首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diagenetic analysis based on field and petrographic observations, isotope and microthermometric data was used to reconstruct the fluid flow history of the Cretaceous shallow water limestones from the Panormide platform exposed in north-central Sicily. Analysis focused on diagenetic products in cavities and dissolution enlarged fractures of the karstified limestones that occur just below a regional unconformity. The fluid flow history could be broken down into five stages that were linked to the kinematic and burial history of the region. (1) Petrography (zoned cathodoluminescence and speleothem textures) and stable isotopes (6.5 < δ18OV-PDB < ?3.5‰ and 0 < δ13CV-PDB < ?14‰) indicate that the earliest calcite phase was associated with karstification during emergence of the platform. Limestone dissolution at this stage is important with regard to possible reservoir creation in the Panormide palaeogeographic domain. (2) Fine-grained micrite sedimentation, dated as latest Cretaceous by nannopalaeontology and its 87Sr/86Sr isotope ratio (0.7078), marks replacement by marine fluids during subsequent submergence of the karstified platform. (3) The following calcite cement was still precipitated by marine-derived fluids (?7.0 < δ18OV-PDB < ?5.0‰ and ?3.0 < δ13CV-PDB < 0.5‰/Tm = ?2 to ?5 °C), but at increasingly higher temperatures (Th = 60–120 °C). This has been interpreted as precipitation during Oligocene foredeep burial. (4) Hot (Th = 130–180 °C), low saline (Tm < ?2.5 °C) fluids with increasingly higher calculated δ18OSMOW signatures (+6 to +14‰) subsequently invaded the karst system. These fluids most likely migrated during fold and thrust belt development. The low salinity and relatively high δ18OSMOW signatures of the fluids are interpreted to be the result of clay dewatering reactions. The presence of bitumen and associated fluorite with hydrocarbon inclusions at this stage in the paragenesis constrains the timing of oil migration in the region. (5) Finally, high saline fluids with elevated 87Sr/86Sr (0.7095–0.7105) signatures invaded the karst system. This last fluid flow event was possibly coeval with localized dolomitization and calcite cementation along high-angle faults of Pliocene age, as suggested by identical radiogenic signatures of these diagenetic products.  相似文献   

2.
A system for rapid, high precision potentiometric determination of alkalinity in sea water and sediment pore water is presented. Two titration units were used: a 40 ml unit for seawater and a small volume unit for sediment pore water. Titration time was normally less than 10 minutes per sample, including sample exchange. With a 40 ml sample volume, the relative standard deviation of the alkalinity obtained in the laboratory was 0.05% and at sea 0.1 %. The small-volume system (0.5–1.5 ml) gave a precision of 0.07%. Five titration points, in two groups after the second equivalence point, were used to evaluate the equivalence volume. Results from equilibrium calculations and computer simulated alkalinity titrations show that it was possible to use a non-modified Gran function [(V0 +v)*10(E/Z)] and still achieve good accuracy and precision.  相似文献   

3.
《Marine Chemistry》1987,20(3):245-253
The distribution of barite in sediments from D.S.D.P. sites 424 and 424A at the Galapagos hydrothermal mounds field is determined and the process of its formation is deduced. Barite in these deposits is associated with calcareous sediments and is completely absent from the hydrothermal material (manganese crusts and nontronite). Its concentrations tend to increase in the deeper sediments. Since manganese crusts contain significant amounts of Ba, a lack of barite in them is probably due to low concentrations of SO42 in the sediment-seawater interface where they form. The formation of barite occurs within buried sediments, the interstitial waters of which are saturated with SO42. The most probable source of SO42− is the oxidation of H2S which is released from the hydrothermal fluids percolating upwards through the sediments. Although nontronite is formed within buried sediments the environmental conditions occurring during its formation (reducing) prevent barite formation.The association of barite with calcareous sediments is due to the release of Ba by calcareous microorganisms and/or to high concentrations of Ca in the pore waters which maintain a high pH and hence SO42− is stable.  相似文献   

