共查询到20条相似文献,搜索用时 15 毫秒
1.
Integer ambiguity resolution (IAR) in precise point positioning (PPP) using GPS observations has been well studied. The main challenge remaining is that the first ambiguity fixing takes about 30 min. This paper presents improvements made using GPS+GLONASS observations, especially improvements in the initial fixing time and correct fixing rate compared with GPS-only solutions. As a result of the frequency division multiple access strategy of GLONASS, there are two obstacles to GLONASS PPP-IAR: first and most importantly, there is distinct code inter-frequency bias (IFB) between satellites, and second, simultaneously observed satellites have different wavelengths. To overcome the problem resulting from GLONASS code IFB, we used a network of homogeneous receivers for GLONASS wide-lane fractional cycle bias (FCB) estimation and wide-lane ambiguity resolution. The integer satellite clock of the GPS and GLONASS was then estimated with the wide-lane FCB products. The effect of the different wavelengths on FCB estimation and PPP-IAR is discussed in detail. We used a 21-day data set of 67 stations, where data from 26 stations were processed to generate satellite wide-lane FCBs and integer clocks and the other 41 stations were selected as users to perform PPP-IAR. We found that GLONASS FCB estimates are qualitatively similar to GPS FCB estimates. Generally, 98.8% of a posteriori residuals of wide-lane ambiguities are within \(\pm 0.25\) cycles for GPS, and 96.6% for GLONASS. Meanwhile, 94.5 and 94.4% of narrow-lane residuals are within 0.1 cycles for GPS and GLONASS, respectively. For a critical value of 2.0, the correct fixing rate for kinematic PPP is only 75.2% for GPS alone and as large as 98.8% for GPS+GLONASS. The fixing percentage for GPS alone is only 11.70 and 46.80% within 5 and 10 min, respectively, and improves to 73.71 and 95.83% when adding GLONASS. Adding GLONASS thus improves the fixing percentage significantly for a short time span. We also used global ionosphere maps (GIMs) to assist the wide-lane carrier-phase combination to directly fix the wide-lane ambiguity. Employing this method, the effect of the code IFB is eliminated and numerical results show that GLONASS FCB estimation can be performed across heterogeneous receivers. However, because of the relatively low accuracy of GIMs, the fixing percentage of GIM-aided GPS+GLONASS PPP ambiguity resolution is very low. We expect better GIM accuracy to enable rapid GPS+GLONASS PPP-IAR with heterogeneous receivers. 相似文献
2.
Xingxing Li Xin Li Yongqiang Yuan Keke Zhang Xiaohong Zhang Jens Wickert 《Journal of Geodesy》2018,92(6):579-608
This paper focuses on the precise point positioning (PPP) ambiguity resolution (AR) using the observations acquired from four systems: GPS, BDS, GLONASS, and Galileo (GCRE). A GCRE four-system uncalibrated phase delay (UPD) estimation model and multi-GNSS undifferenced PPP AR method were developed in order to utilize the observations from all systems. For UPD estimation, the GCRE-combined PPP solutions of the globally distributed MGEX and IGS stations are performed to obtain four-system float ambiguities and then UPDs of GCRE satellites can be precisely estimated from these ambiguities. The quality of UPD products in terms of temporal stability and residual distributions is investigated for GPS, BDS, GLONASS, and Galileo satellites, respectively. The BDS satellite-induced code biases were corrected for GEO, IGSO, and MEO satellites before the UPD estimation. The UPD results of global and regional networks were also evaluated for Galileo and BDS, respectively. As a result of the frequency-division multiple-access strategy of GLONASS, the UPD estimation was performed using a network of homogeneous receivers including three commonly used GNSS receivers (TRIMBLE NETR9, JAVAD TRE_G3TH DELTA, and LEICA). Data recorded from 140 MGEX and IGS stations for a 30-day period in January in 2017 were used to validate the proposed GCRE UPD estimation and multi-GNSS dual-frequency PPP AR. Our results show that GCRE four-system PPP AR enables the fastest time to first fix (TTFF) solutions and the highest accuracy for all three coordinate components compared to the single and dual system. An average TTFF of 9.21 min with \(7{^{\circ }}\) cutoff elevation angle can be achieved for GCRE PPP AR, which is much shorter than that of GPS (18.07 min), GR (12.10 min), GE (15.36 min) and GC (13.21 min). With observations length of 10 min, the positioning accuracy of the GCRE fixed solution is 1.84, 1.11, and 1.53 cm, while the GPS-only result is 2.25, 1.29, and 9.73 cm for the east, north, and vertical components, respectively. When the cutoff elevation angle is increased to \(30{^{\circ }}\), the GPS-only PPP AR results are very unreliable, while 13.44 min of TTFF is still achievable for GCRE four-system solutions. 相似文献
3.
