首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The results of spectroscopic observations made with the NES echelle spectrograph of the 6-m BTA telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences in the wavelength interval of 3550–5100 Å with a spectral resolution of R≥50000 are used to determine the fundamental parameters and atmospheric abundances of more than 20 chemical elements including heavy s- and r-process elements from Sr to Dy for a total of 14 metal-poor G-K-type stars. The abundances of Mg, Al, Sr, and Ba were calculated with non-LTE line-formation effects accounted for. The inferred overabundance of europium with respect to iron agrees with the results obtained for the stars of similar metallicity. The chemical composition of the star BD+80°245 located far from the Galactic plane is typical of stars of the accreted halo: this star exhibits, in addition to the over-deficiency of α-process elements, also the over-deficiency of the γ-process element Ba: [Ba/Fe]= ?1.46. The kinematical parameters and chemical composition imply that the stars studied belong to different Galactic populations. The abundance of the long-living element Th relative to that of the r-process element Eu is determined for six stars using the synthetic-spectrum method.  相似文献   

2.
贫金属星中子俘获元素丰度   总被引:4,自引:0,他引:4  
贫金属星的中子俘获元素丰度与恒星的形成和演化密切相关,它为研究星系形成早期的历史背景和化学演化提供了重要信息。贫金属星中子俘获元素丰度的研究已成为近年来核天体物理研究的前沿和热点。介绍了恒星内部重元素的核合图像,s过程和r过程核合成的概念及其核合成场所。着重介绍了近年来有关贫金属星中子俘获元素丰度的观测结果,综述了近年来贫金属星子俘获元素分布的理论研究进展情况和中子俘获元素的星系化学演化的研究进展  相似文献   

3.
Based on a large amount of observed data of element abundances in metal-poor stars, taking the abundance distribution of heavy elements in the solar system as a standard, and selecting Sr, Ba and Eu as the typical elements of the three nucleosynthetic processes in metal-poor stars, namely the weak sprocess, main s-process and r-process, we have studied the contributions of the three kinds of neutron-capture processes to the abundance distribution of heavy elements in metal-poor stars, with the parameterization method. It is found that the higher the metal abundance, the greater the contributions of the weak s-process and the chief s-process to the abundances of lighter neutron-capture elements. The heavier neutron-capture elements are mainly produced by the r-process and the chief s-process; and that at low metallicity, the abundances of heavy neutron-capture elements are mainly produced by the r-process. In the early Galaxy, the weak s-process has almost no contribution to the element abundance.  相似文献   

4.
5.
Stellar abundances of beryllium are useful in different areas of astrophysics, including studies of the Galactic chemical evolution, of stellar evolution, and of the formation of globular clusters. Determining Be abundances in stars is, however, a challenging endeavor. The two Be II resonance lines useful for abundance analyses are in the near UV, a region strongly affected by atmospheric extinction. CUBES is a new spectrograph planned for the VLT that will be more sensitive than current instruments in the near UV spectral region. It will allow the observation of fainter stars, expanding the number of targets where Be abundances can be determined. Here, a brief review of stellar abundances of Be is presented together with a discussion of science cases for CUBES. In particular, preliminary simulations of CUBES spectra are presented, highlighting its possible impact in investigations of Be abundances of extremely metal-poor stars and of stars in globular clusters.  相似文献   

6.
Zero-age main-sequence models for stars of 20, 10, 5 and 2M with no heavy elements are constructed for three different possible primordial helium abundances:Y=0.00,Y=0.23, andY=0.30. The latter two values ofY bracket the range of primordial helium abundances cited by Wagoner. With the exceptions of the two 20M models that contain helium, these models are found to be self-consistent in the sense that the formation of carbon through the triple-alpha process during pre-main sequence contraction is not sufficient to bring the CN cycle into competition with the proton-proton chain on the ZAMS. The zero-metal models of the present study have higher surface and central temperatures, higher central densities, smaller radii, and smaller convective cores than do the population I models with the same masses. If galaxies containing the zero-metal stars were formed as recently as one third the Hubble time, they would likely appear very blue today — perhaps bluer even that most known quasars — and their redshifted effective temperatures could range as high as 3×104 K to 4×104 K.  相似文献   

