首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The number and size of bacteria at four depths (0–1, 5–6, 10–11 and 20–21 cm) in a North Carolina salt marsh were minotored by direct counts for 13 months. The number of bacteria reached a maximum of about 1·4 × 1010 cells cm?3 at the sediment surface in October, corresponding to the period of Spartina alterniflora die-back. Cell numbers were lowest and most consistent throughout the year at the 20 cm depth of sediment. Cell volumes averaged 0·2 μm3 at the marsh surface and decreased with depth. Mean standing crop of bacteria to a depth of 20 cm of sediment was about 14 g bacterial carbon m?2. In surface sediments bacteria contribute up to 15% and algae up to 10% of total living microbial biomass as estimated by adenosine triphosphate (ATP). Bacteria were the major biomass component at sediment depths of 5, 10 and 20 cm. At all depths the microbial community contributes < 4% total organic carbon and < 8% of total nitrogen.  相似文献   

2.
An unditched salt marsh-creek drainage basin (Holland Glade Marsh, Lewes, Delaware) has a sedimentation rate of 0·5 cm year?1. During normal, storm-free conditions, the creek carries negligible amounts of sand and coarse silt. Of the material in the waters flooding the marsh surface, over 80% disappears from the floodwaters within 12 m of the creek. About one-half of the lost material is theoretically too fine to settle, even if flow were not turbulent; however, sediment found on Spartina stems can account for the loss.The quantity of suspended sediment that does reach the back marsh during these normal tides is inadequate to maintain the marsh surface against local sea level rise. This suspended sediment is also much finer than the deposited sediments. Additionally, remote sections of low marsh, sections flooded by only the highest spring tides, have 15–30 cm of highly inorganic marsh muds.This evidence indicates that normal tidal flooding does not produce sedimentation in Holland Glade. Study of the effects of two severe storms, of a frequency of once per year, suggests that such storms can deposit sufficient sediment to maintain the marsh.The actual deposition of fine-grained sediments (fine silt and clay) appears to result primarily from biological trapping rather than from settling. In addition, this study proposes that the total sedimentation on mature marshes results from a balance between tidal and storm sedimentation. Storms will control sediment supply and movement on micro- and meso-tidal marshes, and will have less influence on macro-tidal marshes.  相似文献   

3.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

4.
The products of 35S-sulphate reduction by sedimentary bacteria were measured at two sites in a salt marsh on the east coast of England. Non-acid-volatile products were measured, after acid-volatile sulphide was removed, by their reduction to sulphide by digestion with tin. The proportion of the sulphate reduced to tin-reducible products varied between 25% in a salt marsh pan and 61% in creek sediment, over a 0–25 cm depth profile. There were also variations with depth at each site in the proportions of sulphate reduced to tin-reducible products. Further examination revealed differences in the proportions of sulphate which were reduced to free sulphide, acid-volatile sulphide, sulphur or pyrite at the two sites. The data suggest that previous work which did not measure non-acid-volatile products underestimated sulphate reduction rates by three-fold in the creek site, but by only one third in the pan.  相似文献   

5.
Salt marshes are widely studied due to the broad range of ecosystem services they provide including serving as crucial wildlife habitat and as hotspots for biogeochemical cycling. Nutrients such as nitrogen (N), phosphorus (P), and carbon (C) are well studied in these systems. However, salt marshes may also be important environments for the cycling of another key nutrient, silica (Si). Found at the land–sea interface, these systems are silica replete with large stocks in plant biomass, sediments, and porewater, and therefore, have the potential to play a substantial role in the transformation and export of silica to coastal waters. In an effort to better understand this role, we measured the fluxes of dissolved (DSi) and biogenic (BSi) silica into and out of two tidal creeks in a temperate, North American (Rowley, Massachusetts, USA) salt marsh. One of the creeks has been fertilized from May to September for six years allowing us to examine the impacts of nutrient addition on silica dynamics within the marsh. High-resolution sampling in July 2010 showed no significant differences in Si concentrations between the fertilized and reference creeks with dissolved silica ranging from 0.5 to 108 μM and biogenic from 2.0 to 56 μM. Net fluxes indicated that the marsh is a point source of dissolved silica to the estuary in the summer with a net flux of approximately 169 mol h−1, demonstrating that this system exports DSi on the same magnitude as some nearby, mid-sized rivers. If these findings hold true for all salt marshes, then these already valuable regions are contributing yet another ecosystem service that has been previously overlooked; by exporting DSi to coastal receiving waters, salt marshes are actively providing this important nutrient for coastal primary productivity.  相似文献   

