首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heavy mineral analysis has been carried out in the Barakar Formation of the Talchir Gondwana Bbasin, Orissa. The characteristic heavy minerals are garnet, zircon, tourmaline, rutile, biotite, chlorite, pyroxenes, hornblende, staurolite, sillimanite, apatite, epidote, sphene, spinel and siderite including opaques and leucoxene. These heavy minerals are divisible into four groups on the basis of principal component analysis and suggest derivation of Barakar sediments from pegmatite, acid and basic igneous as well as low- and high-rank metamorphic rocks lying to the south of the Talchir Gondwana Basin. Though the heavy mineral suites of all the sandstone samples are by and large similar, differences have been noticed in the frequencies of many heavy minerals in vertical succession. Cyclic nature and vertical fluctuation of heavy mineral frequencies can be ascribed to variation of the relief of the source area, sudden release of some of the minerals in the source region and/or existence of favourable geochemical condition to escape partial dissolution.  相似文献   

2.
通过详实的野外调查和室内研究,在西藏吉瓦地区新发现了砂岩型铜矿床,赋矿层位为渐新统日贡拉组,矿床类型为层控矿床。为探讨日贡拉组砂岩的物源特征及其构造背景、查明其含矿物质来源,通过碎屑矿物定量分析、元素地球化学方法及重矿物组合分析等一系列物源分析方法对日贡拉组的物质来源进行了研究。结果显示,研究区主要岩性为岩屑砂岩,岩屑主要成分为酸性火山岩,砂岩结构成熟度低,分选磨圆差。碎屑组分分析表明物源集中在火山弧物源区,地球化学特征为硅质含量高、LREE富集、HREE相对亏损、显示Eu负异常,均表明物源与酸性火山岩密切相关;日贡拉组砂岩的大地构造背景主要为大陆岛弧,砂岩碎屑来自上地壳长英质源区。重矿物组合以反映物源为中酸性岩浆岩成分的赤褐铁矿+磁铁矿、锆石、电气石、石榴子石为主,沉积环境为气候干旱、水体较浅的富氧环境。锆石形态特征指示物源距母岩区较近,重矿物的相关性分析也指示了物源与火山岩密切相关。研究区的日贡拉组砂岩与早白垩酸性火山岩微量元素及重矿物的对比表明,碎屑物质源区特点从岩石学特征、地球化学特征及重矿物组合特征上均表现出了亲缘关系,物源成分与火山作用紧密相关,很可能主要来自班公湖-怒江洋壳南向俯冲与雅鲁藏布江洋壳北向俯冲双重制约条件下产生于火山弧环境中的早白垩世火山岩。日贡拉组发现了砂岩型铜矿,火山岩提供了成矿物质来源,为寻找同类型的矿床开启思路。  相似文献   

3.
通过对江汉平原主要河流沉积物的重矿物组合、特征矿物以及能够反映沉积物稳定状况、物源及成熟度的重矿物特征指数(ATi,GZi和ZTR)进行对比分析,发现在江汉平原范围内,长江和汉江及其长江主要支流的沉积物中重矿物特征具有显著的差异。长江的重矿物组合模型为:  锆石+绿帘石+辉石+绿泥石+金属矿物,特征矿物是锆石和辉石;   汉江的重矿物组合模型为:  绿帘石+角闪石+石榴石+绿泥石+金属矿物,特征矿物是角闪石、石榴石;   另外,清江、漳河、沮水和玛瑙河的重矿物组合及特征矿物也都完全不同。而且各水系的沉积物的重矿物特征与其源区的岩性分布显示出极好的相关性。研究表明在江汉平原利用重矿物特征及组合模型来进行物源示踪的方法开展水系演化研究是可行的。  相似文献   

