首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The non-linear stability of the triangular libration points of the restricted three-body problem is studied under the presence of third and fourth order resonance's, when the more massive primary is an oblate spheroid. In this study Markeev's theorem are utilised with the help of KAM theorem. It is found that the stability of the triangular libration points are unstable in the third order resonance case and stable in the fourth order resonance case, for all the values of oblateness factor A1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
This paper investigates the triangular libration points in the photogravitational restricted three-body problem of variable mass, in which both the attracting bodies are radiating as well and the infinitesimal body vary its mass with time according to Jeans’ law. Firstly, applying the space-time transformation of Meshcherskii in the special case when q=1/2, k=0, n=1, the differential equations of motion of the problem are given. Secondly, in analogy to corresponding problem with constant mass, the positions of analogous triangular libration points are obtained, and the fact that these triangular libration points cease to be classical ones when α≠0, but turn to classical L 4 and L 5 naturally when α=0 is pointed out. Lastly, introducing the space-time inverse transformation of Meshcherskii, the linear stability of triangular libration points is tested when α>0. It is seen that the motion around the triangular libration points become unstable in general when the problem with constant mass evolves into the problem with decreasing mass.  相似文献   

3.
This paper deals with the existence and stability of the non-collinear libration points in the restricted three-body problem when both the primaries are ellipsoid with equal mass and identical in shape. We have determined the equations of motion of the infinitesimal mass which involves elliptic integrals and then we have investigated the existence and stability of the non-collinear libration points. This is observed that the non-collinear libration points exist only in the interval 52°<φ<90° and form an isosceles triangle with the primaries. Further we observed that the non collinear libration points are unstable in 52°<φ<90°.  相似文献   

4.
The stability of collinear and triangular libration points is investigated in the photogravitational elliptic restricted three-body problem, in which two primary bodies emit light energy simultaneously. The conditions of stability of the collinear and triangular libration points are obtained based on a linearized set of equations of perturbed motion for various values of the eccentricity of the Keplerian orbits and the mass ratio of the primary bodies. The maximal numerical value is defined for the eccentricity at which a stable libration point can still exist. It is demonstrated how the parametric resonance causes an instability of collinear and triangular libration points; the evolution of the origination of the instability zones is traced. The minimal eccentricity value is found at which zones of instability of triangular libration points arise.  相似文献   

5.
In a recent paper, published in Astrophys. Space Sci. (337:107, 2012) (hereafter paper ZZX) and entitled “On the triangular libration points in photogravitational restricted three-body problem with variable mass”, the authors study the location and stability of the generalized Lagrange libration points L 4 and L 5. However their study is flawed in two aspects. First they fail to write correctly the equations of motion of the variable mass problem. Second they attribute a variable mass to the third body of the restricted three-body model, a fact that is not compatible with the assumptions used in deriving the mathematical formulation of this model.  相似文献   

6.
In this paper the effect of solar radiation pressure on the location and stability of the five Lagrangian points is studied, within the frame of elliptic restricted three-body problem, where the primaries are the Sun and Jupiter acting on a particle of negligible mass. We found that the radiation pressure plays the rule of slightly reducing the effective mass of the Sun and changes the location of the Lagrangian points. New formulas for the location of the collinear libration points were derived. For large values of the force ratio β, we found that at β=0.12, the collinear point L3 is stable and some families of periodic orbits can be drawn around it.  相似文献   

7.
This paper deals with the existence and the stability of the libration points in the restricted three-body problem when the smaller primary is an ellipsoid. We have determined the equations of motion of the infinitesimal mass which involves elliptic integrals and then we have investigated the collinear and non collinear libration points and their stability. This is observed that there exist five collinear libration points and the non collinear libration points are lying on the arc of the unit circle whose centre is the bigger primary. Further observed that the libration points either collinear or non-collinear all are unstable.  相似文献   

8.
In this paper, we study the existence of libration points and their linear stability when the three participating bodies are axisymmetric and the primaries are radiating, we found that the collinear points remain unstable, it is further seen that the triangular points are stable for 0<μ<μ c , and unstable for where , it is also observed that for these points the range of stability will decrease. In addition to this we have studied periodic orbits around these points in the range 0<μ<μ c , we found that these orbits are elliptical; the frequencies of long and short orbits of the periodic motion are affected by the terms which involve parameters that characterize the oblateness and radiation repulsive forces. The implication is that the period of long periodic orbits adjusts with the change in its frequency while the period of short periodic orbit will decrease.  相似文献   

9.
We present a geometric interpretation of the spectral stability of the triangular libration points in the charged three-body problem. We obtain that the spectral stability varies with the position of the center of mass of the three charges with respect to the circumcenter of the triangle configuration, which does not depend directly of the charges. If the center of mass is outside or on the circumference of a well defined radius ??, then spectral stability occurs. In addition, we analyze the existence of resonances within the spectral region of stability under this geometric interpretation, determining resonance curves of order 2, 3, 4, . . ., some of them with multiple resonances.  相似文献   

