首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the presence of Faraday rotation in measurements of the orientation of a sunspot's transverse magnetic field is investigated. Using observations obtained with the Marshall Space Flight Center's (MSFC) vector magnetograph, the derived vector magnetic field of a simple, symmetric sunspot is used to calculate the degree of Faraday rotation in the azimuth of the transverse field as a function of wavelength from analytical expressions for the Stokes parameters. These results are then compared with the observed rotation of the field's azimuth which is derived from observations at different wavelengths within the Fei 5250 Å spectral line. From these comparisons, we find: the observed rotation of the azimuth is simulated to a reasonable degree by the theoretical formulations if the line-formation parameter η o is varied over the sunspot; these variations in η o are substantiated by the line-intensity data; for the MSFC system, Faraday rotation can be neglected for field strengths less than 1800 G and field inclinations greater than 45°; to minimize the effects of Faraday rotation in sunspot umbrae, MSFC magnetograph measurements must be made in the far wings of the Zeeman-sensitive spectral line.  相似文献   

2.
The EUV (200–911 Å), FUV (912–1750 Å), and NUV (1750–3200 Å) spectral energy distribution of exoplanet host stars has a profound influence on the atmospheres of Earth-like planets in the habitable zone. The stellar EUV radiation drives atmospheric heating, while the FUV (in particular, Lyα) and NUV radiation fields regulate the atmospheric chemistry: the dissociation of H2O and CO2, the production of O2 and O3, and may determine the ultimate habitability of these worlds. Despite the importance of this information for atmospheric modeling of exoplanetary systems, the EUV/FUV/NUV radiation fields of cool (K and M dwarf) exoplanet host stars are almost completely unconstrained by observation or theory. We present observational results from a Hubble Space Telescope survey of M dwarf exoplanet host stars, highlighting the importance of realistic UV radiation fields for the formation of potential biomarker molecules, O2 and O3. We conclude by describing preliminary results on the characterization of the UV time variability of these sources.  相似文献   

3.
We present analyses of new optical photometric observations of three W UMa-type contact binaries FZ Ori, V407 Peg and LP UMa. Results from the first polarimetric observations of the FZ Ori and V407 Peg are also presented. The periods of FZ Ori, V407 Peg and LP UMa are derived to be 0.399986, 0.636884 and 0.309898 d, respectively. The O?C analyses indicate that the orbital periods of FZ Ori and LP UMa have increased with the rate of 2.28×10?8 and 1.25×10?6 d?yr?1, respectively and which is explained by transfer of mass between the components. In addition to the secularly increasing rate of orbital period, it was found that the period of FZ Ori has varied in sinusoidal way with oscillation period of ~30.1 yr. The period of oscillations are most likely to be explained by the light-time effect due to the presence of a tertiary companion. Small asymmetries have been seen around the primary and secondary maxima of light curves of all three systems, which is probably due to the presence of cool/hot spots on the components. The light curves of all three systems are analysed by using Wilson-Devinney code (WD) and the fundamental parameters of these systems have been derived. The present analyses show that FZ Ori is a W-subtype, and V407 Peg and LP UMa are A-subtype of the W UMa-type contact binary systems. The polarimetric observations in B, V, R and I bands, yield average values of polarization to be 0.26±0.03, 0.22±0.02, 0.22±0.03 and 0.22±0.05 per cent for FZ Ori and 0.21±0.02, 0.29±0.03, 0.31±0.01 and 0.31±0.04 per cent for V407 Peg, respectively.  相似文献   

4.
Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter-tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010.  相似文献   

5.
6.
The X-ray spectrum of the Crab nebula has been determined in the energy range 0.5 10 keV using thin window proportional counters carried aboard a Centaur IIA rocket launched from TERLS, India. The spectrum can be well represented by a power law with an exponent?2.1 beyond 2 keV. The absorption of the soft X-ray component below 2 keV is clearly seen in the experiment. Attempts to understand quantitatively the spectral features in terms of interstellar absorption lead to a column density of hydrogen in the iirection of the Crab nebula of 3.5×1021 H atoms cm?2, if we adopt a revised version of the interstellar absorption coefficients of Brown and Gould to include the contributions of heavier elements, especially of iron. This value of density is a factor of 2 higher than the density obtained from 21 cm radio observations, but falls well within the range of values for atomic and total hydrogen deducible from UV measurements with satellites and the measured visual extinction coefficients for the Crab nebula. It is concluded that it is not necessary to consider anomalous abundance of elements like carbon or neon either in the source or in the interstellar medium as suggested by some authors. The absorption of X-rays in the interstellar dust in the light of current dust models is presented.  相似文献   

