首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The flow of organic matter along the main navigation channel of Ria Formosa, Portugal, was assessed using determinations of suspended particulate matter (SPM), particulate organic matter (POM), and chlorophyll a (chla) concentrations in conjunction with stable isotope values of primary producers, particulate matter, and two filter feeders. SPM in the lagoon is dominated by inorganic particles comprising 80% of total weight with organic matter averaging about 20%. The algal component of the POM averaged about 5% with the remainder comprised of detritus. The δ13C values of primary producers ranged from ?9.1‰ in the intertidal seagrassZostera noltii to ?30.7‰ in the red seaweedBostrychia scorpioides revealing underlying differences in the mechanisms of carbon uptake. The δ13C value ofB. scorpioides, which develops entangled on the salt marsh speciesSpartina maritima, suggests that its main source of inorganic carbon is atmospheric CO2. The δ13C values of the high marsh macrophyteSarcocornia perennis significantly increased with distance from the ocean while δ13C values ofZ. noltii decreased, probably because higher decomposition of organic matter at inner stations lowers the δ13CO2 value in the water. The δ15N values of Ulvales, seagrasses, and marsh plants significantly increased from outer stations to inner stations. This increase may be due either to recycling of nitrogen (N) within the marsh (with loss of light N2 or NH4) or to inputs of isotopically heavy N from sewage. The δ15N values of particulate matter showed an opposite trend, which indicates higher microbial degradation of organic matter at the inner lagoon. The data demonstrate that the seston in the lagoon is a mixture of detritus from lagoon primary producers with a minor contribution of microalgae. The filter feeders are most likely assimilating a mixture of phytoplankton and microphytobenthos. Digestion of lagoon seston is selective. The δ15N values of both muscle and digestive gland of filter feeders showed the opposite gradient of particulate matter indicating that the depleted δ15N of SPM at inner stations was not assimilated or even ingested. Stable isotopes values did not differ between the filter-feeders—the musselMytilus galloprovincialis collected on buoys and the clamTapes decussatus collected in the sediment—suggesting a considerable mixture of benthic-pelagic organic matter throughout the water column. Assessment of the changes in isotopic decomposition of detritus as it decays is required to refine our understanding of organic matter transfers in detrital food webs.  相似文献   

2.
Herbivory is a common process in salt marshes. However, the direct impact of marsh herbivory on nutrient cycling in this ecosystem is poorly understood. Using a 15N enrichment mesocosm study, we quantified nitrogen (N) cycling in sediment and plants of black needlerush (Juncus roemerianus) salt marshes, facilitated by litter decomposition and litter plus grasshopper feces decomposition. We found 15 times more 15N recovery in sediment with grasshopper herbivory compared to sediment with no grasshopper herbivory. In plants, even though we found three times and a half larger 15N recovery with grasshopper herbivory, we did not find significant differences. Thus, herbivory can enhance N cycling in black needlerush salt marshes sediments and elevate the role of these salt marshes as nutrient sinks.  相似文献   

3.
The vertical distribution and feeding type of nematodes in sediments of Chetumal Bay, Mexico, were studied in five intertidal transects along the urbanized zone in June and December 1995. Sediments were collected with a PVC corer to 6-cm sediment depth and cut immediately into three equal 2-cm depth fractions. Nematode density varied from 7.4 × 103 to 5.3 × 105 m?2 in June and from 1.7 × 104 to 7.2 × 105 m?2 in December. In June, the epistrate feederPseudochromadora sp. was the most abundant in the deepest sediment fraction (4–6 cm), whereas epistrate feeders,Neotonchoides sp.,Desmodora sp., and the deposit feederBathylaimus australis were dominant in the top most sediment (0–2 cm). In December, deposit feeders,Desmolaimus zeelandicus, Parodontophora sp., and the epistrate feederOncholaimus oxyuris were the most abundant in the deepest sediment, whereasNeotonchoides sp. andPseudochromadora sp. dominated the first 2 cm of sediments. Highest nematode density was recorded in the uppermost sediment layer (0–2 cm). Feeding types showed different abundance among transects and between months. There was a seasonal change in vertical distribution of nematodes, with the highest abundance in the deepest sediment layer in December, possibly due to the effect of wind waves on sediments of Chetumal Bay. The trophic composition of the nematode fauna in Chetumal Bay showed a dominance of deposit feeders and epistrate feeders, most likely in response to organic enrichment that is typical of eutrophic environments.  相似文献   

