首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
四川九龙中咀铜矿床为近年来新发现的一个产于江浪变质核杂岩中的富铜矿床。矿体呈似层状,受韧性剪切带控制,矿体在走向和倾向上延伸稳定。主要矿石类型为浸染状、网脉状、角砾状、块状铜锌矿石。矿石建造为FeCu-Zn建造。金属矿物由黄铜矿、磁黄铁矿、闪锌矿、方铅矿等组成。主要蚀变类型为石榴子石化、绢云母化、绿泥石化、黑云母化。矿体铜品位较高,平均品位为1.65%。目前该矿床仍在进行详查地质工作,矿区向东和向北西方向仍具有较好的找矿前景。该矿床的发现与评价,对于重新认识里伍铜矿床外围找矿潜力和进一步指导该区找矿工作具有重要意义。  相似文献   

2.
The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong‘er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E),polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90%c,δ^13CCO2=2.0‰ and δ^18O=9‰ at 373℃, and are deeply sourced; the L-stage fluids, with δD=-70‰, δ^13C CO2=-1.3%c and δ^18O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰, δ^13C CO2=0.1%c and δ^18O2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the Estage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong‘er Group, show that these units cannot generate fluids with the measured isotopic composition (high δ^180 and δ^13C ratios and low δD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong‘er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous shale) was thrust northwards beneath the Xiong‘er terrane along the Machaoying fault.Metamorphic devolatilization of this underthrust slab provided the ore-forming fluids to develop the Au-Ag-(Pb-Zn) ore belt, which includes the Tieluping silver deposit.  相似文献   

3.
李伍铜矿床控矿构造地质特征及演化模式探讨   总被引:11,自引:1,他引:11  
四川李伍铜矿床是我国西南地区一个中型富铜矿床,其矿床历经了多期次的构造演化和叠加。江浪穹隆体的变形变质对早期的矿源层具改造、矿液初步富集作用;构造岩性层控制了李伍铜矿床的产出与分布,S3期沿S2面理发育起来的大型平卧褶皱控制了矿体的空间形态,成穹阶段形成的滑脱剪切带是矿液运移的通道,也是找矿的有利场所,该带中次级逆冲断面及EW向挤压时期形成的S3面理挠曲是容矿空间,变形与成穹作用双重机制对该矿床构造的形成至关重要。  相似文献   

4.
The Xiaojiashan tungsten deposit is located about 200 km northwest of Hami City, the Eastern Tianshan orogenic belt, Xinjiang, northwestern China, and is a quartz vein‐type tungsten deposit. Combined fluid inclusion microthermometry, host rock geochemistry, and H–O isotopic compositions are used to constrain the ore genesis and tectonic setting of the Xiaojiashan tungsten deposit. The orebodies occur in granite intrusions adjacent to the metamorphic crystal tuff, which consists of the second lithological section of the first Sub‐Formation of the Dananhu Formation (D2d 12). Biotite granite is the most widely distributed intrusive bodies in the Xiaojiashan tungsten deposit. Altered diorite and metamorphic crystal tuff are the main surrounding rocks. The granite belongs to peraluminous A‐type granite with high potassic calc‐alkaline series, and all rocks show light Rare Earth Element (REE)‐enriched patterns. The trace element characters suggest that crystallization differentiation might even occur in the diagenetic process. The granite belongs to postcollisional extension granite, and the rocks formed in an extensional tectonic environment, which might result from magma activity in such an extensional tectonic environment. Tungsten‐bearing quartz veins are divided into gray quartz vein and white quartz veins. Based on petrography observation, fluid inclusions in both kinds of vein quartz are mainly aqueous inclusions. Microthermometry shows that gray quartz veins have 143–354°C of Th, and white quartz veins have 154–312°C of Th. The laser‐Raman test shows that CO2 is found in fluid inclusions of the tungsten‐bearing quartz veins. Quadrupole mass spectrometry reveals that fluid inclusions contain major vapor‐phase contents of CO2, H2O. Meanwhile, fluid inclusions contain major liquid‐phase contents of Cl?, Na+. It can be speculated that the ore‐forming fluid of the Xiaojiashan tungsten deposit is characterized by an H2O–CO2, low salinity, and H2O–CO2–NaCl system. The range of hydrogen and oxygen isotope compositions indicated that the ore‐forming fluids of the tungsten deposit were mainly magmatic water. The ore‐forming age of the Xiaojiashan deposit should to be ~227 Ma. During the ore‐forming process, the magmatic water had separated from magmatic intrusions, and the ore‐bearing complex was taken to a portion where tungsten‐bearing ores could be mineralized. The magmatic fluid was mixed by meteoric water in the late stage.  相似文献   