6.
Floating macrodetritus transport was determined on 72 tidal cycles over 18 months. Floating macrodetritus was exported from the marsh-estuarine ecosystem to the Atlantic Ocean, but export was low (less than 1% of Spartina net aerial primary production). Season and processes within the system seem to determine ebb flux, while flood flux is best explained by a semi-lunar cycle or high water. The extensive observations reported here indicate macrodetritus probably should not be considered a major source of organic carbon export from marsh-estuarine systems.  相似文献   

7.
The effects of tide and wind upon the distribution and transport of bacteria and diatoms in the aqueous surface microlayers of a Massachusetts and San Francisco Bay salt marsh were examined. The compression of the surface films by both tide and wind resulted in significant enrichments of bacterioneuston. At the San Francisco Bay site, significant numbers of diatoms were transported within the microlayer over a tidal cycle.  相似文献   

8.
9.
Losses of 15N labelled nitrogen in a Spartina alterniflora salt marsh was measured over three growing seasons. Labelled NH4+N equivalent to 100 μg 15N g?1 of dry soil was added in four instalments over an eight week period. Recovery of the added nitrogen ranged from 93% 5 months after addition of the NH4+N to 52% at the end of the third growing season which represented a nitrogen loss equivalent to 3·4 gNm?2. The availability of the labelled NH4+N incorporated into the organic fraction was estimated by calculation of the rate of mineralization. The time required for mineralization of 1% of the tagged organic N increases progressively with succeeding cuttings of the S. alterniflora and ranged from 152 to 299 days. Only 2% of the nitrogen applied as 15N labelled plant material to the marsh surface in the fall could be accounted for in S. alterniflora the following season.  相似文献   

10.
11.
A boundary integral equation method (BIEM) model and three differently formulated finite element method (FEM) models were implemented to explore the spatial and temporal patterns in marsh pore water seepage that each generated. The BIEM model is based on the Laplace equation coupled to a dynamic free-surface condition that assumes that, as the water-table changes, the aquifer instantaneously loses or gains an amount of water equal to the change in head times the specific yield. The FEM models all implement a simplified Richards equation that allows gradual desaturation or resaturation and thus flow in both the saturated and unsaturated zones of the aquifer. Two of the FEM models are based on the governing equation for the USGS model SUTRA and thus take into account fluid and aquifer compressibility. One of these was modified to take into account the effect of tidal loading on the total stress, which is assumed to be constant in the derivation of the original version of SUTRA. The third FEM model assumes that neither the fluid or aquifer matrix is compressible so that changes in storage are due solely to changes in saturation. The unmodified SUTRA model generated instantaneous boundary fluxes that were up to two orders of magnitude greater, and spatially more uniform, than those of the other models. The FEM model without compressibility generated spatial and temporal patterns of the boundary fluxes very similar to those produced by the BIEM model. The SUTRA model with the tidal stress modification gave fluxes similar in magnitude to the BIEM and no compressibility models but with distinctly different distributions in space and time. These results indicate that accurate simulation of seepage from marsh soils is highly sensitive to aquifer compressibility and to proper formulation of the effect of tidal loading on the total stress in the aquifer. They also suggest that accurate simulation may require total stress correction not only for tidal loading but for changes in the water table as well. Finally, to aid the development of methods for the measurement of compressibility, we present a schematic, pore-scale model to illustrate the factors that may govern the compressibility of marsh soils.  相似文献   

12.
Replicate portions of a Delaware salt marsh were enclosed in cylindrical microcosms and exposed to elevated levels of inorganic arsenic (arsenate). All biotic and abiotic components in dosed cylinders rapidly incorporated arsenic. Spartina blades showed the greatest arsenic enrichment, with dosed plants incorporating arsenic concentrations an order of magnitude higher than controls. Spartina detritus and sediments also exhibited greatly elevated arsenic concentrations. Virtually all of the arsenic was incorporated into plant tissue or strongly sorbed to cell surfaces. Thus, elevated arsenic concentrations in estuarine waters will be reflected in living and non-living components of a salt marsh ecosystem, implying that increased arsenic will be available to organisms within the marsh ecosystem.  相似文献   

