首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 194 毫秒
1.
The World Space Observatory Ultraviolet (WSO/UV) is a multi-national project grown out of the needs of the astronomical community to have future access to the UV range. WSO/UV consists of a single UV telescope with a primary mirror of 1.7 m diameter feeding the UV spectrometer and UV imagers. The spectrometer comprises three different spectrographs, two high-resolution echelle spectrographs (the High-Resolution Double-Echelle Spectrograph, HIRDES) and a low-dispersion long-slit instrument. Within HIRDES the 102–310 nm spectral band is split to feed two echelle spectrographs covering the UV range 174–310 nm and the vacuum-UV range 102–176 nm with high spectral resolution (R>55000). The technical concept is based on the heritage of two previous ORFEUS SPAS missions. The phase-B1 development activities are described in this paper considering the performance of the instruments.  相似文献   

2.
The GREGOR Fabry‐Pérot Interferometer (GFPI) is one of three first‐light instruments of the German 1.5‐meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI uses two tunable etalons in collimated mounting. Thanks to its large‐format, high‐cadence CCD detectors with sophisticated computer hard‐ and software it is capable of scanning spectral lines with a cadence that is sufficient to capture the dynamic evolution of the solar atmosphere. The field‐of‐view (FOV) of 50″×38″is well suited for quiet Sun and sunspot observations. However, in the vector spectropolarimetric mode the FOV reduces to 25″×38″. The spectral coverage in the spectroscopic mode extends from 530–860 nm with a theoretical spectral resolution of R ≈250 000, whereas in the vector spectropolarimetric mode the wavelength range is at present limited to 580–660 nm. The combination of fast narrow‐band imaging and post‐factum image restoration has the potential for discovery science concerning the dynamic Sun and its magnetic field at spatial scales down to ∼50 km on the solar surface (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
We have calculated the upper cut-off rigidities applicable to the solar diurnal anisotropy of cosmic rays, for the period 1965–1979. Our results are consistent with those reported by others. We note that the mean values of the upper cut-off rigidities during 1975–1977 are less than 50 GV. This explains why no diurnal variation is observed by the muon detectors at Socorro (NM) at a depth of 80 m of water equivalent (MWE) for this period. The threshold (Ro) and the median primary rigidities (Rm) of response applicable to the underground vertical telescope at Socorro are 45 and 300 GV, respectively.  相似文献   

4.
SWIFT is an adaptive optics assisted integral field spectrograph covering the I and z astronomical bands (0.7–1.0 μm) at a spectral resolving power R  5000. At its heart is an all-glass image slicer with high throughput based on a novel de-magnifying design allowing a compact instrument. SWIFT profits from two recent developments: (i) the improved ability of second generation adaptive optics systems to correct for atmospheric turbulence in SWIFTS’s bandpass, and (ii) the availability of CCD array detectors with high quantum efficiency at very red wavelengths. It is a dedicated integral field spectrograph, specifically built to address a range of interesting astrophysical questions.  相似文献   

5.
We report on the development of a fast crossed-dispersion spectrograph (CRAB) mounted at the Nasmyth focus of the 6-m telescope. The spectrograph is designed for visible and near-infrared (3800–10 500 Å) CCD observations with the spectral resolution R=4000. We give the basic parameters of the optical scheme and the parameters of the echelle frame. We determined the gain involved in putting the spectrograph into observational practice and discuss the possible range of spectroscopic problems for which the instrument is optimal.  相似文献   

6.
Results are reported of a study of the atmospheric chemical composition for 12 F5-K0 type stars in the Hyades cluster. The study uses spectra obtained with the 1.93-m telescope of the Haute-Provence Observatory (France) with the ELODIE echelle-type spectrograph in the wavelength range 440–680 nm. The spectral resolution is R = 40000, and S/N is ~50. The equivalent widths of the lines are measured in the wavelength range 510–680 nm. The main parameters of the stars are determined: the effective temperature T eff, the gravity logg, the microturbulence velocities V t , and the abundances of Na, Mg, Al, Si, Ca, Ti, V, Cr, Fe, Co, Ni, Y, La, Ce, and Nd. The abundance estimates for the dwarfs and giants are similar within the errors of determination, except for the Na abundances.  相似文献   