5.
The Dulong-Song Chay tectonic dome lies on the border of China (SE Yunnan Province) and northern Vietnam, and consists of two tectonic and lithologic units: a core complex and a cover sequence, separated by an extensional detachment fault. These two units are overlain unconformably by Late Triassic strata. The core complex is composed of gneiss, schist and amphibolite. SHRIMP zircon U–Pb dating results for the orthogneiss yield an age of 799±10 Ma, which is considered to be the crystallization age of its igneous protolith formed in an arc-related environment. A granitic intrusion within the core complex occurred with an age of 436–402 Ma, which probably formed during partial closure of Paleotethys. Within the core complex, metamorphic grades change sharply from upper greenschist-low amphibolite facies in the core to low greenschist facies in the cover sequence. There are two arrays of foliation within the core complex, detachment fault and the cover sequence: S1 and S2. The pervasive S1 is the axial plane of intrafolial S0 folds. D1 deformation related to this foliation is characterized by extensional structures. The strata were structurally thinned or selectively removed along the detachment faults, indicating exhumation of the Dulong-Song Chay tectonic dome. The major extension occurred at 237 Ma, determined by SHRIMP zircon U–Pb and 39Ar/40Ar isotopic dating techniques. Regionally, simultaneous tectonic extension was associated with pre-Indosinian collision between the South China and Indochina Blocks. The S2 foliation appears as the axial plane of NW-striking S1 buckling folds formed during a compressional regime of D2. D2 is associated with collision between the South China and Indochina Blocks along the Jinshajiang-Ailao Shan suture zone, and represents the Indosinian deformation. The Dulong granites intruded the Dulong-Song Chay dome at 144±2, 140±2 and 116±10 Ma based on 39Ar/40Ar measurement on muscovite and biotite. The dome was later overprinted by a conjugate strike-slip fault and related thrust fault, which formed a vortex structure, contemporaneously with late Cenozoic sinistral movement on the Ailao Shan-Red River fault.  相似文献   

6.
The Yaoling tungsten deposit is a typical wolframite quartz vein‐type tungsten deposit in the South China metallogenic province. The wolframite‐bearing quartz veins mainly occur in Cambrian to Ordovician host rocks or in Mesozoic granitic rocks and are controlled by the west‐north‐west trending extensional faults. The ore mineralization mainly comprises wolframite and variable amounts of molybdenite, chalcopyrite, pyrite, fluorite, and tourmaline. Hydrothermal alteration is well developed at the Yaoling tungsten deposit, including greisenization, silicification, fluoritization, and tourmalinization. Three types of primary/pseudosecondary fluid inclusions have been identified in vein quartz, which is intimately intergrown with wolframite. These include two‐phase liquid‐rich aqueous inclusions (type I), two‐ or three‐phase CO2‐rich inclusions (type II), and type III daughter mineral‐bearing multiphase high‐salinity aqueous inclusions. Microthermometric measurements reveal consistent moderate homogenization temperatures (peak values from 200 to 280°C), and low to high salinities (1.3–39 wt % NaCl equiv.) for the type I, type II, and type III inclusions, where the CO2‐rich type II inclusions display trace amounts of CH4 and N2. The ore‐forming fluids are far more saline than those of other tungsten deposits reported in South China. The estimated maximum trapping pressure of the ore‐forming fluids is about 1230–1760 bar, corresponding to a lithostatic depth of 4.0–5.8 km. The δDH2O isotopic compositions of the inclusion fluid ranges from ?66.7 to ?47.8‰, with δ18OH2O values between 1.63 and 4.17‰, δ13C values of ?6.5–0.8‰, and δ34S values between ?1.98 and 1.92‰, with an average of ?0.07‰. The stable isotope data imply that the ore‐forming fluids of the Yaoling tungsten deposit were mainly derived from crustal magmatic fluids with some involvement of meteoric water. Fluid immiscibility and fluid–rock interaction are thought to have been the main mechanisms for tungsten precipitation at Yaoling.  相似文献   

