首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present the results of the population synthesis of the population ofthe supernovae progenitors. Both single and double degenerate progenitorsof SN Ia are considered. We compute the cosmic rate histories for SN I,SN II and both classes of SN Ia, and present them in the form of redshiftand magnitude distributions. These results can be compared with observationaldata, allowing to estimate the star formation rate history and thecosmological parameters including ωbaryons which cannot beestimated from analysing the Hubble diagrams of supernovae.We find that single degenerate (SD) SN Ia are younger than double degenerate (DD) ones, and so the SN Ia in elliptical galaxies should be mostly DD.We propose to use the redshift dependence of relative supernovae rates indifferent types of galaxies, or of different supernovae types forinterpretation of observations. These relative rates should be lessinfluenced by the selection effects than the absolute ones. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
We present the results of our UBVRI CCD photometry for the second brightest supernova of 2009, SN 2009nr, discovered during a sky survey with the telescopes of the MASTER robotic network. Its light and color curves and bolometric light curves have been constructed. The light-curve parameters and the maximum luminosity have been determined. SN 2009nr is shown to be similar in light-curve shape and maximum luminosity to SN 1991T, which is the prototype of the class of supernovae Ia with an enhanced luminosity. SN 2009nr exploded far from the center of the spiral galaxy UGC 8255 and most likely belongs to its old halo population. We hypothesize that this explosion is a consequence of the merger of white dwarfs.  相似文献   

3.
We analyze the time evolution of the number of accreting white dwarfs with surface shell hydrogen burning in semidetached and detached binaries. We consider the case where continuous star formation with a constant rate takes place in a stellar system over 1010 Gyr and the case of a starburst in which the same mass of stars is formed over 109 Gyr. The evolution of the number of white dwarfs is compared with the evolution of the rate of events that are usually considered as SNe Ia and/or accretion-induced collapses, i.e., the accumulation of a Chandrasekhar mass by white dwarfs or the merger of white dwarf pairs with a total mass greater than or equal to the Chandrasekhar one. In stellar systems with a starburst, the supersoft X-ray sources observed at t = 1010 yr are most likely not the progenitors of SNe Ia. The same is true for a significant fraction of the sources in systems with a constant star formation rate. In both cases, the merger of white dwarfs is the dominant mechanism of SNe Ia. In symbiotic binaries, accreting CO dwarfs do not accumulate enough mass for an SNe Ia explosion, while ONeMg dwarfs finish their evolution by an accretion-induce collapse with the formation of a neutron star.  相似文献   

4.
5.
We investigate the influence of close neighbor galaxies on the properties of supernovae (SNe) and their host galaxies using 56 SNe located in pairs of galaxies with different levels of star formation (SF) and nuclear activity. The statistical study of SN hosts shows that there is no significant difference between morphologies of hosts in our sample and the larger general sample of SN hosts in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). The mean distance of type II SNe from nuclei of hosts is greater by about a factor of 2 than that of type Ibc SNe. The distributions and mean distances of SNe are consistent with previous results compiled with the larger sample. For the first time it is shown that SNe Ibc are located in pairs with significantly smaller difference of radial velocities between components than pairs containing SNe Ia and II. We consider this as a result of higher star formation rate (SFR) of these closer systems of galaxies. SN types are not correlated with the luminosity ratio of host and neighbor galaxies in pairs. The orientation of SNe with respect to the preferred direction toward neighbor galaxy is found to be isotropic and independent of kinematical properties of the galaxy pair.  相似文献   

6.
We undertake a quantitative investigation, using Monte Carlo simulations, of the amount by which quasars are expected to exceed radio galaxies in optical luminosity in the context of the 'receding torus' model. We compare these simulations with the known behaviour of the [O  III ] λ5007 and [O  II ] λ3727 emission lines and conclude that [O  III ] is the better indicator of the strength of the underlying non-stellar continuum.  相似文献   

7.
This is the third paper of a series devoted to the study of the global properties of Joguet's sample of 79 nearby galaxies observable from the southern hemisphere, of which 65 are Seyfert 2 galaxies. We use the population synthesis models of Paper II to derive 'pure' emission-line spectra for the Seyfert 2 galaxies in the sample, and thus explore the statistical properties of the nuclear nebular components and their relation to the stellar populations. We find that the emission-line clouds suffer substantially more extinction than the starlight, and we confirm the correlations between stellar and nebular velocity dispersions and between emission-line luminosity and velocity dispersions, although with substantial scatter. Nuclear luminosities correlate with stellar velocity dispersions, but Seyferts with conspicuous star-forming activity deviate systematically towards higher luminosities. Removing the contribution of young stars to the optical continuum produces a tighter and steeper relation,   L ∝σ4  , consistent with the Faber–Jackson law.
Emission-line ratios indicative of the gas excitation such as [O  iii ]/Hβ and [O  iii ]/[O  ii ] are statistically smaller for Seyferts with significant star formation, implying that ionization by massive stars is responsible for a substantial and sometimes even a dominant fraction of the Hβ and [O  ii ] fluxes. We use our models to constrain the maximum fraction of the ionizing power that can be generated by a hidden active galactic nucleus (AGN). We correlate this fraction with classical indicators of AGN photoionization (i.e. X-ray luminosity and nebular excitation), but find no significant correlations. Thus, while there is a strong contribution of starbursts to the excitation of the nuclear nebular emission in low-luminosity Seyferts, the contribution of the hidden AGN remains elusive even in hard X-rays.  相似文献   

