首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Objective information on athletic maneuvers for performance evaluation has become highly desired in sports such as skiing, snowboarding, and mountain biking. Body-mounted devices, incorporating low-cost microelectromechanical, inertial navigation units, and global positioning system (GPS) receivers, to calculate sport-specific key performance variables (KPVs) and provide real-time feedback, are now commercially available. However, algorithms implemented for such purposes still lack accuracy and power efficiency. A new GPS/INS (inertial navigation system) integration algorithm is proposed to determine the trajectory of an athlete executing jumps while skiing, snowboarding, mountain biking etc. KPVs, such as jump horizontal distance, vertical height, and drop, are calculated from the trajectory. A new sensor error compensation scheme is developed using sensor fusion and linear Kalman filters (LKF). The LKF parameters are varied to address the fluctuating dynamics of the athlete during a jump. The extended Kalman filter used for GPS/INS integration has an observation vector augmented with sensor error measurements derived from sensor fusion. The performance of the proposed algorithm is evaluated through experimental field tests. For the determination of jump horizontal distance, height, and drop, the proposed algorithm has errors of 14.3 cm (5.5 %), 1.6 cm (38 %), and 6.7 cm (9.4 %), respectively. Errors in KPVs for a set of jumps were first determined with respect to the true KPVs, and then the errors for all the jumps were averaged to calculate the absolute and percentage errors. The accuracy achieved is deemed to fulfill the expectations of both recreational and professional athletes.  相似文献   

2.
陆地导航中GNSS/陀螺仪组合实时测姿方法   总被引:2,自引:0,他引:2  
在陆地导航系统中使用GNSS/INS组合导航会增加系统成本,多天线GNSS测姿精度受基线长度影响,且存在的模糊度固定问题。本文提出仅利用一个陀螺仪和单天线GNSS组合来进行实时测姿。先由单天线GNSS计算姿态角3参数,航向角为陆地导航的关键参数,为此将陀螺信息与GNSS导出的航向角进行融合。分析了单天线测姿在载体静止或低速运动时精度很差的原因,提出了在组合滤波中进行解决的方案。推导了GNSS和陀螺信息融合的滤波模型,将陀螺仪信息作为状态模型的控制输入,以GNSS航向为滤波观测值。实验结果表明,GNSS/陀螺仪组合计算的航向角精度和可靠性相对GNSS测姿结果均有很大提升。  相似文献   

3.
研究了静止条件下零角度修正在GNSS/INS组合导航中的应用。分析了静止条件下载体航向角解算漂移的原因,给出零角度修正的具体表达式。通过更改卡尔曼滤波量测方程的方法实现航向角误差修正,并用实测数据进行实验验证。结果表明,在静止条件下单独使用零角度修正可以提高载体的航向角精度,并利于垂向陀螺零偏的估计;在零角度修正基础上结合零速修正技术,航向角精度可以进一步改善。  相似文献   

4.
CNS+GNSS+INS船载高精度实时定位定姿算法改进研究   总被引:1,自引:1,他引:1  
天文导航(CNS)、卫星导航(GNSS)和惯性导航(INS) 3种系统组合可提供高精度的定位定姿结果。实际工程中因INS长时间误差累积,以及系统硬件传输存在不可忽略的时间延迟,导致INS提供给CNS的预报粗姿态误差较大,恶劣海况下难以保障快速搜星,造成天文导航可靠性下降、姿态测量精度较低的问题。为此,本文提出了一种CNS+GNSS+INS高精度信息融合实时定位定姿框架,引入了等角速度外推措施,有效地解决了惯导信息延迟问题。通过高精度转台模拟恶劣海况下载体大角速度摇摆,验证了本文提出的改进算法的有效性。试验结果表明,该算法架构简单,性能可靠,显著提高了恶劣环境下星敏感器的快速、准确搜星能力,保障了三组合姿态测量的精度和可用性。  相似文献   