4.
海南岛西部(琼西)是莺歌海盆地东北部的主要物质来源之一。本文对琼西7条主要河流入海口的现代河砂进行了重矿物含量、重矿物组合以及相关特征指数等分析,发现其重矿物含量、磨圆度、组合以及相关重矿物指数从北到南明显不同,反映出碎屑物质搬运距离和源区岩性也明显不同。北部珠碧江重矿物以钛铁矿、电气石、锆石、绿帘石和透闪石为主,磨圆度较差,反映物源主要为近距离的酸性至基性-超基性岩浆岩和变质岩;昌化江重矿物以钛铁矿、磁铁矿、锆石和榍石为主,磨圆比较好,物源可能主要为远距离的酸性和基性岩浆岩;中部北黎河和通天河重矿物以钛铁矿、电气石、锆石、石榴石和透闪石为主,基本没有磨圆,物源主要来自近源区,为未经远距离搬运的变质岩、酸性岩浆岩和基性火山岩;感恩河重矿物以磨圆度差的锆石、钛铁矿、榍石、电气石和褐铁矿等稳定-极稳定重矿物为主,反映源区主要为近距离搬运的岩浆岩;南部望楼河和宁远河重矿物以钛铁矿、磁铁矿、褐铁矿和绿帘石等稳定-不稳定矿物为主,反映的母岩主要为酸性岩浆岩、变质岩和中-基性岩浆岩。这些主要河流入海口的重矿物特征存在明显差异,这与其发源地、流经区域以及流经区域所发育的岩石类型相一致。通过研究琼西地区从北到南不同流域的重矿物组合体系,有助于开展莺歌海盆地源汇对比分析,建立不同区域油气储层碎屑物质来源的识别标志,对该盆地天然气储层物源识别具有重要的地质意义。  相似文献   

5.
中国海的碎屑矿物组合及其分布模式的探讨   总被引:1,自引:2,他引:1  
多年来,随着对中国海沉积物的调查研究,笔者对黄海、渤海、东海、南海北部陆架区与北部湾沉积物中的碎屑矿物组合及其分布模式进行了研究。调查范围如图1所示,其跨度为东经106°-129°,北纬17°-41°。作者共分析了760个海底表层沉积物样品,并对黄河、长江、辽河、滦河、六股河等河流沉积物的样品进行了分析,分析样品数为47个。  相似文献   

6.
The bar-top sediments at the Tons river deposited mainly from the suspension current during waning stage condition of river are collected to study their provenance on the basis of clay mineralogy, heavy minerals and magnetic properties. The clay mineral assemblages in samples predominantly consist of illite, with minor amounts of kaolinite, smectite and chlorite. The clay minerals are contributed due to (i) weathering and decomposition of shales, argillaceous limestones and pyroclastic deposits of upper Vindhyan Groups and (ii) weathering and erosion of Banda plain of Gangetic alluvium. The low ZTR index for the studied samples indicates poor sediment maturity, rapid erosion in the source region and short transportation of detritus. The transparent heavy mineral assemblages in the sediment samples predominantly consist of garnet, with minor amounts of tourmaline, zircon, hornblende, enstatite, hypersthene, rutile, tremolite, kyanite, sillimanite, andalusite, chlorite, epidote, wollastonite, and staurolite. The heavy minerals are dominantly angular to sub-angular with some rounded to sub-rounded grains. The rounded grains indicate multicyclicity and derivation fromVindhyan sandstones. The angular grains are either contributed due to erosion of primary rocks of Bundelkhand gneissic complex and or various Gangetic alluviums. The magnetic properties from sediment samples indicate that the antiferromagnetic minerals (illite, chlorite and smectite) are more concentrated in clay sized particles and it also indicated mixed source rocks for the bar-top sediment of Tons river.  相似文献   