4.
On May 22 and 24, 1995, a buoy, designed to float with the water surface and equipped with a GPS antenna, was deployed off the California coast at 16 locations near the Texaco oil platform, Harvest. The purpose of this deployment was threefold:.(1) to demonstrate the ability of this style of buoy to calibrate the TOPEXIPOSEIDON (TIP) altimeter range measurement as it overflew the platform: (2) to demonstrate the ability of the buoy to map the ocean's surface over a 10‐km‐diameter circle surrounding platform Harvest; and (3) to demonstrate the ability of the buoy to measure the sea state accurately. During the 1.6‐h period surrounding the time of the TIP overflight, the buoy‐measured sea level never differed by more than 1.5 cm from the sea level measured by the National Oceanic and Atmospheric Administration (NOAA) acoustic tide gauge on the platform. The good agreement demonstrated the capability of this style of buoy to calibrate altimetric satellites. A paraboloid was fitted to sea level from 16 buoy locations surrounding the platform with a 2.5‐cm rms residual. On a 10‐km‐diameter circle centered on the platform, the paraboloid was within 2.4‐cm rms of the Ohio State University Mean Sea Surface (OSUMSS95). H u3 values calculated around the overflight times from the GPS buoy vertical positions had a mean difference of 2 cm and a standard deviation of 18 cm from values calculated from the University of Colorado (CU) pressure gauge system. At the time of the overflight, H u3 was near 2 m, while 3‐m seas were observed by the CU pressure system during measurements later in the day. This experiment demonstrates that a simple wave‐rider buoy design can give comparable accuracies to that of more complex GPS platforms such as the University of Colorado's spar buoy, but is much easier to deploy and capable of being used in more severe weather conditions. Thus, such a buoy and derivative designs have great potential for calibrating altimetric experiments, and for oceanographic and geodetic mapping experiments.  相似文献   

5.
Porites panamensis is a hermatypic coral present in the eastern Pacific Ocean. Skeletal growth parameters have been reported, but studies of the relationship between annual calcification rates and environmental controls are scarce. In this study, we investigated three aspects of the annual calcification rates of P. panamensis: growth parameters among three P. panamensis populations; the sea surface temperature as a calcification rate control spanning a latitudinal gradient; and calcium carbonate production among three sites. Growth parameters varied among the sites due to the colony growth form. Massive colonies in the north showed a higher calcification rate than encrusting colonies in the south (mean: 1.22–0.49 g CaCO3 · cm?2 · yr?1), where variations in calcification rates were related to growth rate (0.91–0.38 cm · yr?1) rather than to skeletal density differences (overall mean ± SD, 1.31 ± 0.04 g CaCO3 · cm?3). Our results showed a positive linear relationship between annual calcification rates and sea surface temperatures within these P. panamensis populations. Differences were related to distinct oceanographic environments (within and at the entrance of the Gulf of California) with different sea surface temperature regimes and other chemical properties. Different populations calcified under different environmental conditions. Calcium carbonate production was dependent upon the calcification rate and coral cover and so carbonate production was higher in the north (coral cover 12%) than in the south (coral cover 3.5). Thus, the studied sites showed low calcium carbonate production (0.25–0.43 kg CaCO3 · m?2 · yr?1). Our results showed reduced calcification rates, regional temperature regime control over calcification rates, different growth forms, low coral cover and low calcium carbonate production rates in P. panamensis.  相似文献   

6.
Microbioerosion rates and microbioeroder community structure were studied in four Kenyan protected coral-reef lagoons using shell fragments of Tridacna giant clams to determine their response to the influence of terrestrial run-off. Fourteen different microbioeroder traces from seven cyanobacteria, three green algae and four fungi species were identified. The river discharge-impacted reef and ‘pristine’ reef showed similar composition but higher microbioeroder abundance and total cyanobacteria- and chlorophyte-bioeroded areas when compared with the other study reefs. Cyanobacteria dominated during the north-east monsoon (NEM) relative to the south-east monsoon (SEM) season, with algae and cyanobacteria being major microbioeroders in the river-impacted and pristine reefs. The rate of microbioerosion varied between 4.3 g CaCO3 m?2 y?1 (SEM) and 134.7 g CaCO3 m?2 y?1 (NEM), and was highest in the river-impacted reef (127.6 g CaCO3 m?2 y?1), which was almost double that in the pristine reef (69.5 g CaCO3 m?2 y?1) and the mangrove-fringed reef (56.2 g CaCO3 m?2 y?1). The microbioerosion rates measured in this study may not be high enough to cause concern with regard to the health and net carbonate production of Kenya’s coral reefs. Nevertheless, predicted increases in the frequency and severity of stresses related to global climate change (e.g. increased sea surface temperature, acidification), as well as interactions with local disturbances and their influence on bioerosion, may be increasingly important in the future.  相似文献   