5.
介绍了地面三维激光扫描仪工作原理,采用自检校法对仪器系统误差进行标定并详细推导了自检校系统误差模型。利用徕卡HDS3000获取的数据进行分析计算,得到该仪器的系统误差值,同时对获取的数据进行改正,并通过检验点验证系统误差改正效果。实验表明,经过系统误差改正后,HDS3000扫描仪的测量准确度可以提高一倍,效果良好。  相似文献   

6.
Although the integrated system of a differential global positioning system (DGPS) and an inertial navigation system (INS) had been widely used in many geodetic navigation applications, it has sometimes a major limitation. This limitation is associated with the frequent occurrence of DGPS outages caused by GPS signal blockages in certain situations (urban areas, high trees, tunnels, etc.). In the standard mechanization of INS/DGPS navigation, the DGPS is used for positioning while the INS is used for attitude determination. In case of GPS signal blockages, positioning is provided using the INS instead of the GPS until satellite signals are obtained again with sufficient accuracy. Since the INS has a very short-time accuracy, the accuracy of the provided INS navigation parameters during these periods decreases with time. However, the obtained accuracy in these cases is totally dependent on the INS error model and on the quality of the INS sensor data. Therefore, enhanced navigation parameters could be obtained during DGPS outages if better inertial error models are implemented and better quality inertial measurements are used. In this paper, it will be shown that better INS error models are obtained using autoregressive processes for modeling inertial sensor errors instead of Gauss–Markov processes that are implemented in most of the current inertial systems and, on the other hand, that the quality of inertial data is improved using wavelet multi-resolution techniques. The above two methods are discussed and then a combined algorithm of both techniques is applied. The performance of each method as well as of the combined algorithm is analyzed using land-vehicle INS/DGPS data with induced DGPS outage periods. In addition to the considerable navigation accuracy improvement obtained from each single method, the results showed that the combined algorithm is better than both methods by more than 30%.  相似文献   

7.
This paper discusses the introduction of pseudolites (ground-based GPS-like signal transmitters) into existing integrated GPS/INS systems in order to provide higher availability, integrity, and accuracy in a local area. Even though integrated GPS/INS systems can overcome inherent drawbacks of each component system (line-of-sight requirement for GPS, and INS errors that grow with time), performance is nevertheless degraded under adverse operational circumstances. Some typical examples are when the duration of satellite signal blockage exceeds an INS bridging level, resulting in large accumulated INS errors that cannot be calibrated by GPS. Such a scenario, unfortunately, is a common occurrence for certain kinematic applications. To address such shortcomings, both pseudolite/INS and GPS/pseudolite/INS integration schemes are proposed here. Typically, the former is applicable for indoor positioning where the GPS signal is unavailable for use. The latter would be appropriate for system augmentation when the number and geometry of visible satellites is not sufficient for accurate positioning or attitude determination. In this paper, some technical issues concerned with implementing these two integration schemes are described, including the measurement model, and the appropriate integration filter for INS error estimation and correction through GPS and pseudolite (PL) carrier phase measurements. In addition, the results from the processing of simulated measurements, as well as field experiments, are presented in order to characterize the system performance. As a result, it has been established that the GPS/PL/INS and PL/INS integration schemes would make it possible to ensure centimeter-level positioning accuracy even if the number of GPS signals is insufficient, or completely unavailable. Electronic Publication  相似文献   

8.
New results in airborne vector gravimetry using strapdown INS/DGPS   总被引:2,自引:0,他引:2  
A method for airborne vector gravimetry has been developed. The method is based on developing the error dynamics equations of the INS in the inertial frame where the INS system errors are estimated in a wave estimator using inertial GPS position as update. Then using the error-corrected INS acceleration and the GPS acceleration in the inertial frame, the gravity disturbance vector is extracted. In the paper, the focus is on the improvement of accuracy for the horizontal components of the airborne gravity vector. This is achieved by using a decoupled model in the wave estimator and decorrelating the gravity disturbance from the INS system errors through the estimation process. The results of this method on the real strapdown INS/DGPS data are promising. The internal accuracy of the horizontal components of the estimated gravity disturbance for repeated airborne lines is comparable with the accuracy of the down component and is about 4–8 mGal. Better accuracy (2–4 mGal) is achieved after applying a wave-number correlation filter (WCF) to the parallel lines of the estimated airborne gravity disturbances.  相似文献   