7.
Provenance of the late Paleocene sandstone of the Jaisalmer basin has been determined by petrographic and heavy minerals analysis supported by paleocurrent study. Petrography of the quartzose-arenite sandstone reveals an abundance of sub-angular to sub-rounded monocrystalline non-undulatory quartz and some amount of feldspar and rock fragments. The rock fragments are dominated by argillites (slate, phyllite) and limestone. The heavy minerals suite of these sandstones comprises of angular to sub-angular grains of magnetite, zircon, tourmaline, kyanite and staurolite. The paleocurrent analysis indicates bipolar paleocurrent pattern with the dominance of NW flow suggesting that the provenance was in the SE direction of the depositional basin. Q-F-L and Qm-F-Lt diagrams suggest for a provenance at the margin of the craton interior and transitional continental. It is envisaged that the basic igneous rocks of the Deccan basalt, low- to medium-grade metamorphic rocks of the Aravalli belt and Jurassic limestones present in the vicinity are the source rocks for the late Paleocene sandstones of the Jaisalmer basin.  相似文献   

8.
鄂尔多斯盆地上三叠统延长组重矿物的成岩作用   总被引:1,自引:1,他引:0       下载免费PDF全文
砂岩中重矿物在埋藏成岩环境中会发生溶蚀甚至形成新的重矿物胶结物。利用重矿物特征进行物源分析是鄂尔多斯盆地上三叠统延长组物源分析的最重要方法之一,但石榴子石、榍石和绿帘石这3种重矿物在成岩作用期间发生了明显的后生变化。研究表明,延长卡中石榴子石发生溶蚀形成粒内溶孔和刻面石榴子石,部分被方解石、绿泥石或硅质交代;见自生榍石晶体及榍石次生加大,且榍石的生长具有多期次性;见自生绿帘石晶体及绿帘石次生加大,部分绿帘石被绿泥石或硅质交代;相对稳定性强的石榴子石部分被溶蚀,而相对稳定性弱的碎屑状榍石、绿帘石并未见到溶蚀现象,这与以往研究中对于重矿物稳定性的认识是不一致的,希望能引起未来研究者的重视。  相似文献   

9.
This study focuses on the detailed provenance evolution of young, syn- to post-orogenic extensional grabens in orogens like the Himalaya to trace the tectonic history of such late-stage basins, using the Neogene Thakkhola-Mustang Graben as a case study. The graben is situated within the Tibetan-Tethys zone and is filled with > 870 m of continental deposits of Miocene to Holocene age-. Based on logged sections within the predominantly alluvial to coarse-grained fluvial fill of the graben we investigated paleocurrent data and the petrology of sandstones and conglomerates including heavy minerals studies to interpret provenance and source areas in detail. Significant changes are recorded by slight differences in heavy mineral and pebble compositions.The sandstones can be classified as lithic greywackes, lithic arkoses and feldspathic litharenites. Sandstone, mudstone, quartzite and some granite clasts are dominant in conglomerates of the central part of the graben. Tetang Formation conglomerates of Miocene age comprise mostly clasts of Mesozoic rocks with an eastern provenance, consistent with measured paleocurrent directions. All paleocurrent data and compositional analyses of imbricated conglomerates of the Miocene–Pliocene Thakkhola Formation in the northeast of the graben suggest that clasts were derived from eastern source areas comprising mainly Mesozoic rocks whereas Paleozoic clasts of a western to northern source area predominate in the centre of the graben.Heavy mineral analysis indicates that tourmaline, staurolite, zircon, garnet and apatite constitute a significant proportion of the assemblages of all formations through time whereas epidote, andalusite, kyanite, chloritoid, hornblende, chrome-spinel, rutile and amphiboles are less common. These assemblages reflect in general stable minerals and low to high-grade metamorphic source rocks, and are principally controlled by reworking of older, passive margin sediments of the Tibetan-Tethys zone as indicated by provenance discrimination diagrams.Three successive stages in provenance evolution were recognized: (1) The Miocene Tetang Formation, characterized by higher kyanite values, corresponding to the Himalayan foreland evolution; (2) the Thakkhola Formation, characterized by granite clasts and significantly higher amounts of andalusite, indicating source area expansion and erosion of the Mustang-Mugu granites to the northwest; (3) the Upper Pleistocene/Holocene Kaligandaki Formation, bearing higher amounts of epidote/klinozoisite and ophiolite and high-pressure/low temperature detritus as indicated by chrome spinel and blue amphiboles, derived from the north-lying Indus-Tsangpo suture zone. The change in source areas from the Miocene/Pliocene to the Late Pleistocene/Holocene is interpreted as a result of the evolution from an initial stage of high-angle normal faulting and collapse basin formation to a low-angle extensional detachment basin system.  相似文献   