7.
The First Light Adaptive Optics (FLAO) system has been successfully commissioned at the Large Binocular Telescope. It delivers extreme adaptive optics performance using bright natural guide stars reaching 90 % Strehl Ratios in H-band. Observations with current adaptive optics systems are limited to the near infrared wavelengths, in these bands the diffraction limited resolution of the largest ground-based telescopes (8–10 meter class) is comparable to the one of the much smaller Hubble Space Telescope that observes in the visible bands. This study aims to demonstrate the feasibility of an adaptive optics system designed to achieve very high order correction at visible wavelengths (0.5 to 0.8 μ m) with significant sky coverage. Upgrading the FLAO design with a low noise CCD relaxes the reference magnitude limit needed to achieve greater performance. In particular, we demonstrate that a gain of 1–2 magnitudes is possible by upgrading the wavefront sensor with a very low read out noise CCD. For future AO systems, in addition to low noise CCDs, deformable (secondary) mirrors with a higher actuator density will be able to move the high order correction capability from the near infrared to the visible wavelengths (Strehl Ratio of 80 % in R (0.7 μ m), 60 % in V (0.5 μ m)). We investigate, by means of numerical simulation, the gain in imaging performance obtained at Near Infrared, Visible, and UV wavelengths. The results of these simulations have been used to derive the empirical relation between Strehl Ratio and magnitude of the reference star and we then use this relationship to perform a detailed sky coverage analysis based on astronomical catalog data. The detailed simulations of the Point Spread Functions allow us to compute Ensquared Energy and Strehl Ratio for the magnitude working range of such an Adaptive Optics system. We present the results of the instrumental isoplanatic angle determination. We then used these values to compute the relationship between correction level and the off-axis angle from the reference star. The Strehl Ratio relationship with the reference magnitude and the angular distance provides the information needed to perform the sky-coverage analysis, which demonstrates that the designed system is able to provide V and R bands correction on a not negligible few percent of the sky.  相似文献   

8.
Based on archival Hubble Space Telescope images, we have performed stellar photometry of several fields in the isolated spiral galaxies NGC 6503 and NGC 6946 with high peculiar velocities. Based on the TRGB method, we have determined the distances to the galaxies: D = 6.30 ± 0.10 Mpc for NGC 6503 and D = 6.72 ± 0.15 Mpc for NGC 6946. The current stellar content of the galaxies does not differ from that of other similar galaxies. The metallicity for young stars in NGC 6503 is Z = 0.02 (corresponding to the solar metallicity), while the metallicity for stars in NGC 6946 reaches Z = 0.05. Very few old globular clusters have been found in NGC 6946, while they have not been found at all in NGC 6503. The number density distribution of stars with different ages in NGC 6503 does not differ from the analogous distributions in other galaxies. The large sizes of the thick disk in NGC 6503, which is clearly seen up to 6 kpc from the galactic disk plane and whose possible extension is noticeable up to 8.6 kpc from the plane, are a difference. The sizes of the region occupied by red giants of the disk in NGC 6503 are 51 × 17 kpc, which are not much larger than the sizes of this galaxy from H I radio observations.  相似文献   