4.
Annual acetylene reduction rates associated with interidal communities in a chronically oil polluted Virginia salt marsh were compared to rates measured in an undisturbed marsh. Chronic oil treatment resulted in visible damage to the higher plants of theSpartina alterniflora zones; however, vegetation-associated acetylene, reduction was not different from the untreated control. Sediment rates generally were affected little by oil application, except during the summer when rates in the median tidal elevation zones were considerably higher than those of the control. Acetylene reduction occurred in all transects, each of which extended from upper mudflat to theSpartina patens zone. Intertidal sediment acetylene reduction was patchy, both spatially and seasonally. Estimated rates were greatest near the surface; free-living bacterial N2 fixation activity averaged 2.23 mg N per m2 per d (range=undetectable to 365 mg N per m2 per d) in the untreated and 3.17 mg N per m2 per d (range=undetectable to 564 mg N per m2 per d) in the oil-treated marsh during the year. Vegetation-associated N2 fixation activity yielded highest overall mean rates (156 mg N per m2 per d). The seasonal pattern of sediment and vegetation-associated fixation may be controlled by temperature and availability of oxidizable substrates.  相似文献   

5.
Net annual primary production of a sedge Carex lyngbyei dominated tidal marsh in the Fraser River estuary, British Columbia, Canada was 634 g ash-free dry weight (AFDW) per m2 per yr (687 g dry weight per m2 per yr). Mean maximum shoot elongation during the short (May to August) growing season was 1.88 cm per day from overwintering shoots. The maximum aboveground standing crop of 690 g AFDW per m2 represented only 25% of the total below-ground biomass, which appears to be controlling most of the critical life history processes of the sedge marsh. An estimate of 14 percent of the aboveground standing crop was lost through leaching of dissolved organic carbon from the growting plant. Aboveground tissue losses, which were negligible during the growing season, occurred primarily via translocation in autumn and tidal export during the winter. In situ measurements showed that of the original maximum standing crop, approximately 38%, 37%, and 25% were lost by downward translocation, tidal export, and sediment burial, respectively. Based on changes in above and belowground nutrient pools, rapid spring (May to late June) uptake rates of 109 mg N per m2 per day and 23.0 mg P per m2 per day by shoots were followed by downward translocation rates of 44.8 mg N per m2 per day and 12.2 mg P per m2 per day during late June to the end of August. Aboveground leaching rates were estimated as 23.9 mg N per m2 per day and 7.8 mg P m2 per day and belowground uptake rates as 100 mg N per m2 per day and 26 mg P per m2 per day; root uptake occurred primarily after late June. Nutrient levels in decomposing litter more than doubled over the winter period showing a pattern of nutrient enrichment characteristic of marsh ecosystems. *** DIRECT SUPPORT *** A01BY023 00004  相似文献   

6.
N2 fixation associated with the epiphytic community on standing dead Spartina alterniflora shoots was examined in both a natural and transplanted salt marsh in North Carolina. Acetylene reduction (AR) assays were conducted over a 24-mo period to estimate N2 fixation rates on standing dead stems and leaves. In the natural salt marsh, mean AR rates ranged from 0.5 nmol C2H4 cm?2 h?1 to 14 nmol C2H4 cm?2 h?1, while in the transplanted marsh mean AR rates ranged from 1 nmol C2H4 cm?2 h?1 to 33 nmol C2H4 cm?2 h?1. Diel AR activity of epiphytic communities in both marshes varied seasonally. Midday incubations yielded higher AR rates than nighttime incubations in the spring, while midday incubations in late summer and fall generally yielded AR rates equal to or lower than nighttime incubations. Desiccation during low tides occasionally repressed AR activity, although AR rates quickly rebounded with wetting. AR activity was localized in the epiphytic community, rather than in the underlying Spartina stem material. Based on the measured AR rates and the density of standing dead stems, the annual input of new N to the natural salt marsh via epiphytic N2 fixation is estimated to be 2.6 g N m?2 yr?1. The estimate of annual input of new N to the transplanted marsh is 3.8 g N m?2 yr?1. These estimates should be added to previous estimates of N2 fixation in marsh sediments to estimate the total contribution of new nitrogen to salt marsh nitrogen budgets.  相似文献   