7.
This paper describes the Wide Field Spectrograph (WiFeS) under construction at the Research School of Astronomy and Astrophysics (RSAA) of the Australian National University (ANU) for the ANU 2.3 m telescope at the Siding Spring Observatory. WiFeS is a powerful integral field, double-beam, concentric, image-slicing spectrograph designed to deliver excellent throughput, wavelength stability, spectrophotometric performance and superb image quality along with wide spectral coverage throughout the 320–950 nm wavelength region. It provides a 25×38 arcsec field with 0.5 arcsec sampling along each of twenty five 38×1 arcsec slitlets. The output format is optimized to match the 4096×4096 pixel CCD detectors in each of two cameras individually optimized for the blue and the red ends of the spectrum, respectively. A process of “interleaved nod-and-shuffle” will be applied to permit quantum noise-limited sky subtraction. Using VPH gratings, spectral resolutions of 3000 and 7000 are provided. The full spectral range is covered in a single exposure at R=3000, and in two exposures in the R=7000 mode. The use of transmissive coated optics, VPH gratings and optimized mirror coatings ensures a throughput (including telescope atmosphere and detector) >30% over a wide spectral range. The concentric image-slicer design ensures an excellent and uniform image quality across the full field. To maximize scientific return, the whole instrument is configured for remote observing, pipeline data reduction, and the accumulation of calibration image libraries.  相似文献   

8.
Recently, the estimation of coronal magnetic field using new methods, such as standoff distance method or density compression ratio method has been reported. In the present work, we utilized the density compression ratio of CME-driven shocks for 10 events at 29 different locations in the upper solar corona (10–26R ) and determined the coronal magnetic field for two different adiabatic indices (γ=4/3 and 5/3). In addition, radial dependence of shock parameters in the corona is studied. It is found that the magnetic field estimated in the above range agree with the general trend. In addition, we obtained a radial profile of magnetic field [B(R)=623R ?1.4] in the entire upper corona (3–30R ) by combining the magnetic field estimated by Kim et al. (Astrophys. J. 746:118, 2012) in the range 3–15R and that estimated in the present study in the range (10–26R ). The power-law indices are nearly in agreement with recent results of CME-driven shocks reported in the literature. The results are discussed with the comparison of newly reported coronal magnetic field values obtained by different techniques and found that the power-law relation closely follow the literature values.  相似文献   

9.
CUBES is a high-efficiency, medium-resolution (R~20,000) ground based UV (300–400 nm) spectrograph, to be installed in the cassegrain focus of one of ESO’s VLT unit telescopes in 2017/18. The CUBES project is a joint venture between ESO and IAG/USP, and LNA/MCTI. CUBES will provide access to a wealth of new and relevant information for stellar as well as extragalactic sources. Main science cases include the study of beryllium and heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range, as well as the study of active galactic nuclei and the quasar absorption lines. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will give a significant gain in sensitivity over existing ground based medium-high resolution spectrographs, enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project including the status, science cases and a discussion of the design options.  相似文献   

10.
High-resolution spectra of nine supergiants and three comparison stars taken with CCD echelle spectrographs in the coude’ foci of the 1-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences and 2-m telescope of Terskol Observatory (with R = 40000 and R = 45000, respectively) are reported in a tabular and graphic form. Two hundred (α Cam, O9.5 Ia) to 1000 (HD 12953, A1 Ia-0) stellar and interstellar lines and bands are identified in the 3600–7800 ÅÅ wavelength interval and most of them have their central intensities and heliocentric radial velocities measured. A spectral classification based on weak photospheric absorptions is tested. This is actual for the brightest supergiants and hypergiants, where the formation regions of strong lines, which are traditionally used for classification, also include the bases of stellar winds. Radial gradients of velocity are revealed in the atmospheres of supergiants. The cases of the refinement of the effective wavelengths, analysis of blends, and revealing of wind anomalies in line profiles are illustrated. The atlas is used extensively as a teaching tool.  相似文献   