7.
湖南锡田锡钨多金属矿床成矿构造特征及其找矿意义   总被引:4,自引:0,他引:4  
锡田矿床内发育近SN向花岗岩穹窿伸展构造、NE向复式褶皱和NE或NEE向走滑伸展构造系统。穹窿构造主要由印支期和燕山期侵入的花岗岩和古生代地层及不连续的环形滑脱断层组成,控制燕山期花岗岩与围岩接触带矽卡岩型矿体的分布;复式褶皱为古生代地层组成的NE向复式向斜,在矿区中部被锡田复式花岗岩体切割。严塘复式向斜与小田复式向斜中的背斜核部,尤其断层叠加的部位常控制一些构造破碎带型钨锡富矿体的分布。NE向或NEE向走滑伸展构造系统包括NE向右行(伸展)走滑断层、NE向或近EW向右行次级的走滑伸展断层、近SN向左行走滑断层和NW向伸展断层,控制了锡田矿区内的不同方向构造蚀变岩型、石英脉型和云英岩脉型锡钨多金属矿床的分布。花岗岩锆石U-Pb、白云母40Ar-39Ar和辉钼矿Re-Os同位素测年表明锡田地区燕山期构造活动、岩浆作用与成矿响应时间非常接近,介于150~160Ma。岩体与地层(灰岩)接触带、岩体中的NEE向断裂带以及被NE向断裂叠加的背斜轴部是重要的成矿区域,可作为下一步矿产勘查工作重要靶区。  相似文献   

8.
The Sin Quyen-Lung Po district is an important Cu metallogenic province in Vietnam, but there are few temporal and genetic constraints on deposits from this belt. Suoi Thau is one of the representative Cu deposits associated with granitic intrusion. The deposit consists of ore bodies in altered granite or along the contact zone between granite and Proterozoic meta-sedimentary rocks. The Cu-bearing intrusion is sub-alkaline I-type granite. It has a zircon U-Pb age of ~776 Ma, and has subduction-related geochemical signatures. Geochemical analysis reveals that the intrusion may be formed by melting of mafic lower crust in a subduction regime. Three stages of alteration and mineralization are identified in the Suoi Thau deposit, i.e., potassic alteration; silicification and Cu mineralization; and phyllic alteration. Two-phase aqueous fluid inclusions in quartz from silicification stage show wide ranges of homogenization temperatures(140–383℃) and salinities(4.18wt%–19.13wt%). The high temperature and high salinity natures of some inclusions are consistent with a magmatic derivation of the fluids, which is also supported by the H-O-S isotopes. Fluids in quartz have δD values of –41.9‰ to –68.8‰. The fluids in isotopic equilibrium with quartz have δ~(18)O values ranging from 7.9‰ to 9.2‰. These values are just plotted in the compositional field of magmatichydrothermal fluids in the δD_(water) versus δ~(18)O_(water) diagram. Sulfide minerals have relatively uniform δ~(34)S values from 1.84‰ to 3.57‰, which is supportive of a magmatic derivation of sulfur. The fluid inclusions with relatively low temperatures and salinities most probably represent variably cooled magmatic-hydrothermal fluids. The magmatic derivation of fluids and the close spatial relationship between Cu ore bodies and intrusion suggest that the Cu mineralization most likely had a genetic association with granite. The Suoi Thau deposit, together with other deposits in the region, may define a Neoproterozoic subduction-related ore-forming belt.  相似文献   

9.
四川省九龙县黑牛洞铜锌矿床为一个产于前震旦系江浪变质核杂岩中的富铜矿床,受穹隆内发育的环状滑脱构造系统控制。通过对矿床地质特征、成矿物质来源、氢氧同位素等方面的研究,认为矿床的成矿物质主要来自于深部,成矿热液是大气降水和变质水组成的混合流体。矿床的成矿时代为燕山期,矿床的形成与区域构造-岩浆热事件相对应。黑牛洞矿床为中高温变质热液矿床。  相似文献   