8.
We investigate the relation between the optical (g-band) and X-ray (0.5–10 keV) luminosities of accreting nonmagnetic white dwarfs. According to the present-day counts of the populations of star systems in our Galaxy, these systems have the highest space density among the close binary systems with white dwarfs. We show that the dependence of the optical luminosity of accreting white dwarfs on their X-ray luminosity forms a fairly narrow one-parameter curve. The typical half-width of this curve does not exceed 0.2–0.3 dex in optical and X-ray luminosities, which is essentially consistent with the amplitude of the aperiodic flux variability for these objects. At X-ray luminosities L x ~ 1032 erg s?1 or lower, the optical g-band luminosity of the accretion flow is shown to be related to its X-ray luminosity by a factor ~2–3. At even lower X-ray luminosities (L x ? 1030 erg s?1), the contribution from the photosphere of the white dwarf begins to dominate in the optical spectrum of the binary system and its optical brightness does not drop below M g ~ 13–14. Using the latter fact, we show that in current and planned X-ray sky surveys, the family of accreting nonmagnetic white dwarfs can be completely identified to the distance determined by the sensitivity of an optical sky survey in this region. For the Sloan Digital Sky Survey (SDSS) with a limiting sensitivity m g ~ 22.5, this distance is ~400–600 pc.  相似文献   

9.
Employing Eggleton’s stellar evolution code with the optically thick wind assumption, we have systematically studied the WD + He star channel of Type Ia supernovae (SNe Ia), in which a carbon–oxygen WD accretes material from a He main-sequence star or a He subgiant to increase its mass to the Chandrasekhar mass. We mapped out the parameter spaces for producing SNe Ia. According to a detailed binary population synthesis approach, we find that the Galactic SN Ia birthrate from this channel is ~0.3×10?3 yr?1, and that this channel can produce SNe Ia with short delay times (~45–140 Myr). We also find that the surviving companion stars in this channel have a high spatial velocity (>400 km/s) after the SN explosion, which could be an alternative origin for hypervelocity stars (HVSs), especially for HVSs such as US 708.  相似文献   

10.
Supernova rates (hypernova, type II, type Ib/c and type Ia) in a particular galaxy depend on the metallicity (i.e. on the galaxy age), on the physics of star formation and on the binary population. In order to study the time evolution of the galactic supernova rates, we use our chemical evolutionary model that accounts in detail for the evolution of single stars and binaries. In particular, supernovae of type Ia are considered to arise from exploding white dwarfs in interacting binaries and we adopt the two most plausible physical models: the single degenerate model and the double degenerate model. Comparison between theoretical prediction and observations of supernova rates in different types of galaxies allows to put constraints on the population of intermediate mass and massive close binaries.

The temporal evolution of the absolute galactic rates of different types of supernovae (including the type Ia rate) is presented in such a way that the results can be directly implemented into a galactic chemical evolutionary model. Particularly for type Ia’s the inclusion of binary evolution leads to results considerably different from those in earlier population synthesis approaches, in which binary evolution was not included in detail.  相似文献   


11.
The population synthesis method is used to study the possibility of explaining the appreciable fraction of the intergalactic type-Ia supernovae (SN Ia), 20 −15 +12 %, observed in galaxy clusters (Gal-Yam et al. 2003) when close white dwarf binaries merge in the cores of globular clusters. In a typical globular cluster, the number of merging double white dwarfs does not exceed ∼10−13 per year per average cluster star in the entire evolution time of the cluster, which is a factor of ∼3 higher than that in a Milky-Way-type spiral galaxy. From 5 to 30% of the merging white dwarfs are dynamically expelled from the cluster with barycenter velocities up to 150 km s−1. SN Ia explosions during the mergers of double white dwarfs in dense star clusters may account for ∼1% of the total rate of thermonuclear supernovae in the central parts of galaxy clusters if the baryon mass fraction in such star clusters is ∼0.3%.  相似文献   

