首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Mammoth Peak sheeted intrusive complex formed in the interior of a ~7–10 km deep magma chamber, specifically in the Half Dome granodiorite of the Tuolumne batholith, central Sierra Nevada, CA (USA). The sheets consist of fractionated melts with accumulated hornblende, biotite, magnetite, titanite, apatite, and zircon. The accumulation, especially of titanite, had a profound effect on minor and trace elements (Nb, Ta, Ti, REE, U, Th, P, Zr, Hf, etc.), increasing their contents up to five to six times. Our thermal–mechanical modeling using the finite element method shows that cooling-generated tensile stresses resulted in the inward propagation of two perpendicular sets of dilational cracks in the host granodiorite. We interpret the sheeted complex to have formed by a crack-seal mechanism in a high strength, crystal-rich mush, whereby outward younging pulses of fractionated magma were injected into these syn-magmatic cracks at the margin of an active magma chamber. Thermal–mechanical instabilities developed after the assembly of the sheeted complex, which was then overprinted by late ~NW–SE magmatic foliation. This case example provides a cautionary note regarding the interpretation that sheeted zones in large granitoid plutons imply a diking mechanism of growth because the sheeted/dike complexes in plutons (1) may display inverse growth directions from the growth of the overall intrusive sequence; (2) need not record initial chamber construction and instead may reflect late pulsing of magma within an already constructed magma chamber; (3) have an overprinting magmatic fabric indicating the continued presence of melt after construction of sheeted complexes and thus a prolonged thermal history as compared to dikes; and (4) because the scale of the observed sheeted complexes may be small (<1%) in comparison to large homogenous parts of plutons, in which there is no evidence for sheeting or diking. Thus, where extensive dike complexes in plutons are absent, such as in much of the Tuolumne batholith, the application of an incremental diking model to explain chamber construction is at best speculative.  相似文献   

2.
Ilmari Haapala  Sari Lukkari 《Lithos》2005,80(1-4):347-362
The 6×3 km Kymi monzogranite stock represents the apical part of an epizonal late-stage pluton that was emplaced within the 1.65 to 1.63 Ga Wiborg rapakivi batholith. The stock has a well-developed zonal structure, from the rim to the center: stockscheider pegmatite, equigranular topaz granite, porphyritic topaz granite. The contact between the two granites is usually gradational within a few centimeters, but local inclusions of the porphyritic granite in the equigranular granite indicate that the latter solidified later. Hydrothermal greisen and quartz veins, some of which contain genthelvite, beryl, wolframite, cassiterite, and sulfides, cut the granites of the stock and the surrounding country rocks. The equigranular granite contains 1 to 4 vol.% topaz, and its biotite is lithian siderophyllite; the porphyritic granite has 0 to 3 vol.% topaz, and the mica is siderophyllite. The equigranular granite is geochemically highly evolved with elevated Li, Rb, Ga, Ta, and F, and very low Ba, Sr, Ti, and Zr. The REE patterns show deep negative Eu anomalies and tetrad effects indicating extreme magmatic fractionation and aqueous fluid–rock interaction. The zonal structure of the stock is interpreted as a result of differentiation within the magma chamber. Internal convection in the crystallizing magma chamber and upward flow of residual melt as a boundary layer along sloping contacts resulted in accumulation of a layer of highly evolved, volatile-rich magma in the apical part of the chamber. Crystallization of this apical magma produced the stockscheider pegmatite and the equigranular granite; the underlying crystal mush solidified as the porphyritic granite. Much of the crystallization took place from volatile-saturated melt, and episodic voluminous degassing expelled fluids into opened fractures where they or their derivatives reacted with country rocks and caused alteration and mineralization.  相似文献   