7.
《Ocean Engineering》2007,34(8-9):1069-1079
This paper presents the results of a series of centrifuge model tests performed to study the behavior of suction bucket foundations for a tension leg platform in the Bohai Bay, China. The target lateral loadings were from ice-sheet-induced structural vibrations at a frequency of 0.8–1.0 Hz. The results indicate that excess pore water pressures reach the highest values within a depth of 1.0–1.5 m below the mud line. The pore pressures and the induced settlement and lateral displacement increase with the amplitude of the cyclic loading. Two failure modes were observed: liquefaction in early excitations and settlement-induced problems after long-term excitations.  相似文献   

8.
为了助力海洋牧场减流防护工程, 研究Savonius型转轮阵列减流性能。作者建立Savonius型转轮三角阵列尾流场数值模型, 并通过水池实验验证准确性, 基于可靠数值模型探究转轮阵列尾涡减流机理, 研究三角阵列结构参数LXLY, 以及动力参数TSR、初始流速、旋向对整体减流性能的影响规律。结果表明,下游转轮产生的涡流呈现非对称分布, 并且产生更多涡流的转轮拥有更好的减流效果。另外, LX为3D和LY为2D时减流性能最佳。最后对比发现, 在叶尖速比为0.9~1.1减流效果更好; 初始流速大小不影响减流效果; 下游转子对称分布时, 随着上游转子改变旋转方向, 减流效果出现明显差异。  相似文献   

9.
《Marine Geology》2006,225(1-4):191-208
The pore water chemistry of mud volcanoes from the Olimpi Mud Volcano Field and the Anaximander Mountains in the eastern Mediterranean Sea have been studied for three major purposes: (1) modes and velocities of fluid transport were derived to assess the role of (upward) advection, and bioirrigation for benthic fluxes. (2) Differences in the fluid chemistry at sites of Milano mud volcano (Olimpi area) were compiled in a map to illustrate the spatial heterogeneity reflecting differences in fluid origin and transport in discrete conduits in near proximity. (3) Formation water temperatures of seeping fluids were calculated from theoretical geothermometers to predict the depth of fluid origin and geochemical reactions in the deeper subsurface.No indications for downward advection as required for convection cells have been found. Instead, measured pore water profiles have been simulated successfully by accounting for upward advection and bioirrigation. Advective flow velocities are found to be generally moderate (3–50 cm y 1) compared to other cold seep areas. Depth-integrated rates of bioirrigation are 1–2 orders of magnitude higher than advective flow velocities documenting the importance of bioirrigation for flux considerations in surface sediments. Calculated formation water temperatures from the Anaximander Mountains are in the range of 80 to 145 °C suggesting a fluid origin from a depth zone associated with the seismic decollement. It is proposed that at that depth clay mineral dehydration leads to the formation and advection of fluids reduced in salinity relative to sea water. This explains the ubiquitous pore water freshening observed in surface sediments of the Anaximander Mountain area. Multiple fluid sources and formation water temperatures of 55 to 80 °C were derived for expelled fluids of the Olimpi area.  相似文献   

10.
The vestimentiferan tubeworm Riftia pachyptila derives most or all of its nutrition from intracellular chemosynthetic bacterial symbionts. Because purified preparations of symbionts respire nitrate, possibly nitrite, and oxygen, host transport of nitrate is a topic of interest. In the present study, we have developed a nitrate detection assay that utilizes a nitrite reductase-deficient Escherichia coli strain for the reduction of nitrate to nitrite, which is then determined spectrophotometrically. Nitrate and nitrite concentrations were measured in the blood and coelomic fluids of R. pachyptila collected from hydrothermal vent sites at 9°N and 13°N. The blood was shown to have nitrate concentrations up to one hundred times that of ambient sea water (40 μM). Blood nitrate levels reached concentrations of>1 mM, while nitrite was measured in the range of 400-700 μM. The concentrations of nitrate and nitrite in the coelomic fluids were 150-240 μM and <20 μM, respectively. The nitrate determination technique we present here is simple, applicable for laboratory and shipboard use on sea water or biological fluids, and works reliably within the 0.5 to 2000 μM range.  相似文献   