11.
The 557.7 nm OI night airglow emission was measured in the central polar cap by ground-based photometric systems at Thule Air Base, Greenland during the winter seasons from 1972–1973 to 1974–1975 and at Thule-Qanaq, Greenland during the winter season of 1973–1974. The behavior of the 557.7 nm night airglow emission in the polar cap was found to be quite different from that observed at mid and low latitudes. No diurnal variation greater than ±5% exist in the data. Large amplitude variations in the 557.7 nm daily average emission intensities can change by up to a factor of approximately 8 over periods ranging from 4 to 19 days. These long-term airglow variations cover at least a 100 km horizontal range as determined by a correlation coefficient of 0.94 between daily average 557.7 nm airglow intensities observed at Thule Air Base and Thule-Qanaq. An interplanetary magnetic field sector related behavior is evident in the daily average intensities which shows an increase of intensity in a positive (+) sector and a decrease of intensity in a negative (?) sector. No significant correlation was found between the 557.7 nm daily average intensities and Zurich sunspot number RZ, although a season to season positive trend was evident. Correlations between the 557.7 nm daily average intensities and planetary magnetic indices ΣKp and Ap were found to be inconclusive due to sector related effects. The Barth and Chapman mechanisms are discussed as possible source mechanisms for the 557.7 nm airglow in the central polar cap, and a hypothesis is presented to explain the airglow variations.  相似文献   

12.
Many problems of determining the chemical composition of comets and studying the physical processes in cometary nuclei can only be solved by using observational data in the UV range of the electromagnetic spectrum (115–300 nm). Cometary observations have a number of features in comparison with such studies of other astronomical objects. The World Space ObservatoryUltraviolet mission, planned for launch in 2021, will overcome most of the challenges in these studies and will be able to become an essential tool of cometary UV research in the following decade.  相似文献   

13.
《New Astronomy》2007,12(7):578-589
We present an analysis of the photometric observations of the peculiar X-ray binary and X-ray transient CI Cam (XTE J0421+560), mostly covering the interval following its 1998 outburst. We show that the most prominent variations are observed in the I band, with the amplitude decreasing toward the V (and U) passband. We find that CI Cam displays complicated shifts in the colour diagrams and show that the variations of the continuum play a significant role in the colour changes. We also resolve the signatures of the variations of the very strong Hα emission with respect to the combination of the continuum and other lines in the colours. On the basis of the shifts in the colour diagrams and of the spectral energy distribution determined from the photometry we propose that the division of the dominant contributions of the superimposed spectral components (free–free emission (Clark, J.S., Miroshnichenko, A.S., Larionov, V.M., et al., 2000, A&A, 356, 50) and the (pseudo)photospheric emission) occurs near λ = 550 nm. We make use of this division for an explanation of the decoupling of the variations of UB and BV from those in VR, RI and VI. We observed two maxima of brightness (the second one only in R and I) separated by 1350 d in which the (pseudo)photospheric emission, f–f/f–b and Hα emission appear to be involved in a complicated way. We find some indications that the variations of the source of the optical light can be related to those of the X-ray source in quiescence, particularly in an event which we interpret as a density enhancement in the matter exchange. We explain the huge changes of the absorption of the X-ray spectrum, NH, not reflected in the colour variations in the optical region, in terms of the variations of NH confined to the region hotter than the temperature of the condensation of the dust, maybe related to the filling of the disk embedding the compact object. We argue that the dominant part of the X-ray emission comes from the close vicinity of the compact object, not from the donor. Very low-amplitude (∼0.02 mag) intranight optical variations can be present in four nights of our observations in the post-outburst period; they have the form of bumps on the time-scale of about an hour, but without any coherent component. We also point out the similarities in the situation of CI Cam and the microquasar LS 5039/RX J1826–1450, as regards the variations of brightness coming from the vicinity of the compact object.  相似文献   