9.
刘韬  徐爱功  隋心 《测绘学报》2018,47(7):907-915
陀螺随机误差是影响惯性导航系统精度的主要因素。在经验模态分解(EMD)和阈值降噪的基础上,提出一种基于集合经验模态分解(EEMD)的区间阈值的陀螺信号降噪方法。该方法利用EEMD方法将陀螺信号分解多个本征模态函数(IMF)分量和1个残余分量,基于信号和IMF分量的概率密度函数的2范数距离方法剔除纯噪声IMF分量,利用改进的区间阈值降噪方法实现信号的降噪。仿真和实测试验表明,该方法不仅能有效抑制EMD中的模态混叠问题,而且能有效削弱陀螺的随机误差,从而提高惯性导航系统的精度和可靠性。  相似文献   

10.
目前载体的姿态解算已成为捷联式惯性导航系统精确导航的研究热点。为了减少由于陀螺仪漂移带来的航向误差,提出了一种基于启发式漂移消除算法(HDE)的改进航向修正方法。该方法采用四元数法解算载体航向,利用行人在室内环境下,行走直线时航向角偏差直接对行人航向进行修正,然后推算行人航向轨迹。实验采用低成本的智能手机,对比分析了不同采样频率以及二阶龙格-库塔法与四阶龙格-库塔法更新四元数解算航向角的精度,试验结果表明,提高采样频率能减小航向解算误差,提高定位精度。该算法对导航定位研究有一定的参考价值。   相似文献   

11.
12.
Autonomous orbit determination is the ability of navigation satellites to estimate the orbit parameters on-board using inter-satellite link (ISL) measurements. This study mainly focuses on data processing of the ISL measurements as a new measurement type and its application on the centralized autonomous orbit determination of the new-generation Beidou navigation satellite system satellites for the first time. The ISL measurements are dual one-way measurements that follow a time division multiple access (TDMA) structure. The ranging error of the ISL measurements is less than 0.25 ns. This paper proposes a derivation approach to the satellite clock offsets and the geometric distances from TDMA dual one-way measurements without a loss of accuracy. The derived clock offsets are used for time synchronization, and the derived geometry distances are used for autonomous orbit determination. The clock offsets from the ISL measurements are consistent with the L-band two-way satellite, and time–frequency transfer clock measurements and the detrended residuals vary within 0.5 ns. The centralized autonomous orbit determination is conducted in a batch mode on a ground-capable server for the feasibility study. Constant hardware delays are present in the geometric distances and become the largest source of error in the autonomous orbit determination. Therefore, the hardware delays are estimated simultaneously with the satellite orbits. To avoid uncertainties in the constellation orientation, a ground anchor station that “observes” the satellites with on-board ISL payloads is introduced into the orbit determination. The root-mean-square values of orbit determination residuals are within 10.0 cm, and the standard deviation of the estimated ISL hardware delays is within 0.2 ns. The accuracy of the autonomous orbits is evaluated by analysis of overlap comparison and the satellite laser ranging (SLR) residuals and is compared with the accuracy of the L-band orbits. The results indicate that the radial overlap differences between the autonomous orbits are less than 15.0 cm for the inclined geosynchronous orbit (IGSO) satellites and less than 10.0 cm for the MEO satellites. The SLR residuals are approximately 15.0 cm for the IGSO satellites and approximately 10.0 cm for the MEO satellites, representing an improvement over the L-band orbits.  相似文献   