11.
To unravel the mystery of the relationship between evaporates, Ca–Cl brines and accumulations of oil and N2 in the basins of ancient cratons, their N2, CH4 and He concentration ratios, as well as the isotopic composition (δ15N, δ13C and 3He/4He) were compared within the Volga-Ural basin. The study allowed subsalt fluids from Volga-Ural Basin to divide into two genetic groups. The first one is found within the basin's platform area. It includes Ca–Cl brines, high-viscosity heavy oil, bitumen and N2, which has concentrations higher than that of CH4 and positive values of δ15N. The second one is tied to the edge of the platform, the Ural Foredeep and Peri-Caspian Depression. In this group, only the oil and gas reservoirs, which have more CH4 than N2, and possibly negative values of δ15N, were discovered. Interaction of gas components in compared fluids indicates great role of degassing in the formation of their composition. It is suggested that the fluids of the first group (N2 > CH4) is what remains, and the second group (N2 < CH4) is what is disappears from the rocks during their metamorphism and degassing.  相似文献   

12.
The Esino Limestone of the western Southern Alps represents a differentiated Ladinian-Lower Carnian (?) carbonate platform comprised of margin, slope and peritidal inner platform facies up to 1000 m thick. A major regional subaerial exposure event lead to coverage by another peritidal Lower Carnian carbonate platform (Breno Formation). Multiphase dolomitization affected the carbonate sediments. Petrographic examinations identified at least three main generations of dolomites (D1, D2, and D3) that occur as both replacement and fracture-filling cements. These phases have crystal-size ranges of 3–35 μm (dolomicrite D1), 40–600 μm (eu-to subhedral crystals D2), and 200 μm to 5 mm (cavity- and fracture-filling anhedral to subhedral saddle dolomite D3), respectively.The fabric retentive near-micritic grain size coupled with low mean Sr concentration (76 ± 37 ppm) and estimated δ18O of the parent dolomitizing fluids of D1 suggest formation in shallow burial setting at temperature ∼ 45–50 °C with possible contributions from volcanic-related fluids (basinal fluids circulated in volcaniclastics or related to volcanic activity), which is consistent with its abnormally high Fe (4438 ± 4393 ppm) and Mn (1219 ± 1418 ppm) contents. The larger crystal sizes, homogenization temperatures (D2, 108 ± 9 °C; D3, 111 ± 14 °C) of primary two-phase fluid inclusions, and calculated salinity estimates (D2, 23 ± 2 eq wt% NaCl; D3, 20 ± 4 eq wt% NaCl) of D2 and D3 suggest that they formed at later stages under mid-to deeper burial settings at higher temperatures from dolomitizing fluids of higher salinity, which is supported by higher estimated δ18O values of their parent dolomitizing fluids. This is also consistent with their high Fe (4462 ± 4888 ppm; and 1091 ± 1183 ppm, respectively) and Mn (556 ± 289 ppm and 1091 ± 1183 ppm) contents, and low Sr concentrations (53 ± 31 ppm and 57 ± 24 ppm, respectively).The similarity in shale-normalized (SN) REE patterns and Ce (Ce/Ce*)SN and La (Pr/Pr*)SN anomalies of the investigated carbonates support the genetic relationship between the dolomite generations and their calcite precursor. Positive Eu anomalies, coupled with fluid-inclusion gas ratios (N2/Ar, CO2/CH4, Ar/He), high F concentration, high F/Cl and high Cl/Br molar ratios suggest an origin from diagenetic fluids circulated through volcanic rocks, which is consistent with the co-occurrence of volcaniclastic lenses in the investigated sequence.  相似文献   

13.
Currently, the Upper Ordovician Wufeng (O3w) and Lower Silurian Longmaxi (S1l) Formations in southeast Sichuan Basin have been regarded as one of the most important target plays of shale gas in China. In this work, using a combination of low-pressure gas adsorption (N2 and CO2), mercury injection porosimetry (MIP) and high-pressure CH4 adsorption, we investigate the pore characteristics and methane sorption capacity of the over-mature shales, and discuss the main controlling factors for methane sorption capacity and distribution of methane gas in pore spaces.Low pressure CO2 gas adsorption shows that micropore volumes are characterized by three volumetric maxima (at about 0.35, 0.5 and 0.85 nm). The reversed S-shaped N2 adsorption isotherms are type Ⅱ with hysteresis being noticeable in all the samples. The shapes of hysteresis loop are similar to the H3 type, indicating the pores are slit- or plate-like. Mesopore size distributions are unimodal and pores with diameters of 2–16 nm account for the majority of mesopore volume, which is generally consistent with MIP results. The methane sorption capacities of O3w-S1l shales are in a range of 1.63–3.66 m3/t at 30 °C and 10 MPa. Methane sorption capacity increase with the TOC content, surface area and micropore volume, suggesting organic matter might provide abundant adsorption site and enhance the strong methane sorption capacity. Samples with higher quartz content and lower clay content have larger sorption capacity. Our data confirmed that the effects of temperature and pressure on methane sorption capacity of shale formation are opposite to some extent, suggesting that, during the burial or uplift stage, the gas sorption capacity of hydrocarbon reservoirs can be expressed as a function of burial depth. Based on the adsorption energy theory, when the pore diameter is larger than 2 nm, much methane molecular will be adsorbed in pores space with distance to pore wall less than 2 nm; while free gas is mainly stored in the pore space with distance to pore wall larger than 2 nm. Distributions of adsorption space decrease with the increasing pore size, while free gas volume increase gradually, assuming the pore are cylindrical or sphere. Particularly, when the pore size is larger than 30 nm, the content of adsorbed gas space volume is very low and its contribution to the all gas content is negligible.  相似文献   