3.
The 345 ± 10 Ma old composite Ackley City Batholith of southeastern Newfoundland, consists largely of very felsic K-feldspar megacrystic granite and alaskite. Spatially related to the southeast contact of the alaskite are younger aplites and pegmatite, intrusive phases which are interpreted to be pan of a tilted, high level roof zone complex to the batholith. The compositions of the alaskite and roof zone complex define major and trace element gradients similar to those in voluminous high-silica eruptive suites; i.e., the alaskite is more chemically evolved (higher in Rb, lower in Ca, Fe, Mn, Ti, P, Sr, Ba and LREE) toward the roof. Apparently these chemical gradients in the batholith are restricted to the top 2 to 3 kms of the former magma chamber. Fractional crystallization is a plausible process for generating the chemical dispersion in the granites, although very high feldspar partition coefficients for Ba, Sr and Eu are required to generate the observed chemical gradients by a reasonable degree of fractional crystallization. Restriction of crystal fractionation to near the roof of the batholith may reflect a decreased viscosity which would facilitate crystal-liquid separation by processes such as filter pressing, flow differentiation or convective fractionation.The chemical gradients in these granites closely resemble those attributed in high-silica volcanics to the process of thermogravitational diffusion (TGD). Compositional gradients in the upper portion of a magma chamber are consistent with the TGD model. This model, although still poorly understood, is, like fractional crystallization, a plausible mechanism to generate the chemical features of the Ackley City granites.  相似文献   

4.
The Vinalhaven intrusive complex consists mainly of coarse-grainedgranite, inward-dipping gabbro–diorite sheets, and a fine-grainedgranite core. Small bodies of porphyry occur throughout thecoarse-grained granite. The largest porphyry body (roughly 0·5km by 2·5 km) occurs with coeval gabbro, hybrid rocks,and minor fine-grained granite in the Vinal Cove complex, whichformed during the waning stages of solidification of the coarse-grainedVinalhaven granite. Porphyry contacts with surrounding coarse-grainedgranite are irregular and gradational. Compositions of wholerocks and minerals in the porphyry and the coarse-grained graniteare nearly identical. Neighboring phenocrysts in the porphyryvary greatly in degree of corrosion and reaction, indicatingthat the porphyry was well stirred. Thermal rejuvenation ofa silicic crystal mush by a basaltic influx can explain thecomposition and texture of the porphyry. Comparable rejuvenationevents have been recognized in recent studies of erupted rocks.Weakly corroded biotite phenocrysts in the porphyry requirethat hydrous interstitial melt existed in the granite duringremelting. Field relations, along with thermal calculations,suggest that cooling and crystallization of coeval mafic magmacould have generated the porphyry by thermal rejuvenation ofgranite crystal-mush containing about 20% melt. Field relationsalso suggest that some of the porphyry matrix may representnew felsic magma that was emplaced during remelting. KEY WORDS: granite; magma chamber; mafic replenishment; rejuvenation  相似文献   

5.
Large numbers of picrite xenoliths have been found within Hell's Half Acre, a Holocene lava field of the eastern Snake River Plain. Mineralogically and chemically, they are in close agreement with expectations for fractionates and partly substantiate the hypothesis that fractionation is the primary cause of diversity among the region's tholeiite basalts. The fractionation mechanism interpreted for the picrites' origin is crystallization at the growing front of a solidification network. Consideration of the general characteristics of the tholeiite basalts suggests this mechanism of fractionation may have been of major importance within the province. However, to be widespread, it would require that magma reservoirs meet the geometric constraint of dike-like shapes.  相似文献   

6.
Igneous rocks derived from high‐temperature, crystal‐poor magmas of intermediate potassic composition are widespread in the central Lachlan Fold Belt, and have been assigned to the Boggy Plain Supersuite. These rocks range in composition from 45 to 78% SiO2, with a marked paucity of examples in the range 65–70% SiO2, the composition dominant in most other granites of the Lachlan Fold Belt. Evidence is presented from two units of the Boggy Plain Supersuite, the Boggy Plain zoned pluton and the Nallawa complex, to demonstrate that these high‐temperature magmas solidified under a regime of convective fractionation. By this process, a magma body solidified from margin to centre as the zone of solidification moved progressively inwards. High‐temperature near‐liquidus minerals with a certain proportion of trapped interstitial differentiated melt, separated from the buoyant differentiated melt during solidification. In most cases much of this differentiated melt buoyantly rose to the top of the magma chamber to form felsic sheets that overly the solidifying main magma chamber beneath. Some of these felsic tops erupted as volcanic rocks, but they mainly form extensive high‐level intrusive bodies, the largest being the granitic part of the Yeoval complex, with an area of over 200 km2. Back‐mixing of fractionated melt into the main magma chamber progressively changed the composition of the main melt, resulting in highly zoned plutons. In the more felsic part of the Boggy Plain zoned pluton back‐mixing was dominant, if not exclusive, forming an intrusive body cryptically zoned from 63% SiO2 on the margin to 72% SiO2 in the core. It is suggested that tonalitic bodies do not generally crystallise through convective fractionation because the differentiated melt is volumetrically small and totally trapped within the interstitial space: back‐mixing is excluded and homogeneous plutons with essentially the composition of the parental melt are formed.  相似文献   