GLONASS phase bias estimation and its PPP ambiguity resolution using homogeneous receivers 总被引:1,自引:0,他引:1
Integer ambiguity resolution (IAR) appreciably improves the position accuracy and shortens the convergence time of precise point positioning (PPP). However, while many studies are limited to GPS, there is a need to investigate the performance of GLONASS PPP ambiguity resolution. Unfortunately, because of the frequency-division multiple-access strategy of GLONASS, GLONASS PPP IAR faces two obstacles. First, simultaneously observed satellites operate at different wavelengths. Second and most importantly, distinct inter-frequency bias (IFB) exists between different satellites. For the former, we adopt an undifferenced method for uncalibrated phase delay (UPD) estimation and proposed an undifferenced PPP IAR strategy. We select a set of homogeneous receivers with identical receiver IFB to perform UPD estimation and PPP IAR. The code and carrier phase IFBs can be absorbed by satellite wide-lane and narrow-lane UPDs, respectively, which is in turn consistent with PPP IAR using the same type of receivers. In order to verify the method, we used 50 stations to generate satellite UPDs and another 12 stations selected as users to perform PPP IAR. We found that the GLONASS satellite UPDs are stable in time and space and can be estimated with high accuracy and reliability. After applying UPD correction, 91 % of wide-lane ambiguities and 99 % of narrow-lane ambiguities are within (?0.15, +0.15) cycles of the nearest integer. After ambiguity resolution, the 2-hour static PPP accuracy improves from (0.66, 1.42, 1.55) cm to (0.38, 0.39, 1.39) cm for the north, east, and up components, respectively. 相似文献
4.
A comparison of three PPP integer ambiguity resolution methods 总被引:2,自引:5,他引:2
Precise point positioning (PPP) integer ambiguity resolution with a single receiver can be achieved using advanced satellite augmentation corrections. Several PPP integer ambiguity resolution methods have been developed, which include the decoupled clock model, the single-difference between-satellites model, and the integer phase clock model. Although similar positioning performances have been demonstrated, very few efforts have been made to explore the relationship between those methods. Our aim is to compare the three PPP integer ambiguity resolution methods for their equivalence. First, several assumptions made in previous publications are clarified. A comprehensive comparison is then conducted using three criteria: the integer property recovery, the system redundancy, and the necessary corrections through which the equivalence of these three PPP integer ambiguity resolution methods in the user solution is obtained. 相似文献
5.
6.
Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system 总被引:1,自引:1,他引:1
GNSS single-epoch real-time kinematic (RTK) positioning depends on correct ambiguity resolution. If the number of observed satellites in a single epoch is insufficient, which often happens with a standalone GNSS system, the ambiguity resolution is difficult to achieve. China’s BeiDou Navigation Satellite System has been providing continuous passive positioning, navigation and timing services since December 27, 2012, covering China and the surrounding area. This new system will increase the number of satellites in view and will have a significant effect on successful ambiguity resolution. Since the BeiDou system is similar to GPS, the procedure of data processing is easier than that for the Russian GLONASS system. We briefly introduce the time and the coordinate system of BeiDou and also the BeiDou satellite visibility in China, followed by the discussion on the combined GPS/BeiDou single-epoch algorithm. Experiments were conducted and are presented here, in which the GPS/BeiDou dual-frequency static data were collected in Wuhan with the baseline distance varying from 5 to 13 km, and processed in separate and combined modes. The results indicate that, compared to a standalone GPS or BeiDou system, the combined GNSS system can increase the successful ambiguity fixing rate for single epochs and can also improve the precision of short baselines determination. 相似文献
7.
8.
9.