10.
Detrital mode, composition of feldspars and heavy minerals, and major element chemistry of sandstones from the Permo-Triassic succession in the intracratonic Satpura Gondwana basin, central India have been used to investigate provenance. The Talchir Formation, the lowermost unit of the succession, comprises glacio-marine and glacio-fluvial deposits. The rest of the succession (base to top) comprising the Barakar, Motur, Bijori, Pachmarhi and Denwa formations, largely represent variety of fluvial depositional systems with minor fluvio-deltaic and fluvio-lacustrine sedimentation under a variety of climatic conditions including cold, warm, arid, sub-humid and semi-arid. QFL compositions of the sandstones indicate a predominantly continental block provenance and stable cratonic to fault-bounded basement uplift tectonic setting. Compositional maturity of sandstones gradually increases upwards from the Early Permian Talchir to the Middle Triassic Denwa but is punctuated by a sharp peak of increased maturity in the Barakar sandstones. This temporal change in maturity was primarily controlled by temporal variation in fault-induced basement uplift in the craton and was also influenced by climatic factors. Plots of different quartz types suggest plutonic source rocks for the Talchir sandstones and medium-to high-rank metamorphic plus plutonic source rocks for the younger sandstones. Composition of alkali feldspars in the Permo-Triassic sandstones and in different Precambrian rocks suggests sediment derivation from felsic igneous and metasedimentary rocks. Compositions of plagioclase in the Talchir and Bijori sandstones are comparable with those of granite, acid volcanic and metasedimentary rocks of the Precambrian basement suggesting the latter as possible source. Rare presence of high-K plagioclase in the Talchir sandstones, however, indicates minor contribution from volcanic source rock. Exclusively plagioclase-bearing metasedimentary rock, tonalite gneiss and mafic rocks are the probable sources of plagioclase in the Upper Denwa sandstones. Quartz-rich nature of the sandstones, predominance of K-feldspar over plagioclase and albite rich character of plagioclase in the sandstones is consistent with deposition in an intracratonic, pull-apart basin like the Satpura Gondwana basin. Composition of garnet and its comparison with that from the Precambrian basement rocks suggests mica-schist and amphibolite as possible sources. Predominance of dravite variety of tourmaline in the Permian sandstones suggests sediment supply from metasedimentary rocks. Presence of both dravite and schorl variety of tourmaline in subequal amount in the Triassic sandstones indicates sediment derivation from granitic and metasedimentary rocks. However, schorl-bearing rocks are absent in the basement complex of the study area. A-CN-K plot suggests granites, acid volcanic rock and meta-sediments of the basement as possible sources of the Talchir sandstones and metasedimentary rocks for the Barakar to Pachmarhi sandstones. The Denwa sandstones were possibly derived from K-feldspar-free, plagioclase-bearing metasediments, mafic rocks and tonalite gneiss. Chemical Index of Alteration (CIA) values suggest low intensity source rock weathering for the Talchir sandstones and higher intensity source rock weathering for the others. Various bivariate plots of major oxides composition of the sandstones suggest passive to active continental margin setting and even arc tectonic setting for a few samples.  相似文献   