7.
Summary ?Gabbro Akarem is a Late-Precambrian concentrically-zoned mafic-ultramafic intrusion located along a major fracture zone trending NE-SW in the Eastern Desert of Egypt. It intruded low-grade metasedimentary rocks, and has a contact metamorphic aureole a few meters wide. This intrusion comprises a dunite core enveloped by clinopyroxene hornblende-bearing lherzolite, olivine-hornblende clinopyroxenite and plagioclase hornblendite. The contacts between the rock types are gradational. They have cumulate textures and the observed crystallization sequence is: olivine ( + cotectic spinel)-orthopyroxene (Opx)-clinopyroxene (Cpx)-hornblende. Mafic minerals from the core of the intrusion are highly magnesian, a consistent increase in the Mg# of olivine (from 69 to 87), Opx (from 62 to 89), Cpx (from 85 to 96) and hornblends (from 62 to 88) is observed from the mafic to the ultramafic units. Spinel has a wide range of Cr# and Mg# ratios. The various rock units define a fractionation trend. The mafic rocks are slightly LREE-enriched relative to the ultramafic units and chondrites. In many aspects, the Gabbro Akarem intrusion is similar to Alaskan-type complexes. Mineralogical and geochemical data suggest that the different rock units were fractionated from a hydrous picritic magma with no apparent crustal contamination. A petrogenetic model involving a rapid rise of hydrous mantle magma along a major fracture zone is proposed. Extensive fractional crystallization led to magma chamber stratification; internal circulation and strong vertical stretching up the center of the rapidly rising diapir increased the rate of magma ascent towards the core. Due to cooling and high viscosity the marginal mafic magma was partly crystallized while the unsolidified core ultramafic magma continued its ascent. As a result, different mineral phases crystallized at different pressure-temperature paths. Field relations, geophysical, petrological and experimental studies support this model which explains many of the characteristics of the Gabbro Akarem and some other concentrically zoned mafic-ultramafic intrusions. Received April 24, 2001; revised version accepted November 20, 2001  相似文献   

8.
The ultramafic cumulate series of the ultramafic, alkaline and carbonatite bearing Gardiner complex in East Greenland is divided in: 1) Contact zone of plagio-clase-bearing alkaline rocks chilled to the surrounding gneisses and alkaline lavas; 2) a banded sequence of dunites to mt-pyroxenites; 3) a zoned dunite — cpx-dunite ring and 4) in the centre of the complex ol-pyroxenites and mt-pyroxenites.The zones and bands are superimposed with gradational contacts and are increasingly younger towards the centre of the complex. Primocrysts and intercumulus phases, which are equivalent to phenocryst phases in magmatic liquids show that these rocks accumulated from nephelinitic to nepheline-hawaiitic magmas and the contact rocks from less alkaline basanitic magma types similar to the regional alkaline magmas.The cumulates apparently formed in a magma chamber of a nephelinitic volcano, resting on the regional basalts of the Kangerdlugssuaq area.  相似文献   

9.
Compositionally zoned plutons are an important feature of theSierra Nevada batholith, California. Two such plutons have beenexamined to determine the mechanism by which crystals separatefrom a magma. The Tinemaha pluton shows continuous compositionalvariation from 58 to 67% SiO2, whereas the McMurry Meadows plutonis bimodal, with an outer margin of mafic granodiorite (59–60%SiO2) and an inner core of granite (66–69% SiO2). Extremedifferentiates also occur as small isolated masses within thesuite and may contain up to 76% SiO2. Both plutons are uniformin strontium isotopic composition but are different from eachother, with initial 87Sr/86Sr values of 0?70719 and 0?70651respectively. The Tinemaha pluton is both horizontally and vertically( 1000 m) zoned, with fractionation occurring both inward fromthe contacts and upward. The vertical trends in relative mineralproportions are not consistent with crystal settling. Both thevertical and horizontal variations in the chemical compositionof 50 elements, in mineralogy, and in accessory mineral lightrare-earth element zoning, are all directly relatable to side-wallcrystallization which created a less-dense melt that buoyantlymoved upward along the wall towards the top of the magma chamber.The different rates for diffusive heat exchange and compositionaldiffusion within the magma initiated the double-diffusive gradientin the magma chamber. Compositional variations in the side-wallcrystal accumulation zone occur as boundary layer melts evolve,reflecting changes in the bulk convecting magma. The compositionalgap in the McMurry Meadows pluton is the result of a similarbut more efficient side-wall fractionation process, relatedto a higher proportion of melt to crystals in the initial magmaand a slower rate of side-wall solidification as a result ofthe thermal blanket created by the enclosing Tinemaha pluton.  相似文献   