14.
Net community biological production in the euphotic zone of the ocean fuels organic matter and oxygen export from the upper ocean, which has a large influence on the atmospheric pressure of carbon dioxide and is the driving force for metabolite distributions in the sea. We determine the net annual biological oxygen production in the mixed layer of the northeast subarctic Pacific Ocean from in situ O2 and N2 measurements. Temperature, salinity, total gas pressure and O2 were measured every 3 h for 9 months in 2007 at about 3 m depth on a surface mooring at Station P (50°N, 145°W). The concentration of nitrogen gas, N2, determined from separate total gas pressure and pO2 measurements, was used as an inert tracer of the physical processes that induce gas departure from thermodynamic equilibrium with the atmosphere. We use a simple model of the ocean’s mixed layer along with the nitrogen concentration to constrain the importance of bubbles, gas exchange and horizontal advection, which are then used in the oxygen mass balance to derive net biological oxygen production. The mixed-layer oxygen mass balance is dominated by exchange with the atmosphere, and we determine a mean summertime oxygen production of 24 mmol O2 m?2 d?1. The annual pattern in the difference between the supersaturation of oxygen and nitrogen in the surface waters reveals very little net oxygen production during the winter at this location. The calculated annual net community production (NCP) of carbon from this new method, 2.5 mol m?2 yr?1, agrees to within its error of about×40% with previous determinations at this location from oxygen mass balance, NO3? draw down and 234Th measurements. This value is either indistinguishable from or lower than annual NCP measurements in the subtropical North Pacific, indicating that there is no experimental evidence for differences in annual NCP between the subarctic and subtropical North Pacific Ocean.  相似文献   

15.
Progress in the introduction of coulometry for the analysis of total carbon dioxide (TCO2) in marine waters is described. An extractor—stripper removes CO2 that is measured coulometrically by the quantity of electricity (coulombs) used to electrogenerate OH? ions for the titration of the acid formed by the reaction of CO2 and ethanolamine. The equivalence point is detected photometrically with thymolphthalein as the indicator, and Faraday's Law relates coulombs to equivalents of titrant generated and CO2 determined so that there are no standard curves needed or titrants to standardize or store. Accuracy was determined by adding gelatin capsules containing 100–1500 μg C of pure CaCO3 into the stripper, and accuracies of better than ± 1 μg C were achieved. The best precision for natural seawater (± 1 standard error) of ± 0.5 μmol l?1 was found for 17 samples of Bermuda coastal waters having a mean TCO2 of 2007.2 μmol l?1 (0.05% CV). Sources of error and precautions are discussed. This method, which has been used successfully at sea, can be used to study a variety of marine phenomena involving TCO2.  相似文献   

16.
Side-scan sonar mapping and ground-truthing of the Norwegian–Barents–Svalbard continental margin shed new light on shelf glaciation, mass wasting, hydrates, and features like the Håkon Mosby mud volcano (HMMV), reflecting upward mobility of gas, pore fluids, and sediments. Detailed HMMV examination revealed thermal gradients to 10°/m, bottom-water CH4 and temperature anomalies, H2S- and CH4-based chemosynthetic ecosystems, and subbottom methane hydrate (to 25%). Seismic and chemical data suggest HMMV origins at 2–3?km depth within the 6-km-thick depocenter. The HMMV and mound fields bordering the Bjørnøyrenna slide valley and pockmarks bordering the Storegga slide may all have formed in response to sediment failure.  相似文献   