13.
Error sources which decrease the accuracy of GPS in absolute velocity determination have been changed since SA was turned off. Firstly, quantities of all kinds of error sources that influence velocity determination are analyzed. The potential accuracy of GPS absolute velocity determination is derived from both theory and field GPS data simulation. After that, two tests were carried out to evaluate the performance of GPS absolute velocity determination in the case of a static and an airborne GPS receiver and INS (Inertial Navigation System) instrument in kinematic mode. In static mode, the receiver velocity has been estimated to be several mm/s with the carrier-phase derived Doppler measurements, and several cm/s with the receiver generated Doppler measurements. In kinematic mode, GPS absolute velocity estimates are compared with the synchronized measurements from the high accuracy INS. The root mean square statistics of the velocity discrepancies between GPS and INS come up to dm/s. Moreover, it has a strong correlation with the acceleration or jerk of the aircraft.  相似文献   

14.
针对目前作业过程中普遍存在的测量动态环境效应剩余影响问题,在深入分析海空重力测量误差源形成机理及其变化特性基础上,提出了一种适用于补偿各类海空重力仪动态效应剩余影响的通用模型;研究探讨了通用模型形式优选和模型参数估计问题,将基于信息论的Akaike信息量准则引入通用模型表达式的优选过程,提出应用互相关分析方法对模型参数进行估计,在双重约束下构建了补偿动态效应剩余影响的优化模型。使用典型动态环境下的海面重力观测数据对该方法的有效性进行了验证,结果显示,海洋重力测量成果内符合精度从原先的±9.35×10^-5 m/s^2大幅提升到±1.01×10^-5 m/s^2,充分体现了本文方法和模型对消除高动态测量环境效应影响的优良特性。  相似文献   

15.
Galileo, the European global navigation satellite system, is in its in-orbit validation phase and the four satellites which have been available for some months now have allowed a preliminary analysis of the system performance. Previous studies have showed that Galileo will be able to provide pseudorange measurements more accurate than those provided by GPS. However, a similar improvement was not found for pseudorange rate observations in the velocity domain. This fact stimulated additional analysis of the velocity domain, and, in particular, an unintended oscillatory component was identified as the main error source in the velocity solution. The magnitude of such oscillation is less than 10 cm/s, and its period is in the order of few minutes. A methodology was developed to identify oscillatory components in the Galileo IOV pseudorange rate observables, and it was verified that the measurements from Galileo IOV PFM and Galileo IOV FM2 are affected by a small oscillatory disturbance. This disturbance stems from the architecture adopted for combining the frequency references provided by the two active clocks present in the Galileo satellites. The issue has been solved in Galileo IOV FM3 and Galileo IOV FM4, and the oscillatory component has been eliminated. We also propose a methodology for removing this unwanted component from the final velocity solution and for determining the performance that Galileo will be able to achieve. The analysis shows that Galileo velocity solution will provide a root-mean-square error of about 8 cm/s even in the limited geometry conditions achieved using only four satellites. This shows the potential of Galileo also in the determination of user velocity.  相似文献   

16.
目前行人航迹推算逐渐成为室内定位研究与应用的热点。针对利用陀螺仪推算行人航向时存在较大累积误差的问题,本文提出了一种基于智能手机传感器的行人航向解算算法。该算法根据陀螺仪输出的角速度数据与手机传感器参数计算合适的阈值,实时调节PI调节器的误差补偿系数,对预处理后加速度计和磁力计数据解算的航向角进行补偿,并与陀螺仪数据互补滤波融合,得到融合后的航向角。试验基于低成本智能手机,分别在磁场强弱环境下采集手机传感器数据,对比分析本文算法与传统互补滤波算法及九轴数据融合算法在推算行人航向时的精度。试验结果表明,在室内磁干扰较强的环境下,本文算法与传统互补滤波算法、九轴数据融合算法相比定位精度分别提升了68.4%和65.9%,平均航向误差分别减小了3.4°和1.8°,验证了本文算法有较好的抗磁干扰性能,提高了行人航向角解算的可靠性。  相似文献   