10.
冈底斯岩基中包体的初步研究   总被引:2,自引:0,他引:2  
本文综合国内外研究成果对花岗岩中岩石包体进行成因归类,指出对其研究的理论和实际意义。以岩相学为基础,讨论冈底斯岩基中镁铁质包体的类型及形成机理,揭示冈底斯各单元岩浆作用初期的演化过程。  相似文献   

11.
The 2·63 Ga Louis Lake batholith, a calc-alkalic plutonexposed in Wind River Range of western Wyoming, consists ofminor diorite, quartz diorite, granodiorite, and granite. Atshallow structural levels the batholith is pyroxene free, butat deeper levels, all units of the batholith contain pyroxenes.On its northern margin the batholith was emplaced at P = 5–6kbar, T = 775–800°C, fO2 at FMQ (fayalite–magnetite–quartz)+ 1·5 to FMQ + 1·8, and aH2O  相似文献   

12.
The Blue Tier Batholith is one of a number of high-level, essentially postkinematic, composite granitoid bodies occurring at the southern end of the Tasman orogenic belt of Eastern Australia.An integrated study of the structure, texture, and geochemistry of the batholith suggests that it has a cumulate-like character. In particular, the trace element (Ba, Rb, Sr) data, when constrained by textural features of the granitiods, indicate that the batholith formed by fractional crystallization of a single magma which underwent crystallization in situ by progressive nucleation and solidification from the roof, walls, and floor inwards. Progressive changes in liquids (cumulate) mineralogy during crystallization led to the observed sequence of early biotite and/or hornblende granodiorites followed by biotite adamellites and late muscovite biotite granites. Progressive in situ crystallization led in some instances to gradational boundaries between granitoid types whereas periodic tectonic distrubances caused the rest magma to reintrude earlier crystallizates in places: thus emplacement and crystallization sequences are parallel. The ultimate product of fractional crystallization was a water-saturated melt, enriched in incompatible elements, whose crystallization resulted in significant tin mineralization.The chemistry of the rocks comprising the batholith is in many respects analogous to that of basic cumulate rocks, although an origin by outward growth of crystals and expulsion of interstitial melt, coupled with convective mixing, rather than by crystal settling, is favoured for the granitoid suite. It is suggested that the Blue Tier Batholith is not an isolated example of a granitoid body with cumulate-like character, but that such bodies may be more common than is recognized.  相似文献   

13.
Subvolcanic ring complexes are unusual in that they preserve a rapidly frozen record of intrusive events. This sequential history is generally lost or complicated in plutons owing to mixing and mingling in a dynamic state. Thus, subvolcanic ring complexes are more like erupted rocks in their preservation of instantaneous events, but the self-contained nature of the complexes allows detailed structural and chemical work to be conducted in environments where the relative timing between individual magmatic events is commonly well preserved.

We suggest that development of subvolcanic ring complexes in the western Peninsular Ranges Batholith (PRB) involved the following three-stage generalized sequence: (1) fracturing of the roof above a buoyant or overpressured magma chamber, which resulted in moderately inward-dipping conical fractures that locally hosted cone sheets; (2) subsequent loss of magma from the chamber, combined with degassing of the melt, which facilitated collapse of the roof along near-vertical ring faults that locally hosted ring dikes; and (3) resurgence of the chamber, and/or intrusion of a broadly cogenetic nested pluton, which locally destroyed evidence for the earlier history of the system. This sequence has been repeated twice in one of the ring complexes that we have identified, which resulted in nested intrusive centers.

Calderas, subvolcanic ring complexes and plutons may represent progressively deeper sections through linked magma plumbing systems, and the systematic occurrences of these features in the western PRB are consistent with progressively deeper along-strike exposures of the batholith from south to north over a distance greater than 250 km.