7.
综述了近年来AGB星核合成理论的研究情况,述及AGB星的结构与s-过程核合成有关的中子辐照量分布、人们比较关注的铅星与非铅星、后AGB星元素丰度分布及与AGB星核合成有关的s r星。  相似文献   

8.
CUBES is a high-efficiency, medium-resolution (R~20,000) ground based UV (300–400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO’s VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.  相似文献   

9.
We obtained a series of more than two hundred R-band CCD images for the crowded central (115″×77″) region of the metal-poor globular cluster M 15 with an angular resolution of \(0\mathop .\limits^{''} 5 - 0\mathop .\limits^{''} 9\) in most images. Optimal image subtraction was used to identify variable stars. Brightness variations were found in 83 stars, 55 of which were identified with known cluster variables and the remaining 28 are candidates for new variables. Two of them are most likely SX Phe variables. The variability type of two more stars is uncertain. The remaining stars were tentatively classified as RR Lyrae variables. A preliminary analysis of published data and our results shows that the characteristics of RR Lyrae variables in the densest part (r<35″) of the cluster probably change. More specifically, the maximum of the period distribution of first-and second-overtone (RR1, RR2) pulsating stars shifts toward shorter periods; i.e., there is an increase in the fraction of stars pulsating with periods \( < 0\mathop .\limits^d 3\) and a deficiency of stars with \(0\mathop .\limits^d 35 - 0\mathop .\limits^d 40\). The ratio of the number of these short-period RR Lyrae variables to the number of fundamental-tone (RR0) pulsating variables changes appreciably. We found and corrected the error of transforming the coordinates of variables V128–155 in M 15 into the coordinate system used in the catalog of variable stars in globular clusters.  相似文献   

10.
Important insights into the formation, structure, evolution and environment of all types of stars can be obtained through the measurement of their winds and possible magnetospheres. However, this has hardly been done up to now mainly because of the lack of UV instrumentation available for long periods of time. To reach this aim, we have designed UVMag, an M-size space mission equipped with a high-resolution spectropolarimeter working in the UV and visible spectral range. The UV domain is crucial in stellar physics as it is very rich in atomic and molecular lines and contains most of the flux of hot stars. Moreover, covering the UV and visible spectral domains at the same time will allow us to study the star and its environment simultaneously. Adding polarimetric power to the spectrograph will multiply tenfold the capabilities of extracting information on stellar magnetospheres, winds, disks, and magnetic fields. Examples of science objectives that can be reached with UVMag are presented for pre-main sequence, main sequence and evolved stars. They will cast new light onto stellar physics by addressing many exciting and important questions. UVMag is currently undergoing a Research & Technology study and will be proposed at the forthcoming ESA call for M-size missions. This spectropolarimeter could also be installed on a large UV and visible observatory (e.g. NASA’s LUVOIR project) within a suite of instruments.  相似文献   

11.
The abundance patterns of neutron-capture elements in very metal-poor halo stars play a crucial role in guiding and constraining theoretical models of nucleosynthesis. Many studies have suggested that the abundance patterns of the heavier (Z≥ 56) stable neutron-capture elements in very metal-poor halo stars are consistent with the solar system r-process abundance distribution, but this concordance breaks down for the lighter neutron-capture elements in the range of 40<Z<56. Some studies argue that there are two separate r-processes respectively responsible for the productions of the heavier and lighter neutron-capture elements. The new observed data of the lighter n-capture elements in the 40<Z<56 domain (Nb, Ru, Rh, Pd, Ag and Cd) in CS 22892-052 makes it available to examine whether or not there are two different r-processes. Based upon these observed abundances of n-capture elements in ultra metal-poor star CS22892-052, we present a phenomenological model to identify the characters of the different nucleosynthesis processes in very metal-poor stars. The results show that the model predictions can well match the observations in CS 22892-052, which truly means that there are different r-processes for the lighter and heavier neutron-capture elements, and the stellarr-process patterns are similar to the solar system r-process abundance distribution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
简要综述了核天体物理学热点课题——  相似文献   