7.
Recent (6–12 month) marsh sediment accretion and accumulation rates were measured with feldspar marker horizons in the vicinity of natural waterways and man-made canals with spoil banks in the rapidly subsiding environment of coastal Louisiana. Annual accretion rates in aSpartina alterniflora salt marsh in the Mississippi deltaic plain averaged 6 mm in marsh adjacent to canals compared to 10 mm in marsh adjacent to natural waterways. The rates, however, were not statistically significantly different. The average rate of sediment accretion in the same salt marsh region for a transect perpendicular to a canal (13 mm yr?1) was significantly greater than the rate measured for a transect perpendicular to a natural waterway (7 mm yr?1). Measurements of soil bulk density and organic matter content from the two transects were also different. This spatial variability in accretion rates is probably related to (1) spoil bank influences on local hydrology; and (2) a locally high rate of sediment input from lateral erosion associated with pond enlargement. In a brackishSpartina patens marsh on Louisiana’s Chenier plain, vertical accretion rates were the same along natural and canal waterways (3–4 mm yr?1) in a hydrologically restricted marsh region. However, the accretion rates for both waterways were significantly lower than the rates along a nonhydrologically restricted natural waterway nearby (11 mm yr?1). The vertical accretion of matter displayed semi-annual differences in the brackish marsh environment.  相似文献   

8.
Several hundred green-winged teal (Aves: Anatidae: Anas crecca) were observed foraging along a mudflat devoid of seeds and only sparsely inhabited by macrobenthic infauna in southwestern Louisiana. Of eight teal collected in this habitat, four had ingested substantial numbers of meiofauna. Use of prey in this size range has not been reported for waterfowl. Meiofauna have been recognized only recently as important components of the food chain of marsh ecosystems. *** DIRECT SUPPORT *** A01BY058 00014  相似文献   

9.
Many salt marshes in densely populated areas have been subjected to a reduction in tidal flow. In order to assess the impact of tidal flow restriction on marsh sedimentation processes, sediment cores were collected from flow-restricted restricted salt marshes along the Connecticut coast of Long Island Sound. Cores were also collected from unrestricted reference marshes and from a marsh that had been previously restricted but was restored to fuller tidal flushing in the 1970's. High bulk densities and low C and N concentrations were found at depth in the restricted marsh cores, which we attribute to a period of organic matter oxidation, sediment compaction, and marsh surface subsidence upon installation of flow restrictions (between 100 and 200 years before the present, depending on the marsh). Recent sedimentation rates at the restricted marshes (as determined by137Cs and210Pb dating) were positive and averaged 78% (137Cs) and 50% (210Pb) of reference marsh sedimentation rates. The accumulation of inorganic sediment was similar at the restricted and reference marshes, perhaps because of the seasonal operation of the tide gates, while organic sediment accretion (and pore space) was significantly lower in the restricted marshes, perhaps because of higher decomposition rates. Sedimentation rates at the restored marsh were significantly higher than at the reference marshes. This marsh has responded to the higher water levels resulting from restoration by a rapid increase in marsh surface elevation.  相似文献   

10.
A process-based numerical model is applied to investigate sediment transport dynamics and sediment budget in tide-dominated estuaries under different salt marsh erosion scenarios. Using a typical funnel-shaped estuary (Ribble Estuary, UK) as a study site, it is found that the remobilization of sediments within the estuary is increased as a result of the tidal inundation of the eroded salt marsh. The landward export of the finest sediment is also intensified. The relationship between salt marsh erosion and net landward export of sediments has been found to be non-linear—with the first 30% salt marsh erosion causing most of the predicted export. The presence of vegetation also influences the sediment budget. Results suggest that vegetation reduces the amount of sediment being transported upstream. Again, the trapping effect of salt marsh in terms of plant density is non-linear. Whilst a vegetated surface with a stem density of 64 plants/m2 decreased the net landward export of very fine sand by around 50%, a further increase in stem density from 64 to 512 plants/m2 had a relatively small effect.  相似文献   