In addition to subvolcanic complexes in the western PRB, deeper crustal levels exposed in the transition zone between eastern and western parts of the batholith preserve ring complexes emplaced at depths of up to 18 km. Occurrence of these deeper-level complexes suggests either that caldera subsidence can extend to mid-crustal levels or that other processes can produce ring complexes.  相似文献   


14.
S. P. Neves  A. Vauchez 《Lithos》1995,34(4):275-299
Field and petrographic evidence together with major element geochemistry suggest that mixing and mingling of magmas of contrasting compositions were important petrogenetic processes in the Fazenda Nova/Serra da Japeganga plutonic complex of Northeast Brazil. The complex was emplaced at pressures of 300–500 MPa in amphibolite facies metamorphic rocks of Neoproterozoic age and consists of three main rock types: (1) coarse-grained granite; (2) porphyritic granite and (3) diorite to quartz-monzodiorite. The latter two make up the Fazenda Nova batholith which is located on the northwestern side of the sinistral, NE-trending, Fazenda Nova strike-slip shear zone. NE-plunging stretching lineations in the shear zone suggest that this batholith represents an uplifted, and therefore deeper, portion of the complex. The structure of the complex reflects the stratigraphy in a magma chamber, with the porphyritic granite above the diorite and below the coarse-grained granite.

The porphyritic granite has a uniform composition, intermediate in mafic mineral content, quartz, and majorelements between the coarse-grained granite and the diorite. It is free of disequilibrium mineral assemblages, and locally displays gradational contacts with the overlain coarse-grained granite. Most elements display linear correlation with SiO2 in Harker diagrams. These features are interpreted as resulting from mixing of almost crystal-free felsic and intermediate magmas. Fluid dynamic calculations using the coarse-grained granite and the silica-poorest diorite as end-members in the mixing process show that mechanical mixing was possible, and thermal modelling suggests that the formation of an homogeneous hybrid may have been achieved in less than 50,000 yr.

The diorites contain corroded K-feldspar megacrysts, and range in composition from low to relatively high silica contents, partly overlapping with the porphyritic granite. This suggests that a new mixing event occurred during the crystallisation of the porphyritic granite, this time producing a heterogeneous, xenocryst-bearing, dioritic hybrid. Abundant enclaves of diorite in the porphyritic granite, despite their textural diversity, are typically devoid of chilled margins, and were therefore formed relatively early in the crystallisation history of the granite. They are interpreted as liquid droplets separated from the heterogeneous hybrid magma through convection currents and incorporated in the, crystallising granitic magma.

Subsequently, during the crystallisation of the porphyritic granite, mafic magma supply to the batholith continued at a declining rate, probably assisted by the development of the Fazenda Nova shear zone. This leads to the production of stromatitic-like structures, with alternating bands of mutually contaminated granite and diorite, then to the intrusion of contorted synplutonic dykes, and, finally, of late-stage dykes, some of which with chilled finer-grained margins.  相似文献   


15.
The Tunk Lake pluton of coastal Maine, USA is a concentrically zoned granitic body that grades from an outer hypersolvus granite into subsolvus rapakivi granite, and then into subsolvus non-rapakivi granite, with gradational contacts between these zones. The pluton is partially surrounded by a zone of basaltic and gabbroic enclaves, interpreted as quenched magmatic droplets and mushes, respectively, as well as gabbroic xenoliths, all hosted by high-silica granite. The granite is zoned in terms of mineral assemblage, mineral composition, zircon crystallization temperature, and major and trace element concentration, from the present-day rim (interpreted as being closer to the base of the chamber) to the core (interpreted as being closer to the upper portions of the chamber). The ferromagnesian mineral assemblage systematically changes from augite and hornblende with augite cores in the outermost hypersolvus granite to hornblende, to hornblende and biotite, and finally, to biotite only in the subsolvus granite core of the pluton. Sparse fine-grained basaltic enclaves that are most common in the outermost zone of the pluton suggest that basaltic magma was present in the lower portions of the magma chamber at the same time that the upper portions of the magma chamber were occupied by a granitic crystal mush. However, the slight variations in initial Nd isotopic ratio in granites from different zones of the pluton suggest that contamination of the granitic melt by basaltic melt played little role in generating the compositional gradation of the pluton. The zone of basaltic and gabbroic chilled magmatic enclaves, and gabbroic xenoliths, hosted by high-silica granite, that partially surround the pluton is interpreted as mafic layers at the base of the pluton that were disrupted by invading late-stage high-silica magma. These mafic layers are likely to have consisted of basaltic lava layers and basalt that chilled against granitic magma to produce coarse-grained gabbroic mush. Basaltic and gabbroic magmatic enclaves and gabbroic xenoliths are hornblende-bearing, suggesting that their parent melts were relatively hydrous. The water-rich nature of the underplating mafic magmas may have prevented extensive invasion of the granitic magma by these magmas, owing to the much greater viscosity of the granitic magma than the mafic magmas in the temperature range over which magma interaction could have occurred.  相似文献   