9.
Near-UV (NUV) Hubble Space Telescope (HST) observations of the extreme hot-Jupiter WASP-12b revealed the presence of diffuse exospheric gas extending beyond the planet’s Roche lobe. Furthermore the NUV observations showed a complete lack of the normally bright core emission of the Mg?ii?h&k resonance lines, in agreement with the measured anomalously low stellar activity index (logR HK ). Comparisons with other distant and inactive stars, and the analysis of radio and optical measurements of the intervening interstellar medium (ISM), led us to the conclusion that the system is surrounded by a circumstellar gas cloud, likely formed of material lost by the planet. Similar anomalous logR HK index deficiencies might therefore signal the presence of translucent circumstellar gas around other stars hosting evaporating planets; we identified five such systems and WASP-18 is one of them. Both radio and optical observations of the region surrounding WASP-18 point towards a negligible ISM absorption along the WASP-18 line of sight. Excluding the unlikely possibility of an intrinsic anomalously low stellar activity, we conclude that the system is probably surrounded by a circumstellar gas cloud, presumably formed of material lost by the planet. Nevertheless only a far-UV spectrum of the star would provide a definite answer. Theoretical modelling suggests WASP-18b undergoes negligible mass loss, in contrast to the probable presence of a circumstellar gas cloud formed of material lost by the planet. The solution might be the presence either of an extra energy source driving mass loss (e.g., the reconnection of the stellar and planetary magnetic fields inside the planet atmosphere) or of an evaporating third body (e.g., moon).  相似文献   

10.
Onboard the International Space Station (ISS), two instruments are observing the solar spectral irradiance (SSI) at wavelengths from 16 to 2900 nm. Although the ISS platform orientation generally precludes pointing at the Sun more than 10?–?14 days per month, in November/December 2012 a continuous period of measurements was obtained by implementing an ISS ‘bridging’ maneuver. This enabled observations to be made of the solar spectral irradiance (SSI) during a complete solar rotation. We present these measurements, which quantify the impact of active regions on SSI, and compare them with data simultaneously gathered from other platforms, and with models of spectral irradiance variability. Our analysis demonstrates that the instruments onboard the ISS have the capability to measure SSI variations consistent with other instruments in space. A comparison among all available SSI measurements during November–December 2012 in absolute units with reconstructions using solar proxies and observed solar activity features is presented and discussed in terms of accuracy.  相似文献   

11.
Observations of carbon (C), hydrogen and helium (H, He) radio recombination lines (RRLs) at four positions in the Orion Bar photodissociation region (PDR) and toward the center of Orion A have been performed with the RT-22 radio telescope (Pushchino) at 8 mm. The physical parameters of the PDR at these points have been estimated by comparing the carbon RRLs and infrared CII and OI lines. A hydrogen number density in the range 1.2–3.1 × 105 cm?3 and a mean size of the region along the line of sight (L) in the range 0.006–0.04 pc have been derived. The PDR temperature decreases with increasing distance from the exciting star (θ 1 C Ori) from 210–230 to 140–150 K (a distance of ≈5′). The data obtained confirm the increase in the PDR size along the line of sight toward the Orion Bar, where, however, L has turned out to be less than the available values in the literature, which can be explained by the presence of clumps in the PDR. A density jump is evident in the Orion Bar region. The PDR zone encompasses the core of the HII region by a thin layer and extends farther, delineating the boundary and the ionization front of the core of the HII region in the Orion Bar and further out the boundary between the halo of the HII region and the molecular cloud. The derived emission measure (EM) toward the Orion Bar has been compared with other C RRL observations. The EM measured from carbon RRLs is EM ≈ 100(±50%) pc cm?6, imposing constraints on the possible two-component PDR structure. Estimates show that the star θ 1 C Ori is quite sufficient as a carbon ionization source in the Orion Bar PDR. Some of the data on the ionized hot gas (HII) in this direction have been obtained from H and He RRLs. In particular, the radial velocities (V lsr) of the HII region are blueshifted with respect to V lsr of the PDR by 10–17 km s?1, while the relative ionized helium abundance decreases with increasing distance from the star, indicating that the helium ionization zone is smaller than the ionized hydrogen one.  相似文献   

12.
The search for the still unrevealed spectral shape of the mysterious THz solar flare emissions is one of the current most challenging research issues. The concept, fabrication and performance of a double THz photometer system, named SOLAR-T, is presented. Its innovative optical setup allows observations of the full solar disk and the detection of small burst transients at the same time. The detecting system was constructed to observe solar flare THz emissions on board of stratospheric balloons. The system has been integrated to data acquisition and telemetry modules for this application. SOLAR-T uses two Golay cell detectors preceded by low-pass filters made of rough surface primary mirrors and membranes, 3 and 7 THz band-pass filters, and choppers. Its photometers can detect small solar bursts (tens of solar flux units) with sub second time resolution. Tests have been conducted to confirm the entire system performance, on ambient and low pressure and temperature conditions. An artificial Sun setup was developed to simulate performance on actual observations. The experiment is planned to be on board of two long-duration stratospheric balloon flights over Antarctica and Russia in 2014–2016.  相似文献   