13.
Pre-weighed packets of Spartina alterniflora and of plastic (polypropylene) twine were placed in a salt marsh pool and recovered on 40 dates spanning 14 months. New packets were placed out regularly to provide a contrast with ageing material. Twelve species of copepods were extracted, counted, and identified. Dry weight and Kjeldahl-nitrogen were determined for Spartina packets.Eight species of copepods, Amphiascus pallidus, Onychocamptus mohammed, Cletocamptus deitersei, Halicyclops sp., Harpacticus chelifer, Mesochra lilljeborgii, Metis jousseaumei and Nitocra sp. were found in higher densities on old grass or plastic packets than on new. The quantity of material was important in that the relative attractiveness of old grass was much lower early in the second year when 7–15% dw and 0·7% nitrogen remained than early in the first year when over 60% dw and 2·0% nitrogen remained. Old plastic polypropylene was equally or more attractive than old grass to 7 of 8 species, therefore, nitrogen decline in old grass was not the factor making it less attractive. Once aged, the quantity of substrate was more important than its quality. Apparently, this is due to colonization by microflora or settlement of detritus but these were not studied. The four clear exceptions to these trends were Darcythompsonia fairliensis and Eurytemora affinis which showed highest densities 72% and 50% of the time in new grass, Apocyclops spartinus with 70% in grass and equal numbers between old and new packets and Acartia tonsa a bay calanoid with 82% of highest densities in the water column and only two occurrences out of 40 dates in the packets.  相似文献   

14.
15.
A 22-month study was conducted to determine the exchange of nitrogen and phosphorus between a mesohaline vegetated marsh in the Carter's Creek area of Virginia and the surrounding estuary, focusing on the role of the vegetated marsh surface in the processing of these constituents. On an annual basis there was a removal of NH4+, PO43?, NO3?, dissolved organic nitrogen, dissolved organic phosphorus, particulate nitrogen and particulate phosphorus from the tidal water as it resided on the vegetated marsh. Only nitrite was transported from the marsh to the estuary. Most of the nitrogen and phosphorus species showed distinct seasonal trends with respect to the direction of transport except nitrate and orthophosphate. The ammonium flux data indicates that this nutrient was removed from the inundating water during late spring and fall, with a slight release of this constituent into the tidal water during the late summer. The transport of nitrite was from the estuary to the marsh for most of the year except during the fall. The large release of this nutrient into the tidal water at this time is associated with the senescence of the marsh vegetation. There was a large removal of DON from the tidal water during the fall, while the flux of DOP was from the estuary to the marsh for most of the year except during the summer. The largest removal of particulate nitrogen and phosphorus from the tidal water occurred during the summer months when the turbidity of the tidal water was highest, especially when wave scouring of the mudflats brings material into the water column. A loss of particulate nitrogen from the marsh to the estuary was evident during the fall and winter.  相似文献   

16.
Water flows, concentrations of total (TOC), dissolved (DOC), and particulate (POC) organic carbon and seston were monitored for 52 diel periods in the single creek draining a 270-ha Spartina patens-Distichlis spicata marsh on the upper Texas coast. Rainfall, creek water flows, and water levels in the creek and on the marsh were measured by recording instruments.Rainfall accounted for most marsh flooding, and water outflow was significantly correlated with both rainfall and marsh water level. Creek flows were predominantly outward because microtopographic features and dense vegetation restricted overmarsh water flows and thereby reduced tidal flooding while extending the time of precipitation runoff. Concentrations of organic carbon in water leaving the marsh were highest in spring and summer and averaged 25·62, 21·41 and 3·35 mg l?1 of TOC, DOC and POC, respectively. These were 9·34, 9·93 and 0·04 mg l?1, respectively, higher than bay water. Most POC was 0·3–28 μm in diameter. Seston > 28μ leaving the marsh was 95% amorphous material; the rest was plankton, grass particles and fecal pellets. Loss of organic carbon was directly correlated with net water flux, and thus rainfall accounted for most carbon loss. Net carbon loss averaged 196 kg TOC, 150 kg DOC and 32 kg POC per day. Net annual loss was 2·4–5·5% of net aerial primary productivity (NAPP), or 21·55-30·09 g TOC m?2 year?1.Export from this marsh falls within the range found for other marshes and the data collectively indicate that coastal marshes are not losing as much organic carbon as has been suggested by indirect measurements. The discrepancy between potential and realized export is explained by the fact that export is not a simple removal of excess detritus by tidal action but is a more complicated process mediated by the interaction of additional factors such as rainfall, vegetation structure, microtopographic variation and decomposition, which can serve to reduce the amount and quality of NAPP exported.  相似文献   