首先从参数估计、精度评定和质量控制角度论证了在精密定位中随机模型的重要性;然后基于短基线单差观测模型,采用严密的方差分量估计方法计算了不同频率、不同卫星的相位和伪距观测值精度,任意频率之间的交叉相关性以及不同频率的相位和伪距观测值在不同时间间隔上的时间相关性;随后分析了随机模型对基线精度和整体检验统计量的影响。结果表明:北斗用户接收机数据精度都与高度角相关,建议采用高度角指数加权函数;北斗二号3个频率相位观测值之间存在不同程度的相关性,其他类型观测值之间的交叉相关性不明显,不同频率的相位和伪距观测值时间相关性较明显,高精度应用中需关注。另外,正确的随机模型计算的基线精度更接近理论精度。本文为用户正确认识北斗系统3个类型卫星观测信息、正确使用北斗系统提供支撑。 相似文献
10.
Efficiency of carrier-phase integer ambiguity resolution for precise GPS positioning in noisy environments 总被引:1,自引:0,他引:1
Precise GPS positioning relies on tracking the carrier-phase. The fractional part of carrier-phase can be measured directly
using a standard phase-locked loop, but the integer part is ambiguous and the ambiguity must be resolved based on sequential
carrier-phase measurements to ensure the required positioning precision. In the presence of large phase-measurement noise,
as can be expected in a jamming environment for example, the amount of data required to resolve the integer ambiguity can
be large, which requires a long time for any generic integer parameter estimation algorithm to converge. A key question of
interest in significant applications of GPS where fast and accurate positioning is desired is then how the convergence time
depends on the noise amplitude. Here we address this question by investigating integer least-sqaures estimation algorithms.
Our theoretical derivation and numerical experiments indicate that the convergence time increases linearly with the noise
variance, suggesting a less stringent requirement for the convergence time than intuitively expected, even in a jamming environment
where the phase noise amplitude is large. This finding can be useful for practical design of GPS-based systems in a jamming
environment, for which the ambiguity resolution time for precise positioning may be critical. 相似文献
11.
Success probability of integer GPS ambiguity rounding and bootstrapping 总被引:19,自引:7,他引:19
P. J. G. Teunissen 《Journal of Geodesy》1998,72(10):606-612
Global Positioning System ambiguity resolution is usually based on the integer least-squares principle (Teunissen 1993).
Solution of the integer least-squares problem requires both the execution of a search process and an ambiguity decorrelation
step to enhance the efficiency of this search. Instead of opting for the integer least-squares principle, one might also want
to consider less optimal integer solutions, such as those obtained through rounding or sequential rounding. Although these
solutions are less optimal, they do have one advantage over the integer least-squares solution: they do not require a search
and can therefore be computed directly. However, in order to be confident that these less optimal solutions are still good
enough for the application at hand, one requires diagnostic measures to predict their rate of success. These measures of confidence
are presented and it is shown how they can be computed and evaluated.
Received: 24 March 1998 / Accepted: 8 June 1998 相似文献
12.
13.
Rapid initialization of real-time PPP by resolving undifferenced GPS and GLONASS ambiguities simultaneously 总被引:4,自引:2,他引:4
Rapid initialization of real-time precise point positioning (PPP) has constantly been a difficult problem. Recent efforts through multi-GNSS and multi-frequency data, though beneficial indeed, have not proved sufficiently effective in reducing the initialization periods to far less than 10 min. Though this goal can be easily reached by introducing ionosphere corrections as accurate as a few centimeters, a dense reference network is required which is impractical for wi de-area applications. Leveraging the latest development of GLONASS PPP ambiguity resolution (PPP-AR) technique, we propose a composite strategy, where simultaneous GPS and GLONASS dual-frequency PPP-AR is carried out, and herein, the reliability of partial AR improves dramatically. We used 14 days of data from a German network and divided them into hourly data to test this strategy. We found that the initialization periods were shortened drastically from over 25 min when only GPS data were processed to about 6 min when GPS and GLONASS PPP-AR were accomplished simultaneously. More encouragingly, over 50% of real-time PPP solutions could be initialized successfully within 5 min through our strategy, in contrast to only 4% when only GPS data were used. We expect that our strategy can provide a promising route to overcoming the difficulty of achieving PPP initializations within a few minutes. 相似文献
14.