13.
The librational motion round the Lagrangian triangular points L4, L5 with mass exchange of the primaries is investigated according to Brown's theory. The results are the same as in the case of isotropic mass variation studied earlier (Horedt, 1974a): (i) The extrema of the elongations with respect to the small mass are unaffected by mass exchange. (ii) The equations for the extrema of the Trojan's distance from the Sun and for the libration period are formally the same as in the constant mass problem, but with the understanding that the masses are now time dependent quantities. A Trojan cannot leave the libration domain due to a mass variation of the primaries obeying the constraints from Equation (2.4), with a mass ratio of the primaries m/M≤0.0401.  相似文献   

14.
We have studied the dynamical properties of convective overstability and Kelvin-Helmholtz instability in a vertical magnetic field with a downdraft. The Kelvin-Helmholtz instability and overstability produce the upward downward propagating Alfvén waves depending upon the magnitudes of the kinematic viscosity coefficient (eddy viscosity) ν, and thermometric conductivity κ. It is found that the instability may be driven by the density stratification and the effect of the eddy viscosity is to make the system stable. We discuss also the interaction of the overstability inx<0 and the downdraft inx>0, and the overstability at a vertical boundary of the field.  相似文献   

15.
In the set of small satellites of Saturn recently imaged by the Voyager probes, we can observe the transition from irregularly-shaped, strength-dominated objects to larger, gravity-dominated bodies with shapes roughly fitting the theoretical equilibrium figures. The transition occurs for a radius of 100±50 km, corresponding to a typical material strength of the order of 107 dynes cm?2. We discuss briefly the cases of Mimas, Enceladus, Hyperion, Phoebe and the small coorbital and F-ring shepherding moons, showing that an analysis of the shape data can often provide interesting results on the physical properties, origin and collisional history of these objects.  相似文献   

16.
The success of the International Ultraviolet Explorer (IUE) first and then of the STIS and COS spectrographs on-board the Hubble Space Telescope (HST) demonstrate the impact that observations at UV wavelengths had and are having on modern astronomy. Several discoveries in the exoplanet field have been done at UV wavelengths. Nevertheless, the amount of data collected in this band is still limited both in terms of observed targets and time spent on each of them. For the next decade, the post-HST era, the only large (2-m class) space telescope capable of UV observations will be the World Space Observatory–UltraViolet (WSO–UV). In its characteristics, the WSO–UV mission is similar to that of HST, but all observing time will be dedicated to UV astronomy. In this work, we briefly outline the major prospects of the WSO–UV mission in terms of exoplanet studies. To the limits of the data and tools currently available, here we also compare the quality of key exoplanet data obtained in the far-UV and near-UV with HST (STIS and COS) to that expected to obtain with WSO–UV.  相似文献   

17.
A distinct magnetic cloud (MC) was observed in-situ at the Solar TErrestrial RElations Observatory (STEREO)-B on 20?–?21 January 2010. About three days earlier, on 17 January, a bright flare and coronal mass ejection (CME) were clearly observed by STEREO-B, which suggests that this was the progenitor of the MC. However, the in-situ speed of the event, several earlier weaker events, heliospheric imaging, and a longitude mismatch with the STEREO-B spacecraft made this interpretation unlikely. We searched for other possible solar eruptions that could have caused the MC and found a faint filament eruption and the associated CME on 14?–?15 January as the likely solar source event. We were able to confirm this source by using coronal imaging from the Sun Earth Connection Coronal and Heliospheric Investigation (SECCHI)/EUVI and COR and Solar and Heliospheric Observatory (SOHO)/Large Angle and Spectrometric Coronograph (LASCO) telescopes and heliospheric imaging from the Solar Mass Ejection Imager (SMEI) and the STEREO/Heliospheric Imager instruments. We use several empirical models to understand the three-dimensional geometry and propagation of the CME, analyze the in-situ characteristics of the associated ICME, and investigate the characteristics of the MC by comparing four independent flux-rope model fits with the launch observations and magnetic-field orientations. The geometry and orientations of the CME from the heliospheric-density reconstructions and the in-situ modeling are remarkably consistent. Lastly, this event demonstrates that a careful analysis of all aspects of the development and evolution of a CME is necessary to correctly identify the solar counterpart of an ICME/MC.  相似文献   