13.
The space velocities and Galactic orbital elements of stars calculated from the currently available high-accuracy observations in our compiled catalog of spectroscopic magnesium abundances in dwarfs and subgiants in the solar neighborhood are used to identify thick-disk objects. We analyze the relations between chemical, spatial, and kinematic parameters of F–G stars in the identified subsystem. The relative magnesium abundances in thick-disk stars are shown to lie within the range 0.0 < [Mg/Fe] < 0.5 and to decrease with increasingmetallicity starting from [Fe/H] ≈ ?1.0. This is interpreted as evidence for a longer duration of the star formation process in the thick disk. We have found vertical gradients in metallicity (gradZ[Fe/H] = ?0.13 ± 0.04 kpc?1) and relative magnesium abundance (gradZ[Mg/Fe] = 0.06 ± 0.02 kpc?1), which can be present in the subsystem only in the case of its formation in a slowly collapsing protogalaxy. However, the gradients in the thick disk disappear if the stars whose orbits lie in the Galactic plane, but have high eccentricities and low azimuthal space velocities atypical of the thin-disk stars are excluded from the sample. The large spread in relative magnesium abundance (?0.3 < [Mg/Fe] < 0.5) in the stars of the metal-poor “tail” of the thick disk, which constitute ≈8% of the subsystem, can be explained in terms of their formation inside isolated interstellar clouds that interacted weakly with the matter of a single protogalactic cloud. We have found a statistically significant negative radial gradient in relative magnesium abundance in the thick disk (gradR[Mg/Fe] = ?0.03 ± 0.01 kpc? 1) instead of the expected positive gradient. The smaller perigalactic orbital radii and the higher eccentricities for magnesium-richer stars, which, among other stars, are currently located in a small volume of the Galactic space near the Sun, are assumed to be responsible for the gradient inversion. A similar, but statistically less significant inversion is also observed in the subsystem for the radial metallicity gradient.  相似文献   

14.
New computations of massive stars follow the evolution up to advanced stages and include:
  • -A large and flexible nuclear network consisting of 174 nuclear species that are linked by 1742 nuclear reactions.
  • -Semiconvection, overshooting and mass loss.
  • -Modern rates for both strong and weak interaction processes as well as the latest rates for the neutrino processes.
  • -Improved grid distribution and a large number of grid points.
  • The nuclear network and the diffusion equation are solved for each time step during the whole evolution. In this way the accuracy of nuclear yields and chemical abundances are mainly limited by uncertainties in the diffusion coefficient found from the convection theories. Several instability mechanisms may affect the mass loss rates of massive stars and thereby the structure and abundances of WR stars. Due to heavy mass loss at the LBV and WR stages, the masses at the pre-SN stage may be less than 5M . Yields and abundances throughout the stars are discussed together with the amount of all elements expelled.  相似文献   

    15.
    快中子俘获过程(r过程)可以解释大约一半比铁重的稳定(和一些长寿命放射性的)富中子核素的产生,这已经被太阳系及各种金属丰度下恒星的观测结果所证实.为建立r过程模型,需要大量的核物理信息:涉及到β稳定谷与中子滴线之间的各种核素的稳定特性及β衰变分支等物理参数,实验和理论都面临巨大的挑战.综述了近年来贫金属星r过程核合成理...  相似文献   