17.
 Four different implementations of Stokes' formula are employed for the estimation of geoid heights over Sweden: the Vincent and Marsh (1974) model with the high-degree reference gravity field but no kernel modifications; modified Wong and Gore (1969) and Molodenskii et al. (1962) models, which use a high-degree reference gravity field and modification of Stokes' kernel; and a least-squares (LS) spectral weighting proposed by Sj?berg (1991). Classical topographic correction formulae are improved to consider long-wavelength contributions. The effect of a Bouguer shell is also included in the formulae, which is neglected in classical formulae due to planar approximation. The gravimetric geoid is compared with global positioning system (GPS)-levelling-derived geoid heights at 23 Swedish Permanent GPS Network SWEPOS stations distributed over Sweden. The LS method is in best agreement, with a 10.1-cm mean and ±5.5-cm standard deviation in the differences between gravimetric and GPS geoid heights. The gravimetric geoid was also fitted to the GPS-levelling-derived geoid using a four-parameter transformation model. The results after fitting also show the best consistency for the LS method, with the standard deviation of differences reduced to ±1.1 cm. For comparison, the NKG96 geoid yields a 17-cm mean and ±8-cm standard deviation of agreement with the same SWEPOS stations. After four-parameter fitting to the GPS stations, the standard deviation reduces to ±6.1 cm for the NKG96 geoid. It is concluded that the new corrections in this study improve the accuracy of the geoid. The final geoid heights range from 17.22 to 43.62 m with a mean value of 29.01 m. The standard errors of the computed geoid heights, through a simple error propagation of standard errors of mean anomalies, are also computed. They range from ±7.02 to ±13.05 cm. The global root-mean-square error of the LS model is the other estimation of the accuracy of the final geoid, and is computed to be ±28.6 cm. Received: 15 September 1999 / Accepted: 6 November 2000  相似文献   

18.
19.
A comparison of stable platform and strapdown airborne gravity   总被引:3,自引:1,他引:2  
To date, operational airborne gravity results have been obtained using either a damped two-axis stable platform gravimeter system such as the LaCoste and Romberg (LCR) S-model marine gravimeter or a strapdown inertial navigation system (INS), showing comparable accuracies. In June 1998 three flight tests were undertaken which tested an LCR gravimeter and a strapdown INS gravity system side by side. To the authors' knowledge, this was the first time such a comparison flight was undertaken. The flights occurred in Disko Bay, off the west coast of Greenland. Several of the flight lines were partly flown along existing shipborne gravity profiles to allow for an independent source of comparison of the results. The results and analysis of these flight tests are presented. The measurement method and error models for both the stable platform and strapdown INS gravity systems are presented and contrasted. An intercomparison of gravity estimates from both systems is given, along with a comparison of the individual estimates with existing shipborne gravity profiles. The results of the flight tests show that the gravity estimates from the two systems agree at the 2–3 mGal level, after the removal of a linear bias. This is near the combined noise level of the two systems. It appears that a combination of both systems would provide an ideal airborne gravity survey system, combining the excellent bias stability of the LCR gravimeter with the higher dynamic range and increased spatial resolution of the strapdown INS. Received: 3 June 1999 / Accepted: 30 November 1999  相似文献   

20.
一种基于改进UKF滤波的GPS+PDR组合定位方法   总被引:1,自引:0,他引:1  
针对接收信号质量恶化的环境,提出了一种适用于信号遮蔽环境的改进GPS+PDR组合定位算法。该方法用短时间内的陀螺仪积分数据校正数字罗盘的航向偏差,在一定程度上消除了数字罗盘受到的偶发干扰。采用约束残差的无迹卡尔曼滤波(UKF)算法对GPS和行人航迹推算(PDR)定位信息进行融合处理,有效克服了PDR定位中累积航向误差产生的位置漂移问题,提高了算法的定位精度和稳定性。试验结果表明,改进算法能有效抑制数字罗盘的漂移误差,航向相对误差平均降低56%;行人步行时,GPS定位标准误差为2.67 m,单纯PDR定位标准误差为6.83 m;随机给予若干点GPS数据辅助定位,标准误差降至3.12 m;全程融合GPS与PDR定位,标准误差可降至1.94 m。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号