18.
Pioneer VI was launched into a circumsolar orbit on December 16, 1965, and was occulted by the sun in the latter half of November, 1968. During the occultation period, the 2292-MHz S-band telemetry carrier underwent Faraday rotation due to the interaction of this signal with the plasma and magnetic field in the solar corona. The NASA/JPL 210-ft diameter antenna of the Deep Space Network near Barstow, California, was used for the measurement. The antenna feed was modified for automatic polarization tracking for this experiment. The measurement results are interpreted with a theoretical model of the solar corona. This model consists of a modified Allen-Baumbach electron density and a coronal magnetic field calculated both from Mount Wilson magnetograph observations using a source surface model and field extrapolations from the Explorer 33 satellite magnetometer. The observations and the calculated rotation show general agreement with respect to magnitude, sense, and timing, suggesting the source-surface model and field extrapolations from 1 AU are a valid technique to obtain the magnetic field in the corona from 4 to 12 solar radii. Variations present can easily be ascribed to density enhancements known to be present in the corona. Longitudinal variations of the density in the corona cannot be obtained from coronagraph observations, and thus a purely radial variation was assumed. An improved fit to the Faraday rotation data is obtained with an equatorial electron density $$N = 10^8 \left( {\frac{{6000}}{{R^{10} }} + \frac{{0.002}}{{R^2 }}} \right)...{\text{ cm}}^{{\text{ - 3}}} {\text{ (4 < }}R < 12){\text{ }}...$$ where R is in solar radii. The work of W. V. T. Rusch and J. E. Ohlson was supported in part by research sponsored by the Joint Services Electronics Program through the Air Force Office of Scientific Research under Grant AF-AFOSR 69-1622A at the University of Southern California. The work done by K. H. Schatten was in part supported by the National Academy of Science on a National Research Council postdoctoral fellowship. The work of J. M. Wilcox was supported in part by the Office of Naval Research under Contract Nonr 3656(26), by the National Aeronautics and Space Administration under Grant NGR 05-003-230, and by the National Science Foundation under Grant GA-1319 at the University of California at Berkeley.  相似文献   

19.
Estimates are given for the amplitudes of stochastically excited oscillations in Main Sequence stars and cool giants; these were obtained using the equipartition between convective and pulsational energy which was originally proposed by Goldreich and Keeley. The amplitudes of both velocity and luminosity perturbation generally increase with increasing mass along the Main Sequence as long as convection transports a major fraction of the total flux, and the amplitudes also increase with the age of the model. The 1.5 M ZAMS model, of spectral type F0, has velocity amplitudes ten times larger than those found in the Sun. For very luminous red supergiants luminosity amplitudes of up to about 0 m .1 are predicted, in rough agreement with observations presented by Maeder.  相似文献   

20.
A sample of O- and B-type stars with Hipparcos astrometric data, ages computed from Strömgren photometry and radial velocities, has been used to characterize the structure, age and kinematics of the Gould Belt system. The local spiral structure of our galaxy is determined from this sample, and also from a sample of Hipparcos Cepheid stars. The Gould Belt, with an orientation with respect to the galactic plane ofi G = 16-22° and ΩG =275-295°, extends up to a distance of 600 pc from the Sun. Roughly the 60-65% of the O and B stars younger than 60 Myr in the solar neighbourhood belong to this structure. Our results indicate that the kinematical behaviour of this system is complex, with an expansion motion in the solar neighbourhood (R<300 pc).In the frame of the Lin's theory, and analysing the O and B stars further than 600 pc and the Cepheids, we found a galactic spiral structure characterized by a 4-arm spiral pattern with the Sun located atψ = 350-355 ± 30° – near the Sagittarius-Carina arm– and outside the corotation circle. The angular rotation speed of the spiral pattern was found to be Ωp = 31-32 ± 4 kms-1 kpc-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号