为进一步改善精密单点定位(PPP)探测大气可降水量(PWV)的性能,本文提出采用GPS/BDS/GLONASS/Galileo组合PPP进行PWV反演的方法,并利用国内3个MGEX(multi-GNSS experiment)观测站的实测数据,对GPS/BDS/GLONASS/Galileo组合PPP在大气水汽探测方面的性能进行了评估。试验结果表明:相较于GPS PPP、GPS/BDS组合PPP和GPS/GLONASS组合PPP,GPS/BDS/GLONASS/Galileo组合PPP估计天顶对流层延迟(ZTD)的初始化时间分别缩短了33%、26%、20%,且能获得更高精度的ZTD估值和PWV信息,在大气水汽探测方面的性能更优。 相似文献
15.
Precise point positioning with ambiguity resolution (PPP-AR) is a powerful tool for geodetic and time-constrained applications that require high precision. The ... 相似文献
16.
长距离网络RTK是实现GPS/BDS高精度实时定位的主要手段之一,其核心是长距离参考站网GPS/BDS整周模糊度的快速准确确定。本文提出了一种长距离GPS/BDS参考站网载波相位整周模糊度解算方法,首先利用GPS双频观测数据计算和确定宽巷整周模糊度,同时利用BDS的B2、B3频率观测值确定超宽巷整周模糊度。然后建立GPS载波相位整周模糊度和大气延迟误差的参数估计模型,附加双差宽巷整周模糊度的约束,解算双差载波相位整周模糊度,并建立参考站网大气延迟误差的空间相关模型。根据B2、B3频率的超宽巷整周模糊度建立包含大气误差参数的载波相位整周模糊度解算模型,利用大气延迟误差空间相关模型约束BDS双差载波相位整周模糊度的解算。克服了传统的使用无电离层组合值解算整周模糊度的不利影响。采用实测长距离CORS网GPS、BDS多频观测数据进行算法验证,试验结果证明该方法可实现长距离参考站网GPS/BDS载波相位整周模糊度的准确固定。 相似文献
17.
18.
The impact of observation selection, observation combination and model parameterization on GPS carrier phase ambiguity resolution and position accuracy under operational conditions is investigated. The impact of an ionospheric bias for a generic linear combination of L1 and L2 measurements is assessed and the results are used to clearly outline the desirable characteristics for improving ambiguity resolution versus positioning accuracy performance. Ambiguity resolution performance and position accuracy are shown for widelane (WL), L1-only, and ionospheric-free (IF) combinations. Several techniques for dealing with the ionospheric bias are also presented and compared, including stochastic ionospheric modelling. Multiple carrier phase combination solutions estimated in the same filter are also compared. The concept of an optimal processing strategy—in terms of both reliable ambiguity resolution and high accuracy positions—is presented. In total, eight strategies, which vary in observables and parameters, are tested on several datasets ranging from 13 km to 43 km. 相似文献
19.
Altti Jokinen Shaojun Feng Wolfgang Schuster Washington Ochieng Chris Hide Terry Moore 《地球空间信息科学学报》2013,16(3):141-148
Traditional positioning methods, such as conventional Real Time Kinematic (cRTK) rely upon local reference networks to enable users to achieve high-accuracy positioning. The need for such relatively dense networks has significant cost implications. Precise Point Positioning (PPP) on the other hand is a positioning method capable of centimeter-level positioning without the need for such local networks, hence providing significant cost benefits especially in remote areas. This paper presents the state-of-the-art PPP method using both GPS and GLONASS measurements to estimate the float position solution before attempting to resolve GPS integer ambiguities. Integrity monitoring is carried out using the Imperial College Carrier-phase Receiver Autonomous Integrity Monitoring method. A new method to detect and exclude GPS base-satellite failures is developed. A base-satellite is a satellite whose measurements are differenced from other satellite’s measurements when using between-satellite-differenced measurements to estimate position. The failure detection and exclusion methods are tested using static GNSS data recorded by International GNSS Service stations both in static and dynamic processing modes. The results show that failure detection can be achieved in all cases tested and failure exclusion can be achieved for static cases. In the kinematic processing cases, failure exclusion is more difficult because the higher noise in the measurement residuals increases the difficulty to distinguish between failures associated with the base-satellite and other satellites. 相似文献