17.
Detailed lithological, biogeochemical and molecular biological analyses of core sediments collected in 2002–2006 from the vicinity of the Malenky mud volcano, Lake Baikal, reveal considerable spatial variations in pore water chemical composition, with total concentrations of dissolved salts varying from 0.1 to 1.8‰. Values of methane δ13С in the sediments suggest a biogenic origin (δ13Сmin. ?61.3‰, δ13Сmax. ?72.9‰). Rates of sulphate reduction varied from 0.001 to 0.7 nmol cm?3 day?1, of autotrophic methanogenesis from 0.01 to 2.98 nmol CH4 cm?3 day?1, and of anaerobic oxidation of methane from 0 to 12.3 nmol cm?3 day?1. These results indicate that methanogenic processes dominate in gas hydrate-bearing sediments of Lake Baikal. Based on clone libraries of 16S rRNA genes amplified with Bacteria- and Archaea-specific primers, investigation of microbial diversity in gas hydrate-bearing sediments revealed bacterial 16S rRNA clones classified as Deltaproteobacteria, Gammaproteobacteria, Chloroflexi and OP11. Archaeal clone sequences are related to the Crenarchaeota and Euryarchaeota. Baikal sequences of Archaea form a distinct cluster occupying an intermediate position between the marine groups ANME-2 and ANME-3 of anaerobic methanotrophs.  相似文献   

18.
Vodyanitskii mud volcano is located at a depth of about 2070 m in the Sorokin Trough, Black sea. It is a 500-m wide and 20-m high cone surrounded by a depression, which is typical of many mud volcanoes in the Black Sea. 75 kHz sidescan sonar show different generations of mud flows that include mud breccia, authigenic carbonates, and gas hydrates that were sampled by gravity coring. The fluids that flow through or erupt with the mud are enriched in chloride (up to ∼650 mmol L−1 at ∼150-cm sediment depth) suggesting a deep source, which is similar to the fluids of the close-by Dvurechenskii mud volcano. Direct observation with the remotely operated vehicle Quest revealed gas bubbles emanating at two distinct sites at the crest of the mud volcano, which confirms earlier observations of bubble-induced hydroacoustic anomalies in echosounder records. The sediments at the main bubble emission site show a thermal anomaly with temperatures at ∼60 cm sediment depth that were 0.9 °C warmer than the bottom water. Chemical and isotopic analyses of the emanated gas revealed that it consisted primarily of methane (99.8%) and was of microbial origin (δD-CH4 = −170.8‰ (SMOW), δ13C-CH4 = −61.0‰ (V-PDB), δ13C-C2H6 = −44.0‰ (V-PDB)). The gas flux was estimated using the video observations of the ROV. Assuming that the flux is constant with time, about 0.9 ± 0.5 × 106 mol of methane is released every year. This value is of the same order-of-magnitude as reported fluxes of dissolved methane released with pore water at other mud volcanoes. This suggests that bubble emanation is a significant pathway transporting methane from the sediments into the water column.  相似文献   

19.
W. Balzer 《Marine Chemistry》1985,15(4):379-380
Representative profiles of inorganic nitrogenous species dissolved in interstitial waters of coral reef sands are presented. Ammonium is the dominant nitrogenous species in these pore waters with concentrations of up to 40 μm. Nitrate is present but in lower concentrations. Nitrite is found only occasionally in trace amounts. Computations of diffusive fluxes and inferences concerning microbial activity are derived from the profile structures. Computed flux rates of nitrogenous species from the sediment to the water column range between 0.75 and 1.37 μM m?1 h?1. These inputs may represent a significant source of recycled nitrogen to the primary producers of the coral reef ecosystem.  相似文献   

20.
杜宇  王凯  高子予 《海洋工程》2022,40(4):121-128
针对半潜漂浮式风电基础初步选型,采用Pareto-Optimal评价方法对不同吃水、平台立柱直径、立柱间距和垂荡板直径四个参数的不同组合进行分析比较。基于浮体动力学频域计算方法,采用我国阳江某海域极限波浪条件计算得到叶轮中心水平加速度,同时考虑完整稳性的计算结果。对比分析表明平台吃水和立柱直径宜选择适中的取值,较大的排水量和立柱总体积并不会显著减小叶轮中心水平加速度。垂荡板对于改善平台整体性能是较为敏感的,垂荡板与立柱的直径比存在一定的最佳范围。平台立柱间距是影响平台运动性能最大的因素,增大立柱间距可以有效地降低叶轮中心水平加速度,但立柱间距的增大对立柱间的撑杆结构强度以及平台整体的建造和下水提出了较大的挑战。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号