16.
Crater Hill is a small volume alkali olivine basalt volcano in the Auckland volcanic field. Crater Hill consists of a sequence of pyroclastic and effusive eruptive units of which the earliest have low silica, ferromagnesian elements and Mg/Fe ratios, high incompatible elements and are more silica undersaturated while the last material to be erupted has higher silica, ferromagnesian elements and Mg/Fe ratios but relatively low incompatible elements. Through the sequence, Mg-number changes from 59 to 67 and LaN/LuN decreases by a factor of 3. This systematic compositional variation is interpreted to be the result of clinopyroxene ± spinel fractionation at pressures of at least 1.4–1.9 GPa, from a primary magma generated by small-degree partial melting in the garnet peridotite stability field (>2.5 GPa). Fractionation occurred where early crystals grew and accumulated along the conduit walls. The rising magma evolved along a polybaric liquid line of descent until it encountered lithosphere cold enough to chill the dike margin. Above this depth, further cooling resulted only in the growth of suspended phenocrysts in a magma separated from the country rock by a chilled margin. This process is observed in the Auckland volcanic field because the rate of magma production is very small allowing compositional features to be preserved that would be overwhelmed in a larger scale magmatic system. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
The Cooma Complex of the Lachlan Fold Belt, south‐eastern Australia, is characterised by a large (c. 10 km wide) low‐P, high‐T metamorphic aureole surrounding a small (3 × 6 km) granite pluton. The aureole extends northward to envelop the eastern lobe of the Murrumbidgee Batholith and progressively narrows to a kilometre wide hornfelsic aureole some 50 km north of Cooma. At its northern extremity, the batholith has intruded its own volcanic cover. These regional relations suggest that the Murrumbidgee Batholith is gently tilted to the north, with the Cooma Complex representing the aureole beneath the batholith. Two main deformation events, D3 and D5, affected the aureole. The inner, high‐grade migmatitic domain contains upright F5 folds defined by a composite, transposed S3/S0 fabric and S3/S0 concordant leucosomes. The folded stromatic migmatites define the western limb of a F5 synform, with its axis located in the batholith. Lenses and sheets of the Murrumbidgee Batholith intruded along S3 but also preserve S3 as a strong, solid‐state foliation. S3 and the granite sheets but are also folded by F5, outlining a fanning positive flower structure. These relations indicate that most of the batholith was emplaced before and during D3, but intrusion persisted until early syn‐D5. Formation of the Cooma Granodiorite occurred post‐D3 to early syn‐D5, after formation of the wide metamorphic aureole during early syn‐D3 to early syn‐D5. The Murrumbidgee Batholith was emplaced between pre‐D3 to early syn‐D5, synchronous with the formation of the Cooma Complex. The structural and metamorphic relations indicate that the Murrumbidgee Batholith was the ultimate heat source responsible for the Cooma Metamorphic Complex. D3 structures and metamorphic isograds are subparallel to the batholith margin for over 50 km. This concordance probably extends vertically, suggesting that the isograds also fan outward from the batholith margin. This implies an inverted metamorphic sequence focused on the Murrumbidgee Batholith, although the base has been almost completely removed by erosion in the Cooma Complex. The field evidence at Cooma, combined with previous thermal modelling results, suggest that extensive LPHT metamorphic terranes may represent regional metamorphic aureoles developed beneath high‐level granitic batholiths.  相似文献   