14.
The TU Gem star has long been known as a peculiar carbon giant of the Galaxy halo, but its classification as a CH star is still debated. We estimated the TU Gem atmosphere parameters through modeling its spectrum and comparision one with the spectra of the star observed in two wide spectral ranges (λλ 400–720 nm and λλ 900–2440 nm). The low-dispersion optical TU Gem spectrum obtained by Barnbaum et al. (2006) (R ~ 600) and the infrared spectrum presented by Tanaka et al. (2007) (R ~ 2600) were used in the analysis. The model atmospheres were calculated using the SAM12 software (Pavlenko, 2003). Since the metallicity ([Fe/H]) value could not be determined conclusively based on our spectral data, only the TU Gem effective temperature T eff (that depends weakly on metallicity) was defined with certainty (T eff = 3000 ± 100 K). We determined the C/O, [C/Fe], and [N/Fe] values for the ?2.0 ≤ [Fe/H] ≤ 0.0 range with a step of Δ[Fe/H] = 0.5. Our estimate of [C/Fe] (0.63–0.67 at [Fe/H] = ?1.0) is higher than the corresponding estimate ([C/Fe] = 0.21 at [Fe/H] = ?1.1) given in (Kipper et al., 1996), while the estimates for [N/Fe] at the stated metallicities agree with each other: [N/Fe] = +1.0. This brings TU Gem closer to CH stars, but a detailed analysis of the chemical composition of the TU Gem atmosphere is required to reach a definite conclusion.  相似文献   

15.
We present a method to derive the relative pointing offsets for SPIRE Fourier-Transform Spectrometer (FTS) solar system object (SSO) calibration targets, which were observed regularly throughout the Herschel mission. We construct ratios R obs(ν) of the spectra for all observations of a given source with respect to a reference. The reference observation is selected iteratively to be the one with the highest observed continuum. Assuming that any pointing offset leads to an overall shift of the continuum level, then these R obs(ν) represent the relative flux loss due to mispointing. The mispointing effects are more pronounced for a smaller beam, so we consider only the FTS short wavelength array (SSW, 958–1546 GHz) to derive a pointing correction. We obtain the relative pointing offset by comparing R obs(ν) to a grid of expected losses for a model source at different distances from the centre of the beam, under the assumption that the SSW FTS beam can be well approximated by a Gaussian. In order to avoid dependency on the point source flux conversion, which uses a particular observation of Uranus, we use extended source flux calibrated spectra to construct R obs(ν) for the SSOs. In order to account for continuum variability, due to the changing distance from the Herschel telescope, the SSO ratios are normalised by the expected model ratios for the corresponding observing epoch. We confirm the accuracy of the derived pointing offset by comparing the results with a number of control observations, where the actual pointing of Herschel is known with good precision. Using the method we derived pointing offsets for repeated observations of Uranus (including observations centred on off-axis detectors), Neptune, Ceres and NGC 7027. The results are used to validate and improve the point-source flux calibration of the FTS.  相似文献   

16.
A consistent study of the solar wind has been extended to a wide region of interplanetary space, up to distances from the Sun R ? 90 R s . Experiments are carried out with the radio telescopes of the Pushchino Radio Astronomy Observatory (Astrospace Center, Lebedev physical Institute, Russian Academy of Sciences): DKR-1000 (λ ≈ 2.7–2.9 m) and RT-22 (λ ≈ 1.35 cm), respectively. The radio-wave scattering characteristics, the scattering angle θ(R) and the scintillation index m(R), are studied. The formation of a steady supersonic solar wind is associated with a sequence of four stages whose scale in different solar wind streams changes within the range 10–23 R s , depending on the initial stream speed. These circumstances should be taken into account when predicting the state of the near space using data on the solar wind in regions of the interplanetary medium close to the Sun.  相似文献   

17.
Spectral types (M4–M6), effective temperatures T ef (2700–2900 K), and free fall accelerations logg (4.0–4.5) are determined for five M dwarfs using their energy distributions in the spectral range λλ = 680…840 nm. Stellar spectra with resolutions R = 4000 were obtained using the IMACS spectrograph mounted on the ESO Walter Baade 6.5-m telescope. The spectral types are derived from spectral indices and the effective temperatures of the stars are estimated based on their spectral types. Values of T ef and logg are also derived from the comparison between the observed and theoretical energy distributions, calculated both for dust-free, standard NextGen model atmospheres of red dwarfs, and for semiempirical models considering the presence of dust in stellar atmospheres according to the technique developed by Pavlenko et al. We determine dust parameters for stellar atmospheres of these stars, and establish that it is necessary to account for the decrease in concentration of TiO molecules due to their condensation on dust grains, when T ef < 3000 K. We conclude that the radiation scattering by dust grains does not have an appreciable effect on energy distributions in the spectra of the considered stars.  相似文献   