17.
Differences in macroinvertebrate community structure and composition were examined from April 1980 to March 1981 in three potholes that had been ditched for mosquito control and three natural (i.e. unditched) potholes, which are located in a San Francisco Bay, California, U.S.A. salt marsh. Measurements of incipient tidal flooding into potholes (i.e. pothole inundation threshold) indicated that these sites comprise a gradient of tidal influences. Exponential decreases in the frequency and duration of tidal inundation corresponded to linear increases in inundation threshold. Since ditched study sites had low thresholds they tended to be more uniformly and regularly influenced by tides, were less saline, had less variable temperature regimens, and supported less filamentous algae than natural potholes. Habitat conditions were generally more similar among ditched than unditched potholes, but environmental conditions were most severe at natural sites near the upper limit of the inundation threshold gradient, where some potholes desiccate during the dry season each year.Differences in macroinvertebrate communities corresponded to differences in habitat conditions. Species richness and diversity (Simpson's Index) were generally highest near the middle of the inundation threshold gradient, which is a pattern predicted by the Intermediate Disturbance Hypothesis. Analysis of faunal composition using discriminant functions indicated more similarity among potholes located at the lowest positions of the inundation gradient than among potholes with intermediate thresholds. Since ditching lowers the inundation thresholds of potholes, it reduces species richness and diversity, while increasing faunal similarity. As a result, extensive ditching to control salt marsh mosquitoes can reduce the overall complexity of lentic macroinvertebrate communities.  相似文献   

18.
Studies of shoreline progradation along low-energy vegetated shorelines have been limited, as these environments are generally experiencing erosion rather than deposition, with extreme erosion rates frequently found. This study examined yearly changes along a vegetated shoreline at Calaveras Point Marsh, South San Francisco Bay, California, using aerial photography, to determine the roles of climatic, watershed, and coastal process in driving shoreline changes. In addition, sediment accumulation was monitored on a yearly basis at 48 locations across the marsh to determine the role of geomorphic factors in promoting accumulation. Calaveras Point Marsh was found to have expanded from 49.26 ± 5.2 to 165.7 ± 4.7 ha between 1975 and 2005. Although the rate of marsh expansion was not positively correlated with yearly variability in precipitation, local streamflow, delta outflow, water level observations, population growth, or ENSO indices, marsh growth was greater during years of higher than average temperatures. Warmer temperatures may have promoted the recruitment and growth of Spartina foliosa, a C4 grass known to be highly responsive to temperature. Other factors, such as the formation of a coastal barrier, a recent change in the location of the mouth of the Guadalupe River, and channel readjustment in response to diking are credited with driving the bulk of the marsh expansion. Sediment accumulation was found to be high closest to channels and to the shoreline, at low elevations and in recently vegetated marsh. Globally, the pace of sea level rise exerts the primary control on wetland development and persistence. However, at local geographic scales, factors such as tectonic events, modifications to natural sediment transport pathways or land use changes may overwhelm the effects of regional sea level rise, and allow for wetlands to develop, expand and persist despite rapid sea level rise.  相似文献   

19.
为了验证设计的简易厌氧培养方法,作者以青岛潮间带沉积物为研究对象,采用5种培养基,从青岛潮间带沉积物共分离获得138株厌氧细菌。16S r DNA序列分析表明,这些细菌分属3个门15个属32个种,其中γ-变形菌纲64株18个种,在种类上处于优势地位;此外还包括δ-变形菌纲(δ-Proteobacteria)16株2个种,ε-变形菌纲4株1个种,拟杆菌门(Bacteroidetes)29株8个种,梭杆菌门(Fusobacteria)25株3个种。在属水平上,弧菌属(Vibrio)、Marinifilum属、泥杆菌属(Ilyobacter)、脱硫弧菌属(Desulfovibrio)、希瓦氏菌属(Shewanella)在数量上占优势。此外,有26株8种细菌(占总菌株数的18.84%)与已知菌的同源性介于89.38%~94.22%,为潜在的海洋细菌新科或新属,表明此简易厌氧菌培养方法在获得新菌方面具有较大优势。另外,研究结果还表明,不同培养基对特定的类群具有选择性:2216E培养基对γ-变形菌纲分离培养效率较高;SPG培养基在获得新菌方面具有优势(占新菌数62.5%),且这些新菌大多属于拟杆菌门和梭杆菌门,其中SPG-1培养基对于分离硫酸盐还原菌和难培养的ε-变形菌纲细菌具有优势,SPG-4培养基对分离硝酸盐还原菌具有优势。  相似文献   

20.
Tidal exchanges of nitrogen, phosphorus, and organic carbon by a high and a low elevation marsh in the Rhode River estuary were measured throughout the year. Both marshes tended to import particulate matter and export dissolved matter, although they differed in the fluxes of certain nutrients. Compared with tidal exchanges, bulk precipitation was a major source of ammonia and nitrate and a minor source of other nutrients. There was a net retention of nutrients by the portion of the Rhode River that included both marshes and a mudflat. However, the marshes accounted for only 10% of the phosphorus retention and 1% of the nitrogen retention while they released organic carbon amounting to 20% of the retention. This suggests that the mudflat acted as a sink for nutrients. The primary role of the marshes seems to be transformation of particulate to dissolved nutrients rather than nutrient retention or release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号