11.
物源分析是古地理重建与盆地分析的关键,典型的物源区包括岩浆弧、大陆地块、再旋回造山带等。重矿物种类多样,蕴含丰富的母岩信息,是物源分析的重要对象。现代砂的研究表明,不同大地构造背景下形成的沉积物具有不同的重矿物组合。遗憾的是,由于古代沉积的重矿物组合在成岩过程中会被改造,现代砂的重矿物组合与物源区的耦合规律并不能直接应用于古代砂岩。科学界尚不清楚岩浆弧与大陆地块来源的古代砂岩的重矿物特征。西藏日喀则弧前盆地与特提斯喜马拉雅侏罗纪—古近纪砂岩物源明确,要么来自亚洲大陆的冈底斯弧,要么来自印度大陆地块,是探讨岩浆弧与大陆地块来源的古代砂岩重矿物特征的绝佳场所。16件砂岩重矿物定量分析结果表明,两个物源区来源的砂岩重矿物组合均被成岩作用严重改造,辉石、角闪石等不稳定矿物消失,绿帘石等自生矿物出现;冈底斯弧来源的砂岩以出现大量绿帘石或磷灰石为特征,ZTR指数小于40;印度大陆地块来源的砂岩以出现大量锆石、电气石和金红石为特征,ZTR指数大于75。这一结果指示岩浆弧与大陆地块来源的砂岩的重矿物组合具有明显差异性,可以用来探讨物源的大地构造背景。  相似文献   

12.
通过对闽江和九龙江沿岸沉积物中重矿物的分析,发现重矿物组合与源区岩石具有极好的相关性。两条河流流域重矿物组合为不透明铁矿类—绿帘石—锆石—电气石—角闪石,特征矿物为绿帘石,含量高达原生透明重矿物比重的70%,其成因除与高级变质岩有关外,还与中酸性岩浆岩及其与围岩接触蚀变发生的绿帘石化有关。从重矿物组合、重矿物特征指数以及与锆石年龄谱系的比对分析发现,闽江流域重矿物源自闽西北武夷山前寒武纪的变质岩、闽东广泛出露的燕山期岩浆岩和接触变质岩,而九龙江流域重矿物源自闽西南的印支—燕山期花岗岩。闽江上游沉积物重矿物以源自高级变质岩的重矿物为特征,中下游由上游来源的重矿物和下游酸性岩浆岩及接触变质岩形成的重矿物共同构成;九龙江以印支—燕山期花岗岩中的副矿物组合为特征。研究结果显示,对于中小流域面积的河流,由于搬运距离有限,重矿物组合保存的源岩信息量大,可作为研究流域内构造演化和源汇对比的重要手段。  相似文献   

13.
Heavy mineral studies on Pleistocene tills from North America, Upper Palaeozoic tillites of South Africa and Australia, and late Precambrian tillites of South Australia show that the heavy mineral suites of the Pleistocene tills are dominated by amphiboles, the Upper Palaeozoic tillites by garnet, and the late Precambrian tillites by zircon and tourmaline. About half of the garnets in the Upper Palaeozoic tillites show evidence of having been rounded, and retain delicate surface chattermark trails, which indicates that these garnets have not undergone chemical attack since deposition. Although the remainder of the garnets show, by way of etching, that intrastratal solutions were active in the sediments, it is suggested that amphiboles, pyroxenes and epidote, which must have been present in the original Upper Palaeozoic heavy mineral suites, were lost primarily by the action of sorting and mechanical abrasion in beach environments prior to, and during interglacial periods. The absence of garnet and the etching of tourmaline and zircon in the late Precambrian tillites is attributed to the action of alkaline intrastratal solutions over the long time interval during which the tillites were buried in the Adelaide Geosyncline.  相似文献   