    16.
    We present LTE analysis of high resolution optical spectra for B-type hot PAGB stars LS IV-04 1 and LB3116 (LSE 237). The spectra of these high Galactic latitude stars were obtained with the 3.9-m Anglo-Australian Telescope (AAT) and the UCLES spectrograph. The standard 1D LTE analysis with line-blanketed LTE model atmospheres and spectral synthesis provided fundamental atmospheric parameters of Teff= 15 000±1000 K, log g= 2.5±0.2, ξ = 5.0±1.0 km s?1, [M/H] = ?1.81 dex, and v sin i= 5 km s?1 for LSIV-04 1 and Teff= 16 000±1000 K, log g= 2.5±0.1, v sin i= 25 km s?1, and [Fe/H] = ?0.93 dex for LB 3116. Chemical abundances of ten different elements were obtained. For LS IV-04 1, its derived model temperature contradicts with previous analysis results. The upper limits for its nitrogen and oxygen abundances were reported for the first time. The magnesium, silicon and calcium were overabundant (i.e. [Mg/Fe] = 0.8 dex, [Si/Fe] = 0.5 dex, [Ca/Fe] = 0.9 dex). With its metal-poor photosphere and VLSR ≈ 96 km s?1, LSIV-04 1 is likely a population II star and most probably a PAGB star. LTE abundances of LB 3116 were reported for the first time. The spectrum of this helium rich star shows 0.9 dex enhancement in the nitrogen. The photosphere of the star is slightly deficient in Mg, Si, and S. (i.e. [Mg/Fe] = ?0.2 dex, [Si/Fe] = ?0.4 dex, [S/Fe] = ?0.2 dex). The Al is slightly enhanced. The phosphorus is overabundant, i.e. [P/Fe] ≈ 1.7 ± 0.47 dex, hence LB3116 may be the first example of a PAGB star which is rich in phosphorus. With its high radial velocity (i.e.VLSR = 73 km s?1), and the deficiencies observed in C, Mg, Si, and S indicate that LB 3116 is likely a hot PAGB star at high galactic latitude.  相似文献   

    17.
    The abundances of heavy elements in EMP stars are not well explained by the simple view of an initial basic “rapid” process. In a careful and homogeneous analysis of the “First Stars” sample (eighty per cent of the stars have a metallicity [Fe/H] ≃ –3.1 ± 0.4), it has been shown that at this metallicity [Eu/Ba] is constant, and therefore the europium‐rich stars (generally called “r‐rich”) are also Ba‐rich. The very large variation of [Ba/Fe] (existence of “r‐poor” and “r‐rich” stars) induces that the early matter was not perfectly mixed. On the other hand, the distribution of the values of [Sr/Ba] vs. [Ba/Fe] appears with well defined upper and lower envelopes. No star was found with [Sr/Ba] < –0.5 and the scatter of [Sr/Ba] increases regularly when [Ba/Fe] decreases. To explain this behavior, we suggest that an early “additional” process forming mainly first peak elements would affect the initial composition of the matter. For a same quantity of accreted matter, this additional Sr production would barely affect the r‐rich matter (which already contains an important quantity of Sr) but would change significantly the composition of the r‐poor matter. The abundances found in the CEMP‐r+s stars reflect the transfer of heavy elements from a defunct AGB companion. But the abundances of the heavy elements in CEMP‐no stars present the same characteristics as the the abundances in the EMP stars. Direct stellar ages may be found from radioactive elements, the precision is limited by the precision in the measurements of abundances from faint lines in faint stars, and the uncertainty in the initial abundances of the radioactive elements. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

