=10 (55/45 mmol m−2 d−1), increased during the experiment at S=37 (from 30 mmol m−2 d−1 immediately after salinity increase to 60 mmol m−2 d−1 after 17 days).In brackish conditions, NH4+ and Ca2+ fluxes were consistent with a single diffusion-reaction model that assumes a zero-order reaction for NH4+ production and a first-order reaction for Ca2+ production. In seawater, this model explained the Ca-flux observed, but did not account for the high initial flux of NH4+.The mass balance for 17 days indicated a higher retention of NH4+ in porewater in the littoral station in seawater conditions (9.5 mmol m−2 at S=37 and 1.6 mmol m−2 at S=10) and a significant reduction in the water consumption at both sites (5 mmol m−2 at S=37; 35/23 mmol m−2 at S=10). In contrast, accumulation of dissolved inorganic carbon in porewater was lower in seawater incubations (−10/−1 meq m−2 at S=37; 50/90 meq m−2 at S=10) and was linked to a higher efflux of CO2 to the atmosphere, because of calcium carbonate precipitation in water (675/500 meq m−2). These results indicate that increased salinity in shallow coastal waters could play a major role in the global carbon cycle.  相似文献   

20.
Seagrass beds occur in various morphological forms, ranging from small patches to continuous meadows. The endemic Mediterranean seagrass Posidonia oceanica forms dense and extensive stands that occur in several different morphotypes, including reticulate (seagrass interspersed with a different habitat type, such as bare sand) and continuous beds. This study, undertaken in the Maltese Islands, examined whether reticulate and continuous P. oceanica beds, located adjacent to each other and at similar depths, had different within-bed architectural characteristics. Five commonly used architectural measures (shoot density, number of leaves per shoot, mean leaf length, mean leaf width and shoot biomass) were measured from P. oceanica shoots collected from the two bed types at three different spatial scales: (1) tens of metres (‘small’ scale); (2) hundreds of metres (‘medium’ scale); and (3) kilometres (‘large’ scale). Results of 2-factor ANOVA (factor 1=bed type; factor 2=sampling locality) carried out at the three spatial scales indicated significant differences between the two bed types in shoot density (P<0.01) and leaf length (P<0.05) at the small scale, and in leaf number (P<0.05) at the large scale. Significant interactions were also apparent for shoot density (at the large scale) and for shoot biomass (at the medium scale). However, the results obtained did not indicate consistent architectural differences between the two P. oceanica bed types over the spatial scales considered. Spatial variations in within-bed architectural characteristics observed were therefore thought to be attributable mainly to the influence of local environmental factors. The findings are discussed with reference to the conservation and management of P. oceanica habitat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号