18.
In 2013–2015 the Laboratory of spectroscopy and photometry of extragalactic objects (LS-PEO) of the Special Astrophysical Observatory together with Armenian specialists upgraded the 1-m Schmidt telescope of the Byurakan Astrophysical Observatory of the National Academy of Sciences of Armenia. We completely redesigned the control system of the telescope: we replaced the actuating mechanisms, developed telescope control software, and made the guiding system. We reworked and prepared a 4k × 4k Apogee (USA) liquid-cooled CCD with RON ~ 11.1 e?, a pixel size of 0.″868, and field of view of about 1□°, and in October 2015 mounted it in the focus of the telescope. The detector is equipped with a turret bearing 20 intermediate-band filters (FWHM = 250 Å) uniformly covering the 4000–9000 Å wavelength range, five broadband filters (u, g, r, i, z SDSS), and three narrow-band filters (5000 Å, 6560 Å and 6760 Å, FWHM = 100 Å). During the first year of test operation of the 1-m telescope we performed pilot observations within the framework of three programs: search for young stellar objects, AGNevolution, and stellar composition of galaxy disks.We confirmed the possibility of efficiently selecting of young objects using observations performed in narrow-band Hα and [SII] filters and the intermediate-band 7500 Å filter. Three-hours long exposures with SDSS g-, r-, and i-band filters allow us to reach the surface brightness level of 28m/□″ when investigating the stellar content of galaxy disks for a sample of nine galaxies. We used observations performed with the 1-m telescope in five broadband (SDSS u, g, r, i, and z) and 15 intermediate-band filters (4000–7500 Å) to construct a sample of quasar candidates with 0.5 < z < 5 (330 objects) in about one-sq. degree SA68 field complete down to RAB = 23m. Spectroscopic observations of 29 objects (19.m5 < R < 22m) carried out at the 6-m telescope of the Special Astrophysical Observatory of the Russian Academy of Sciences confirmed the quasar nature of 28 objects.  相似文献   

19.
The type II solar radio burst recorded on 13 June 2010 by the Hiraiso Solar Observatory Radio Spectrograph was employed to estimate the magnetic-field strength in the solar corona. The burst was characterized by a well-pronounced band splitting, which we used to estimate the density jump at the shock and Alfvén Mach number using the Rankine–Hugoniot relation. We convert the plasma frequency of the type II burst into height [R] in solar radii using an appropriate density model, and then we estimated the shock speed [V s], coronal Alfvén velocity [V A], and the magnetic-field strength at different heights. The relative bandwidth of the band splitting was found to be in the range 0.2?–?0.25, corresponding to a density jump of X=1.44?–?1.56, and an Alfvén Mach number of M A=1.35?–?1.45. The inferred mean shock speed was on the order of V≈667 km?s?1. From the dependencies V(R) and M A(R) we found that the Alfvén speed slightly decreases at R≈1.3?–?1.5 R. The magnetic-field strength decreases from a value between 2.7 and 1.7 G at R≈1.3?–?1.5 R, depending on the coronal-density model employed. Our results are in good agreement with the empirical scaling by Dulk and McLean (Solar Phys. 57, 279, 1978) and Gopalswamy et al. (Astrophys. J. 744, 72, 2012). Our results show that the type II band-splitting method is an important tool for inferring the coronal magnetic field, especially when independent measurements are made from white-light observations.  相似文献   

20.
We performed a series of CCD observations in BVRI bands of a celestial region in cluster M67 (NGC 2682) to study the photometric system of the Kyiv network telescope. The signal recording system consists of a CGE-1400 telescope, Celestron #94175 focal reducer, an automatic turret with a set of UBVRI filters, and a Rolera Mgi CCD camera. The operating field of the system is 10.62′ × 10.62′. CCD images are processed in the MIDAS/ROMAFOT package. The reduction coefficients of the instrumental photometric system relative to Johnson’s BVRI system are determined. The resulted value of the module of distance to cluster M67 V ? M V = 9.63 m does not contradict the results of other researchers. The mean square errors for one determination of stellar magnitude for different bands are 0.02–0.12 m . The errors in determining equatorial coordinates in the TYCHO-2 catalog system are ± 1″.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号