12.
Recent observational data on the type Ia supernova rates are in excellent agreement with the earlier results of the population synthesis of binary stars and confirm that the overwhelming majority of type Ia supernovas (~99%) in elliptical galaxies form via mergers of binary white dwarfs with a total mass exceeding the Chandrasekhar limit.  相似文献   

13.
The evolution of the Star Formation Rate (SFR) density of the Universe as a function of look-back time is a fundamental parameter in order to understand the formation and evolution of galaxies. The current picture, only outlined in the last years, is that the global SFR density has dropped by about an order of magnitude from a redshift of z∼1.5 to the current value at z=0. Because these SFR density studies are now extended to the whole range in redshift, it becomes mandatory to combine data from different SFR tracers. At low redshifts, optical emission lines are the most widely used. Using Hα as current-SFR tracer, the Universidad Complutense de Madrid (UCM) Survey provided the first estimation of the global SFR density in the Local Universe. The Hα flux in emission is directly related to the number of ionizing photons and, modulo IMF, to the total mass of stars formed. Metallic lines like [OII]λ3727 and [OIII]λ5007 are affected by metallicity and excitation. Beyond redshifts z∼0.4, Hα is not observable in the optical and [OII]λ3727 or UV luminosities have to be used. The UCM galaxy sample has been used to obtain a calibration between [OII]λ3727 luminosity and SFR specially suitable for the different types of star-forming galaxies found by deep spectroscopic surveys in redshifts up to z∼1.5. These calibrations, when applied to recent deep redshift surveys confirm the drop of the SFR density of the Universe since z∼1 previously infered in the UV. However, the fundamental parameter that determines galactic evolution is mass, not luminosity. The mass function for local star-forming galaxies is critical for any future comparison with other galaxy populations of different evolutionary status. Hα velocity-widths for UCM galaxies indicate that besides a small fraction of 1010-1011 M starburst nuclei spirals, the majority have dynamical masses in the ∼109 M range. A comparison with published data for faint blue galaxies suggests that star-forming galaxies at z∼1 would have SFR per unit mass and burst strengths similar to those at z=0, but being intrinsically more massive. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Type Ia supernovae (SNe Ia) play an important role in astrophysics and are crucial for the studies of stellar evolution, galaxy evolution and cosmology. They are generally thought to be thermonuclear explosions of accreting carbon–oxygen white dwarfs (CO WDs) in close binaries, however, the nature of the mass donor star is still unclear. In this article, we review various progenitor models proposed in the past years and summarize many observational results that can be used to put constraints on the nature of their progenitors. We also discuss the origin of SN Ia diversity and the impacts of SN Ia progenitors on some fields. The currently favourable progenitor model is the single-degenerate (SD) model, in which the WD accretes material from a non-degenerate companion star. This model may explain the similarities of most SNe Ia. It has long been argued that the double-degenerate (DD) model, which involves the merger of two CO WDs, may lead to an accretion-induced collapse rather than a thermonuclear explosion. However, recent observations of a few SNe Ia seem to support the DD model, and this model can produce normal SN Ia explosion under certain conditions. Additionally, the sub-luminous SNe Ia may be explained by the sub-Chandrasekhar mass model. At present, it seems likely that more than one progenitor model, including some variants of the SD and DD models, may be required to explain the observed diversity of SNe Ia.  相似文献   

15.
HD 49798(a hydrogen depleted subdwarf O6 star) with its massive white dwarf(WD) companion has been suggested to be a progenitor candidate of a type Ia supernova(SN Ia). However, it is still uncertain whether the companion of HD 49798 is a carbon-oxygen(CO) WD or an oxygen-neon(ONe) WD. A CO WD will explode as an SN Ia when its mass grows and approaches the Chandrasekhar limit, but the outcome of an accreting ONe WD is likely to be a neutron star. We generated a series of Monte Carlo calculations that incorperate binary population synthesis to simulate the formation of ONe WD + He star systems. We found that there is almost no orbital period as large as HD 49798 with its WD companion in these ONe WD + He star systems based on our simulations, which means that the companion of HD 49798 might not be an ONe WD. We suggest that the companion of HD 49798 is most likely a CO WD, which can be expected to increase its mass to the Chandrasekhar limit by accreting He-rich material from HD 49798. Thus, HD 49798 and its companion may produce an SN Ia as a result of its future evolution.  相似文献   