18.
The Chah-Bazargan gabbroic intrusions are located in the south of Sanandaj–Sirjan zone. Precise U–Pb zircon SHRIMP ages of the intrusions show magmatic ages of 170.5 ± 1.9 Ma. These intrusions consist primarily of gabbros, interspersed with lenticular bodies of anorthosite, troctolite, clinopyroxenite, and wehrlite. The lenticular bodies show gradational or sharp boundaries with the gabbros. In the gradational boundaries, gabbros are mineralogically transformed into anorthosites, wehrlites, and/or clinopyroxenites. On the other hand, where the boundaries are sharp, the mineral assemblages change abruptly. There is no obvious deformation in the intrusions. Hence, the changes in mineral compositions are interpreted as the result of crystallization processes, such as fractionation in the magma chamber. Rock types with sharp boundaries show abrupt chemical changes, but the changes exhibit the same patterns of increasing and decreasing elements, especially of rare earth elements, as the gradational boundaries. Therefore, it is possible that all parts of the intrusions were formed from the same parental magma. Parts showing signs of nonequilibrium crystallization, such as cumulate features and sub-solidification, underwent fracturing and were interspersed throughout the magma chamber by late injection pulses or mechanical movements under mush conditions. The geological and age data show that the intrusions were formed from an Al-, Sr-, Fe-enriched and K-, Nb-depleted tholeiitic magma. The magma resulted from the partial melting of a metasomatized spinel demonstrated by negative Nb, P, Hf, and Ti, and positive Ba, Sr, and U anomalies typical of subduction-related magmas.  相似文献   

19.
阿巴拉契亚造山带加拿大纽芬兰岛东南部发育一晚泥盆纪阿克利巨型花岗岩基(~2500 km2).该岩基侵位于甘德和阿瓦隆地块的多佛-赫米蒂奇湾巨型断层带之间,内部发育钨-锡-钼矿床及相关的矿化.本文锆石年代学研究显示,岩基中Tolt单元侵位于378±2 Ma,各单元年龄基本一致,为同期岩浆多次侵位的产物.岩基中主要岩石类型...  相似文献   

20.
Detailed field evidence indicates that the Kameruka Suite plutonsof the Bega Batholith, eastern Australia, grew by crystal accumulationon the floor of a magma chamber. Depositional features in theplutons, including mafic enclave channels, asymmetric enclavepillows and exotic rafts, load casts and flame structures, andgraded and trough cross-beds, indicate that the pluton builtprogressively upward. The general eastward dip of depositionalfeatures in the main pluton implies a lower western and uppereastern contact, consistent with a basal granite–migmatitecontact in the west and a sharp hornfelsic sidewall contactin the east. Mafic, felsic and composite dykes, most commonnear and below the basal western contact, are interpreted asconduits for magma chamber replenishment and imply open-systembehaviour during pluton construction. Textural relations arealso consistent with an open-system, cumulate origin. Typically,centimetre-scale grains of quartz, plagioclase and megacrysticalkali feldspar form a touching framework with interstices filledwith smaller biotite flakes and smaller intercumulus quartzand feldspar crystals. Alkali feldspar megacrysts vary fromeuhedral and unzoned, to mantled and partially replaced by plagioclase,to ovoid and completely pseudomorphed by quartz–albiteaggregates. The common occurrence of mantled and pseudomorphedalkali feldspar in mafic enclaves, and in hybrid tonalitic rocksforming the matrix to enclave swarms, suggests that replacementor resorption of granitic primocrysts was associated with maficreplenishments. The occurrence of all megacryst types at outcropscale implies extended alkali feldspar crystallization in differentparts of the chamber, thorough stirring during, or after, periodicreplenishment, and final settling in a cumulate mush. The bulkcomposition of the cumulate mush, represented by granodiorite,cannot represent the emplaced magma. Compositional variationcan be modelled by variable degrees of crystal accumulationfrom a parental, silica-rich melt represented by the silicicdykes. As dykes periodically fed the magma chamber, crystalsaccumulated on the floor, and more evolved melts probably eruptedfrom its roof. Thus, the average composition of the magma, andthe cumulus minerals, may have remained relatively constant,and the sublinear chemical trends that typify the Kameruka Suitesimply reflect differing proportions of melt and cumulate material.Sublinear chemical trends can also be explained by a restitemodel; however, the distinctive Ba, light rare earth elementand Zr spikes at high silica can be explained only by a cumulatemodel, which also explains why the low-silica granites of thesuite share the same chemical characteristics as the high-silicagranites. KEY WORDS: crystal accumulation; magma chamber; open system; granitoids; Kameruka; Australia  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号