11.
Nitrous oxide evolution may contribute to partial destruction of the ozone layer in the stratosphere. A two year study of the release of N2O from adjoining salt, brackish, and fresh marsh sediment indicates that the annual emission was 31, 48, and 55 mg N m?2 respectively. Emission from open water area was less than the corresponding emission from the marsh sediment. In vitro experiments indicate that the N2O emission was increased when the sediment was drained for extended periods of time. The addition of NO3? significantly increased the rate of N2O evolution, indicating that a large potential for denitrification exists in the anoxic sediment. Appreciable losses of N2O would only be expected when the marshes receive an extraneous source of nitrate such as sewage and/or wastewater.The contribution of the Gulf Coast wetlands to the atmospheric N2O balance is estimated to be 3.3 × 109 g N2O. The maximum average daily emission was equivalent to 1.5 g N2O-N ha?1, which is less than the measured emission from uncultivated soils (Mosieret al., 1981) but greater than the estimates from noncropped land (CAST, 1976).  相似文献   

12.
Penaeus aztecus Ives, the brown shrimp, and Penaeus setiferus (Linnaeus), the white shrimp, co-occur in Texas salt marshes as juveniles. Although their life cycles are similar, evidence indicates that the species utilize different resources for the primary faunal element of their diets. Prey selection and growth studies have shown that brown shrimp successfully remove infauna from natural sediment. Further, a diet of polychaetes, whether alone or in combination with algae, produced growth in the species. Brown shrimp appear to be trophically linked to infaunal populations, thus the structure and dynamics of the benthic community may directly affect local brown shrimp productivity. Areas dominated by surface-dwelling polychaetes as opposed to deep burrowers may provide more accessible foraging opportunities for juvenile brown shrimp. By contrast, white shrimp neither removed infauna nor grew to a significant degree when provided polychaetes or amphipods as food. White shrimp are omnivorous but do not rely on infaunal material to the same extent as brown shrimp. The primary faunal element in the diet of white shrimp has not yet been identified. The dietary differences between the two species may play a role in determining which species dominates in regions with varying marsh accessibility. Although not the only factors influencing penaeid survival and growth, prey choice and availability may greatly affect production and local success of penaeid populations. *** DIRECT SUPPORT *** A01BY081 00013  相似文献   

13.
Natural radionuclides in the uranium and thorium series were measured in solid tidal phases (suspended particles, bottom sediment, surface microlayer colloids) of a salt marsh in lower Delaware. The purpose was to identify potential processes responsible for trace element cycling (sources, redistribution and exchange) in salt water marshes and with their coastal waters. Generally, concentrations of U, Th,210Pb, and210Po on the tidal solid phases suggest a general mechanism by which tidal marshes appear to be trapping the nuclides into their interiors. The processes may include transport of enriched fine particles into the marsh, capture by salt marsh grass and chemical fixation by redox processes at the sediment surface. Specifically, the uranium contents of most of the samples are similar with activity ratios234U238U≧1, indicating a mixture of detrital and nondetrital (authigenic) uranium inputs such as seawater or ground water. Since the230Th daughter is generally deficient by about 50%, the authigenic enrichment process appears to favor uranium and is potentially linked to the extensive diagenetic sulfur redox cycle of salt marsh sediments. The210Po/210Pb activity ratio is less than one on Spartina adsorbed solids, and could suggest a general process in salt marshes which favors210Pb enrichment by atmospheric fallout over enrichment of210Po on time scales of weeks which correspond to complete tide marsh exchange. A228Th/232Th activity ratio of less than unity on the solids adsorbed onto marsh grass suggests a net process whereby diffusive loss of the intermediate daughter228Ra from the adsorbed solids to tidal waters dominates over potential228Th scavenging by suspended sediment.  相似文献   