14.
邵九龙  迟广成  史雨辰 《地质与资源》2020,29(5):490-496, 453
利用偏光显微镜岩石薄片鉴定和X射线粉晶衍射物相分析技术,对34件片麻岩样品矿物组分进行检测.两种方法分析结果比对显示,有18件岩石样品定名一致,其余16件岩石样品详细定名有差异.偏光显微镜鉴定技术的优势在于能准确定出岩石构造和结构,能鉴定出更多的金属矿物、电气石、榍石、磷灰石、绿帘石,有效区分白云母和黑云母;X射线粉晶衍射法优势在于更准确区分出岩石中层状硅酸盐矿物绿泥石、蒙脱石和云母,确定钾长石、钠长石和石英矿物种类与含量.研究表明:片麻岩鉴定应该把偏光显微镜岩石薄片法与X射线粉晶衍射矿物半定量技术结合起来,才能更好地确定片麻岩的矿物组分,为地学研究提供更符合客观实际的技术数据和分析结论.  相似文献   

15.
Calcic schists in the andalusite-type regional metamorphic terrainin the Panamint Mountains, California, contain the low-varianceassemblage quartz+epidote+muscovite+biotite+calcic amphibole+chlorite+plagioclase+spheneat low grade. Near the sillimanite isograd, chlorite in thisassemblage is replaced by garnet. The low variance in many calcicschists allows the determination of the nature of the reactionthat resulted in the coexistence of garnet+hornblende. A graphicalanalysis of the mineral assemblages shows that the reactioncan not be of the form biotite+epidote+chlorite+plagioclase+quartz=garnet+hornblende+muscovite+sphene+H2Obecause garnet+chlorite never coexisted during metamorphismand the chlorite-bearing and garnet-bearing phase volumes donot overlap. The compositions of the minerals show that withincreasing grade amphibole changed from actinolite to pargasitichornblende with no apparent miscibility gap, the partitioningof Fe and Mg between chlorite and hornblende changed from KD(Mg/Fe, chl&amp) < 1 to KD > 1, the partitioning betweenbiotite and hornblende changed from KD (Mg/Fe, bio/amp) <1 in chlorite-zone samples to KD > 1 in garnet + hornblende-zonesamples, and the transition to the garnet-bearing assemblageoccurred when the composition of plagioclase was between An55and An80. Both the graphical analysis and an analytical analysisof the compositions of the minerals using simplified componentsderived from the natural mineral compositions indicate thatat the garnet+hornblende isograd the composition of hornblendewas colinear with that of plagioclase and biotite, as projectedfrom quartz, epidote, muscovite, and H2O. During progressivemetamorphism, chlorite+biotite+epidote+quartz continuously brokedown to form hornblende+muscovite+sphene until the degeneracywas reached. At that point, tie lines from hornblende couldextend to garnet without allowing garnet to coexist with chlorite.Thus, the garnet+hornblende isograd was established throughcontinuous reactions within the chlorite-grade assemblage ratherthan through a discontinuous reaction. In this type of isograd,the low-grade diagnostic assemblage occurs only in Mg-rich rocks;whereas the high-grade assemblage occurs only in Fe-rich rocks.This relation accounts for the restricted occurrence of garnet+hornblendeassemblage in low-pressure terrains. In Barrovian terrains,garnet+chlorite commonly occurs, and the first appearana ofgarnet+hornblende can simply result from the continuous shiftof the garnet+chlorite tie line to Mg-rich compositions.  相似文献   

16.
商南松树沟超镁铁质岩体侵位于秦岭群下部之闪岩系中。自中元古代以来,秦岭群及其中的闪岩经历过多期变形和变质作用,查其形成历史自然很不容易。尽管过去有很多岩石学家对闪岩系中的榴闪岩深感兴趣,但却无人探讨过它的成因。本文作者旨在抛砖引玉,拟从榴闪岩入手,着重讨论闪岩的原岩性质和多期变质的条件,同时也说明我们对秦岭群时代的一些认识。一、闪岩的岩石类型及其特征  相似文献   