10.
11.
By the new vector method in a nonlinear setting, a physical libration of the Moon is studied. Using the decomposition method on small parameters we derive the closed system of nine differential equations with terms of the first and second order of smallness. The conclusion is drawn that in the nonlinear case a connection between the librations in a longitude and latitude, though feeble, nevertheless exists; therefore, the physical libration already is impossible to subdivide into independent from each other forms of oscillations, as usually can be done. In the linear approach, ten characteristic frequencies and two special invariants of the problem are found. It is proved that, taking into account nonlinear terms, the invariants are periodic functions of time. Therefore, the stationary solution with zero frequency, formally supposing in the linear theory a resonance, in the nonlinear approach gains only small (proportional to e) periodic oscillations. Near to zero frequency of a resonance there is no, and solution of the nonlinear equations of physical libration is stable. The given nonlinear solution slightly modifies the previously unknown conical precession of the Moon’s spin axis. The character of nonlinear solutions near the basic forcing frequency Ω1, where in the linear approach there are beats, is carefully studied. The average method on fast variables is obtained by the linear system of differential equations with almost periodic coefficients, which describe the evolution of these coefficients in a nonlinear problem. From this follows that the nonlinear components only slightly modify the specified beats; the interior period T ≈ 16.53 days appears 411 times less than the exterior one T ≈ 18.61 Julian years. In particular, with such a period the angle between ecliptic plane and Moon orbit plane also varies. Resonances, on which other researches earlier insisted, are not discovered. As a whole, the nonlinear analysis essentially improves and supplements a linear picture of the physical libration.  相似文献   

12.
A number of criteria for linear stability of libration points in the perturbed restricted three-body problem are presented. The criteria involve only the coefficients of the characteristic equation of the tangent map of the libration points and can be easily applied. With these criteria the effect of drag on the linear stability of the triangular libration points in the classical restricted three-body problem is investigated. Some of Murray et al.'s results are improved.  相似文献   

13.
In this paper we consider the restricted problem of three rigid bodies (an axisymmetric satellite in the gravitation field of two triaxial primaries). The collinear and triangular equilibrium solutions are obtained. The effect of the primaries on the location of the libration points of a spherical satellite has been studied numerically.  相似文献   

14.
In this paper we have examined the stability of triangular libration points in the restricted problem of three bodies when the bigger primary is an oblate spheroid. Here we followed the time limit and computational process of Tuckness (Celest. Mech. Dyn. Mech. 61, 1–19, 1995) on the stability criteria given by McKenzie and Szebehely (Celest. Mech. 23, 223–229, 1981). In this study it was found that in comparison to other studies the value of the critical mass μ c has been reduced due to oblateness of the bigger primary, i.e. the range of stability of the equilateral triangular libration points reduced with the increase of the oblateness parameter I and hence the order of commensurability was increased.  相似文献   

15.
In this paper we consider the circular restricted problem of three oblate spheroids. The collinear equilibrium solutions are obtained. Finally a numerical study of the influence of the non-sphericity in the location of the libration points is made.  相似文献   

16.
We consider the motion of a dual spin satellite placed in the gravitational field of n material points, assuming that the satellite has no influence on the motion of these points. The main bodies are located at the libration points of the classical n bodies problem. We investigate the set of relative equilibria of the satellite. As in the elementary case of a gyrostat attracted by a single point, we show that this problem is equivalent to find the extremum of a quadratic function. We obtain all possible equilibria of the satellite by solving two algebraic equations. Sufficient conditions of stability of these relative equilibria are given.  相似文献   

17.
This paper considers the restricted circular three-body problem with respect to the radiation repulsion force acting upon a particle on the part of one of the main bodies (the Sun). The characteristic of the family of stationary particular solutions of the problem (libration points) representing the relative equilibrium positions in a rotating Cartesian system is given. On the basis of the KAM theory with the help of a computer a nonlinear analysis of the triangular libration points stability for the planar case is carried out. These libration points are proved to be strictly stable by Liapunov practically in the whole area of fulfilling the necessary stability conditions. Instability is discovered at the resonant curve of the third order and at the greater part of the resonant curve of the fourth order. The plotted results of the investigation allowed us to draw a conclusion about the Liapunov stability of the triangular libration points in a problem with respect to the radiation pressure for all the planets of the Solar system.  相似文献   

18.
In the present paper we have studied the stability of the triangular libration points for the doubly photogravitational elliptic restricted problem of three bodies under the presence of resonances as well as under their absence. Here we have found the conditions for stability.  相似文献   

19.
The possibility of stabilizing the collinear libration points of the circular restricted three-body problem by using an additional jet acceleration (constant in magnitude) is investigated. Three stabilization laws are considered when the jet acceleration is either directed continuously to one of the primariesm 1,m 2 or is parallel to the line joining them. The solution of the problem formulated is based on the method of the driving forces structure analysis created by W. Thomson and P. Tait. It is shown that none of the stabilization laws mentioned ensures the existence of the isolated minimum of changed potential energy, and therefore the secular stability of the collinear libration points is impossible. In the 3rd and 4th paragraphs the possibility of a gyroscopic stabilization of these points is considered. It is shown that the gyroscopic stabilization of the external libration points is possible only when jet acceleration is either directed to the distant mass or is parallel to the line joining the primaries. The necessary and sufficient conditions of the gyroscopic stabilization are given. It is also shown that the internal libration points cannot be stabilized by any of the laws considered. For the Earth-Moon system the numerical data of time-existence of the satellite in the vicinity of the libration point situated near the Moon are given.  相似文献   

20.
In this paper we consider the restricted problem of three axisymmetric rigid bodies under the central forces. The collinear and triangular equilibrium solutions are obtained. Finally a numerical study of the influence of the non-sphericity and the rotation of the primaries in the location of the libration points is made.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号