14.
Salt marsh elevation and geomorphic stability depends on mineral sedimentation. Many Mediterranean-climate salt marshes along southern California, USA coast import sediment during El Niño storm events, but sediment fluxes and mechanisms during dry weather are potentially important for marsh stability. We calculated tidal creek sediment fluxes within a highly modified, sediment-starved, 1.5-km2 salt marsh (Seal Beach) and a less modified 1-km2 marsh (Mugu) with fluvial sediment supply. We measured salt marsh plain suspended sediment concentration and vertical accretion using single stage samplers and marker horizons. At Seal Beach, a 2014 storm yielded 39 and 28 g/s mean sediment fluxes and imported 12,000 and 8800 kg in a western and eastern channel. Western channel storm imports offset 8700 kg exported during 2 months of dry weather, while eastern channel storm imports augmented 9200 kg imported during dry weather. During the storm at Mugu, suspended sediment concentrations on the marsh plain increased by a factor of four; accretion was 1–2 mm near creek levees. An exceptionally high tide sequence yielded 4.4 g/s mean sediment flux, importing 1700 kg: 20 % of Mugu’s dry weather fluxes. Overall, low sediment fluxes were observed, suggesting that these salt marshes are geomorphically stable during dry weather conditions. Results suggest storms and high lunar tides may play large roles, importing sediment and maintaining dry weather sediment flux balances for southern California salt marshes. However, under future climate change and sea level rise scenarios, results suggest that balanced sediment fluxes lead to marsh elevational instability based on estimated mineral sediment deficits.  相似文献   

15.
The potential for marsh plants to be vectors in the transport of mercury species was studied in the natural, mature, tidal China Camp salt marsh on San Pablo Bay. The fluxes of organic matter, mercury (THg), and monomethylmercury (MeHg) were studied in natural stands of Spartina foliosa and Salicornia virginica. Seasonal fluxes from the sediment into aboveground biomass of live plants and subsequent transfer into the dead plant community by mortality were measured. Loss of THg and MeHg from the dead plant community through fragmentation, leaching, and excretion were calculated and were similar to net uptake. Seasonal data were added up to calculate annual mass balances. In S. foliosa, annual net production was 1,757 g DW m?2, and the annual net uptakes in the aboveground biomass were 305 μg THg m?2 and 5.720 μg MeHg m?2. In S. virginica, annual net production was 2,117 g DW m?2, and the annual net uptakes in aboveground biomass were 99.120 μg THg m?2 and 1.990 μg MeHg m?2. Of both plant species studied, S. foliosa had a slightly lower production rate but greater mercury species uptake and loss rates than S. virginica, and, consequently, it is to be expected that S. foliosa matter may affect the local and possibly the regional food web relatively more than S. virginica. However, the actual effects of the input of mercury-species-containing plant-derived particulate matter into the food webs would depend on trophic level, food preference, seasonal cycle of the consumer, total sediment surface area vegetated, location of the vegetation in the marsh landscape, and estuary bay landscape. Since the levels of mercury species in dead plant material greatly exceed those in live plant material (on a dry weight basis), detritivores would ingest greater mercury species concentrations than herbivores, and consumers of S. foliosa would ingest more than consumers of S. virginica. The greatest THg and MeHg losses of both plant species due to mortality and to fragmentation–leaching–excretion occurred in late spring and early autumn, which corresponds to peak MeHg levels observed in sediments of coastal systems of previous studies, suggesting enhanced THg–MeHg export from the marsh to the nearshore sediment.  相似文献   

16.
Gaseous methane loss from a brackish, intertidal salt marsh sediment was measured in April, June, August, and October 1977. Twenty-four sediment cores were taken on each date. Annual loss of methane carbon from the mud flats was 10.7 g CH4?C per m2 per year, a value closer to freshwater values than marine systems. Loss of methane fromSpartina peat was low.  相似文献   