17.
近年来,鄂尔多斯盆地砂岩型铀矿资源评价取得了较大进展,关于找矿目的层物源和铀源的问题长期以来备受关注.运用重矿物综合分析方法,探讨鄂尔多斯盆地北部砂岩型铀矿赋矿层直罗组碎屑物质来源和成矿铀源.结果表明,研究区内直罗组的重矿物组合主要为石榴子石+锆石+绿帘石+黑云母+尖晶石,其次包含少量磷灰石、榍石、金红石、角闪石、电气...  相似文献   

18.
The skarn‐type tungsten deposit of the Date‐Nagai mine is genetically related to the granodiorite batholith of the Iidateyama body. Skarn is developed along the contact between pelitic hornfels and marble that remains as a small roof pendant body directly above the granodiorite batholith. Zonal arrangement of minerals is observed in skarn. The zonation consists of wollastonite, garnet, garnet‐epidote, and vesuvianite‐garnet zones, from marble to hornfels. Sheelite is included in garnet, garnet‐epidote, and vesuvianite‐garnet zones. The oxygen isotope values of skarn minerals were obtained as δ18O = 4.2–7.7‰ for garnet, 5.9–6.9‰ for vesuvianite, ?0.3–3.4‰ for scheelite, 6.0–10.9‰ for quartz, and 8.2‰ for muscovite. The temperature of skarn‐formation was calculated from oxygen isotopic values of scheelite‐quartz pairs to be 288°C. Calculated oxygen isotope values of fluid responsible for skarn minerals were 6.1–9.5‰ for garnet, 1.2–4.8‰ for scheelite, ?1.3‐3.6‰ for quartz, and 4.5‰ for muscovite. Garnet precipitated from the fluids of different δ18O values from scheelite, quartz, and muscovite. These δ18O values suggest that the origin of fluid responsible for garnet was magmatic water, while evidence for the presence of a meteoric component in the fluids responsible for middle to later stages minerals was confirmed.  相似文献   

19.
Provenance of the Oligocene Barail sandstones has been ascertained by means of petrographic and heavy mineral studies. Petrography reveals an abundance of angular to sub-rounded monocrystalline, non-undulatory quartz followed by lithic fragments. The overall composition of sandstones matches with those of sublith-arenites. The heavy mineral suite of Barail sandstones displays rounded to sub-rounded as well as euhedral / angular grains of iron oxide, zircon, tourmaline, rutile, kyanite, sillimanite and staurolite in decreasing order of abundance. Petrography coupled with heavy mineral suite suggests for a mixed provenance dominated by a sedimentary source of recycled orogenic provenance in a foreland basin setup.  相似文献   

20.
柿竹园矿床大理岩型锡矿石工艺矿物学研究   总被引:1,自引:0,他引:1  
谭延松 《湖南地质》1991,10(3):223-228
大理岩型锡矿石产于燕山早、中期千里山花岗岩与中、上泥盆统灰岩的外接触带。矿石呈细脉、网脉浸染状,锡矿物有:锡石、黄锡矿,富钛尼日利亚石、尼日利亚石和木锡矿,脉石矿物绿帘石、石榴石、电气石、萤石、方解石及磁黄铁矿等亦含锡,锡主要呈锡的浊立矿物存在,占总锡量的89.78%,其中锡石锡占总锡量的80.01%,其次有呈类质同象形式存在的锡,在绿帘石、石榴石、电气石等矿物中以Sn~(4+)取代Fe~(3+),这类锡占总量的8.33%。工艺矿物学研究表明,该类锡矿石以“贫”、“细”、“杂”为特征。锡不仅十分分散,而且品位偏低,矿石矿物组合及镶嵌关系复杂、相互包裹,紧密连生;锡矿物粒度微细,粒径一般为0.2~0.01mm,部分为<0.0l~0.002mm,是一种难选的锡矿石类型。通过锡的回收试验,采用选冶联合工艺流程,预测锡的最佳回收率可达50%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号