16.
The time delay between the formation of the progenitor systems of Type Ia supernovae (SNe Ia) and their detonation is a vital discriminant between the various progenitor scenarios that have been proposed for them. We use Sloan Digital Sky Survey optical and Galaxy Evolution Explorer ( GALEX ) ultraviolet observations of the early-type host galaxies of 21 nearby SNe Ia and quantify the presence or absence of any young stellar population to constrain the minimum time delay for each supernova. We find that early-type host galaxies lack 'prompt' SNe Ia with time delays of ≲100 Myr and that ∼70 per cent SNe Ia have minimum time delays of 275 Myr–1.25 Gyr, with a median of 650 Myr, while at least 20 per cent SNe Ia have minimum time delays of at least 1 Gyr at 95 per cent confidence and two of these four SNe Ia are likely older than 2 Gyr. The distribution of minimum time delays observed matches most closely the expectation for the single-degenerate channel with a main sequence donor. Furthermore, we do not find any evidence that subluminous SNe Ia are associated with long time delays.  相似文献   

17.
Type Ia Supernova (SN Ia) are a powerful, albeit not completely understood, tool for cosmology. Gaps in our understanding of their progenitors and detailed physics can lead to systematic errors in the cosmological distances they measure. We use UV data in two context to help further our understanding of SN Ia progenitors and physics. We analyze a set of nearly 700 light curves, and find no signature of the shock heating of a red giant companion, predicted by Kasen (Astrophys. J. 708:1025, 2010), casting doubt as to frequency of this SN Ia channel. We also use UV imaging of high redshift host galaxies of SN Ia to better understand the environments which SN Ia occur. We show that some high-z elliptical galaxies have current star formation, hindering efforts to use them as low-extinction environments. We show cosmological scatter of SN distances at large effective radii in their hosts is significantly reduced, and argue this is due to the smaller amounts of dust affecting the SN Ia. Finally, we find a two component dependence of SN distance measurements as a function of their host galaxy’s FUV-V color. This indicates that both the age and metallicity/mass of the host galaxy maybe important ingredients in measuring SN Ia distances.  相似文献   

18.
The Hubble Space Telescope /Advanced Camera for Surveys ( HST /ACS) Coma Cluster Treasury Survey is a deep two-passband imaging survey of the nearest very rich cluster of galaxies, covering a range of galaxy density environments. The imaging is complemented by a recent wide field redshift survey of the cluster conducted with Hectospec on the 6.5-m Monolithic Mirror Telescope (MMT). Among the many scientific applications for these data is the search for compact galaxies. In this paper, we present the discovery of seven compact (but quite luminous) stellar systems, ranging from M32-like galaxies down to ultra-compact dwarfs (UCDs)/dwarf to globular transition objects (DGTOs).
We find that all seven compact galaxies require a two-component fit to their light profile and have measured velocity dispersions that exceed those expected for typical early-type galaxies at their luminosity. From our structural parameter analysis, we conclude that three of the samples should be classified as compact ellipticals or M32-like galaxies, and the remaining four being less extreme systems. The three compact ellipticals are all found to have old luminosity weighted ages (≳12 Gyr), intermediate metallicities  (−0.6 < [Fe/H] < −0.1)  and high [Mg/Fe] (≳0.25).
Our findings support a tidal stripping scenario as the formation mode of compact galaxies covering the luminosity range studied here. We speculate that at least two early-type morphologies may serve as the progenitor of compact galaxies in clusters.  相似文献   

19.
Type Ia supernovae(SNe Ia) are thermonuclear explosions of carbon-oxygen white dwarfs(CO WDs), and are believed to be excellent cosmological distance indicators due to their high luminosity and remarkable uniformity. However, there exists a diversity among SNe Ia, and a poor understanding of the diversity hampers the improvement of the accuracy of cosmological distance measurements. The variations of the ratios of carbon to oxygen(C/O) of WDs at explosion are suggested to contribute to the diversity. In the canonical model of SNe Ia, a CO WD accretes matter from its companion and increases its mass till the Chandrasekhar mass limit when the WD explodes. In this work, we studied the C/O ratio for accreting CO WDs. Employing the stellar evolution code MESA, we simulated the accretion of He-rich material onto CO WDs with different initial WD masses and different mass accretion rates. We found that the C/O ratio varies for different cases. The C/O ratio of He-accreting CO WDs at explosion increases with a decreasing initial WD mass or a decreasing accretion rate. The various C/O ratios may, therefore, contribute to the diversity of SNe Ia.  相似文献   

20.
Supersoft X‐ray sources have been proposed as one of the major channels to produce Type Ia supernovae (SNe Ia). However, the true nature of the progenitors has remained an unsolved problem. In this review I summarize the present status of our understanding of SN Ia progenitors, the main classes of progenitor models and recent observational constraints. At present, neither the single‐degenerate nor the double‐degenerate model can be ruled out, and indeed more than one channel may be required to explain the observed SN Ia diversity. Finally, I discuss the origin of the lightcurve peak – lightcurve width relation (the ‘Phillips relation’) and show that it is expected to depend on metallicity; this needs to be taken into account in high‐precision cosmological applications (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号