17.
18.
The objective of this study was to experimentally evaluate the effects of simulated herbivory on the ability of a freshwater marsh plant to recover from temporary saltwater intrusion such as can be caused by tropical storms. Sods containingSagittaria lancifolia, a dominant plant in interior coastal marshes, were manipulated in the field so as to subject plants to a pulse of 15‰ salt water for a duration of 1 wk. In addition to the exposure to salt water, some plants were also subjected to both short-term and long-term flooding treatments of 20 cm, and to simulated herbivory (clipping). Following exposure to salt water, plants were allowed to recover over the winter and were harvested the next June. Neither simulated herbivory, nor salinity, nor flooding caused any long-term effect either singly or in pairwise combinations. However, when plants were subjected to herbivory, salt water, and flooding simultaneously, reduced growth and plant death occurred. These results suggest that high levels of grazing by herbivores may increase the susceptibility of coastal marsh plants to damage from saltwater intrusion. *** DIRECT SUPPORT *** A01BY073 00002  相似文献   

19.
In recent years, artificial establishment of Spartina alterniflora marshes has become a common method for mitigating impacts to salt marsh systems. The vegetative component of artificially established salt marshes has been examined in several studies, but relatively little is known about the other aspects of these systems. This study was undertaken to investigate the infaunal community of artificially established salt marshes. Infauna were sampled from pairs of artificially established (AE) salt marshes and nearby natural marshes at six sites along the North Carolina coast. The AE marshes ranged in age from 1 yr to 17 yr. Total infaunal density, density of dominant taxa, and community trophic structure (proportions of subsurface-deposit feeders, surface-deposit and suspension feeders, and carnivores) were compared between the two types of marsh to assess infaunal community development in AE marshes. Overall, the two marsh types had similar component organisms and proportions of trophic groups, but total density and densities within trophic groupings were lower in the AE marshes. Soil organic matter content of the natural marshes was nearly twice that of the AE marshes, and is a possible cause for the higher infaunal densities observed in the natural marshes, Using the same three criteria, comparisons of the natural and AE marshes at each of the six locations revealed varying degrees of similarity. Similarity of each AE marsh to its natural marsh control appeared to be influenced by differences in environmental factors between locations more than by AE marsh age. Functional infaunal habitat convergence of an AE marsh with a natural marsh somewhere within its biogeographical region is probable, but success in duplicating the infaunal community of a particular natural marsh is contingent upon the developmental age of the natural marsh and the presence and interaction, of site-specific factors.  相似文献   

20.
In support of efforts to reconstruct relative sea level (RSL), we investigated the utility of foraminifera, diatoms and bulk‐sediment geochemistry (δ13C, C:N and parameters measured by Rock‐Eval pyrolysis) as sea‐level indicators in Eurasian sub‐Arctic salt marshes. At three salt marshes (<15 km apart) in Dvina Bay (White Sea, Russia), we collected surface sediment samples along transects from subtidal to Taiga forest environments. Foraminifera at all sites formed bipartite assemblages, where elevations below mean high higher water (MHHW) were dominated by Miliammina spp. and elevations between MHHW and the highest occurrence of foraminifera were dominated by Jadammina macrescens and Balticammina pseudomacrescens. Five high‐diversity groups of diatoms were identified and they displayed pronounced variability amongst the study sites. Bulk‐sediment geochemistry recognized two groups (clastic‐dominated environments below MHHW and organic‐rich environments above MHHW). As one group included subtidal elevations and the other included supratidal elevations, we conclude that the measured geochemical parameters are not stand‐alone sea‐level indicators. Core JT2012 captured a regressive sediment succession of clastic, tidal‐flat sediment overlain by salt‐marsh organic silt and freshwater peat. The salt‐marsh sediment accumulated at 2804±52 years before present and preserved foraminifera (Jadammina macrescens and Balticammina pseudomacrescens) with good analogy to modern assemblages indicating that RSL was +2.60±0.47 m at this time. Diatoms confirm that marine influence decreased through time, but the lack of analogy between modern and core assemblages limited their utility as sea‐level indicators. Geochemical parameters also indicate a reduction in marine influence through time. We conclude that RSL reconstructions derived from salt‐marsh sediment preserved beneath Eurasian sub‐Arctic peatlands can provide valuable insight into the spatio‐temporal evolution of the Fennoscandian and Eurasian ice sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号