    18.
    Efficient spectrographs at large telescopes have made it possible to obtain high-resolution spectra of stars with high signal-to-noise ratio and advances in model atmosphere analyses have enabled estimates of high-precision differential abundances of the elements from these spectra, i.e. with errors in the range 0.01–0.03 dex for F, G, and K stars. Methods to determine such high-precision abundances together with precise values of effective temperatures and surface gravities from equivalent widths of spectral lines or by spectrum synthesis techniques are outlined, and effects on abundance determinations from using a 3D non-LTE analysis instead of a classical 1D LTE analysis are considered. The determination of high-precision stellar abundances of the elements has led to the discovery of unexpected phenomena and relations with important bearings on the astrophysics of galaxies, stars, and planets, i.e. (i) Existence of discrete stellar populations within each of the main Galactic components (disk, halo, and bulge) providing new constraints on models for the formation of the Milky Way. (ii) Differences in the relation between abundances and elemental condensation temperature for the Sun and solar twins suggesting dust-cleansing effects in proto-planetary disks and/or engulfment of planets by stars; (iii) Differences in chemical composition between binary star components and between members of open or globular clusters showing that star- and cluster-formation processes are more complicated than previously thought; (iv) Tight relations between some abundance ratios and age for solar-like stars providing new constraints on nucleosynthesis and Galactic chemical evolution models as well as the composition of terrestrial exoplanets. We conclude that if stellar abundances with precisions of 0.01–0.03 dex can be achieved in studies of more distant stars and stars on the giant and supergiant branches, many more interesting future applications, of great relevance to stellar and galaxy evolution, are probable. Hence, in planning abundance surveys, it is important to carefully balance the need for large samples of stars against the spectral resolution and signal-to-noise ratio needed to obtain high-precision abundances. Furthermore, it is an advantage to work differentially on stars with similar atmospheric parameters, because then a simple 1D LTE analysis of stellar spectra may be sufficient. However, when determining high-precision absolute abundances or differential abundance between stars having more widely different parameters, e.g. metal-poor stars compared to the Sun or giants to dwarfs, then 3D non-LTE effects must be taken into account.  相似文献   

    19.
    On the theory that peculiar A stars were once secondaries in binary systems in which the primaries exploded as type II supernovae, the nucleosynthesis during the final stages of evolution of massive stars is investigated. For heavy elements (Z>30) the observed abundances in peculiar. A stars reflect the composition of material ejected by the exploding primaries. Peculiar A stars are divided into two groups, the main group and the Mn group, and abundances in each group are summarised. During the explosions of the primaries, rapid (n, ) or (, n) reactions operate on the abundance peaks previously formed by the s-process during the giant phase. In the main group primaries (n, ) reactions predominate, and rare-earths are formed from the Ba peak. In the Mn group primaries (, n) reactions operate on the Sr, Ba and Pb peaks to form Kr, Xe and Hg.  相似文献   

    20.
    Data from our compiled catalog of spectroscopically determined magnesium abundances in stars with accurate parallaxes are used to select thin-disk dwarfs and subgiants according to kinematic criteria. We analyze the relations between the relative magnesium abundances in stars, [Mg/Fe], and their metallicities, Galactic orbital elements, and ages. The [Mg/Fe] ratios in the thin disk at any metallicity in the range ?1.0 dex <[Fe/H] < ?0.4 dex are shown to be smaller than those in the thick disk, implying that the thin-disk stars are, on average, younger than the thick-disk stars. The relative magnesium abundances in such metal-poor thin-disk stars have been found to systematically decrease with increasing stellar orbital radii in such a way that magnesium overabundances ([Mg/Fe] > 0.2 dex) are essentially observed only in the stars whose orbits lie almost entirely within the solar circle. At the same time, the range of metallicities in magnesium-poor stars is displaced from ?0.5 dex < [Fe/H] < +0.3 dex to ?0.7 dex < [Fe/H] < +0.2 dex as their orbital radii increase. This behavior suggests that, first, the star formation rate decreases with increasing Galactocentric distance and, second, there was no star formation for some time outside the solar circle, while this process was continuous within the solar circle. The decrease in the star formation rate with increasing Galactocentric distance is responsible for the existence of a negative radial metallicity gradient (grad R[Fe/H] = ?0.05 ± 0.01 kpc?1) in the disk, which shows a tendency to increase with decreasing age. At the same time, the relative magnesium abundance exhibits no radial gradient. We have confirmed the existence of a steep negative vertical metallicity gradient (grad Z[Fe/H] = ?0.29 ± 0.06 kpc?1) and detected a significant positive vertical gradient in relative magnesium abundance (grad Z[Mg/Fe] = 0.13 ± 0.02 kpc?1); both gradients increase appreciably in absolute value with decreasing age. We have found that there is not only an age-metallicity relation, but also an age-magnesium abundance relation, in the thin disk. We surmise that the thin disk has a multicomponent structure, but the existence of a negative trend in the star formation rate along the Galactocentric radius does not allow the stars of its various components to be identified in the immediate solar neighborhood.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号