10.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

11.
黑牛洞铜矿床经历了早期韧性变形-变质作用和成矿期的韧-脆性变形作用。早期韧性变形-变质作用过程中围岩可能分异出含CO2流体,并形成顺片理发育的磁黄铁矿、黄铜矿等矿化。成矿期为伴随江浪穹窿隆升的韧-脆性变形期,含矿石英脉中流体包裹体主要以富液相流体包裹体为主,次为纯气相流体包裹体。流体包裹体成分测试结果显示,富液相流体包裹体主要成分为水,含少量CO2和甲烷等烃类碳质流体;纯气相流体包裹体主要为甲烷,表明成矿流体为富水含炭质流体。流体包裹体氢、氧同位素测试结果表明,黑牛洞矿床含矿流体中的水主要来源于围岩中的变质水。燕山期花岗岩侵位,江浪穹窿隆升,韧-脆性变形形成系列滑脱断层。在此减压、降温过程中,成矿流体被活化并聚集、填充到滑脱断层内。  相似文献   

12.
The Bangbu gold deposit is a large orogenic gold deposit in Tibet formed during the AlpineHimalayan collision. Ore bodies(auriferous quartz veins) are controlled by the E-W-trending Qusong-Cuogu-Zhemulang brittle-ductile shear zone. Quartz veins at the deposit can be divided into three types: pre-metallogenic hook-like quartz veins, metallogenic auriferous quartz veins, and postmetallogenic N-S quartz veins. Four stages of mineralization in the auriferous quartz veins have been identified:(1) Stage S1 quartz+coarse-grained sulfides,(2) Stage S2 gold+fine-grained sulfides,(3) Stage S3 quartz+carbonates, and(4) Stage S4 quartz+ greigite. Fluid inclusions indicate the oreforming fluid was CO_2-N_2-CH_4 rich with homogenization temperatures of 170–261°C, salinities 4.34–7.45 wt% Na Cl equivalent. δ~(18)Ofluid(3.98‰–7.18‰) and low δDV-SMOW(-90‰ to-44‰) for auriferous quartz veins suggest ore-forming fluids were mainly metamorphic in origin, with some addition of organic matter. Quartz vein pyrite has δ~(34)SV-CDT values of 1.2‰–3.6‰(an average of 2.2‰), whereas pyrite from phyllite has δ~(34)SV-CDT 5.7‰–9.9‰(an average of 7.4‰). Quartz vein pyrites yield 206Pb/204 Pb ratios of 18.662–18.764, 207Pb/204 Pb 15.650–15.683, and ~(208)Pb/204 Pb 38.901–39.079. These isotopic data indicate Bangbu ore-forming materials were probably derived from the Langjiexue accretionary wedge. 40Ar/39 Ar ages for sericite from auriferous sulfide-quartz veins yield a plateau age of 49.52 ± 0.52 Ma, an isochron age of 50.3 ± 0.31 Ma, suggesting that auriferous veins were formed during the main collisional period of the Tibet-Himalayan orogen(~65–41 Ma).  相似文献   

13.
Located in Alxa Zuoqi (Left Banner) of Inner Mongolia, China, the Zhulazhaga gold deposit is the first largescale gold deposit that was found in the middle-upper Proterozoic strata along the north margin of the North China craton in recent years. It was discovered by the No. l Geophysical and Geochemical Exploration Party of Inner Mongolia as a result of prospecting a geochemical anomaly. By now, over 50 tonnes of gold has been defined, with an average Au grade of 4 g/t. The ore bodies occur in the first lithological unit of the Mesoproterozoic Zhulazhagamaodao Formation (MZF), which is composed mainly of epimetamorphic sandstone and siltstone and partly of volcanic rocks. With high concentration of gold,the first lithological unit of the MZF became the source bed for the late-stage ore formation. Controlled by the interstratal fracture zones, the ore bodies mostly appear along the bedding with occurrence similar to that of the strata. The primitiveore types are predominantly the altered rock type with minor ore belonging to the quartz veins type. There are also some oxidized ore near the surface. The metallic minerals are composed mainly of pyrite, pyrrhotite and arsenopyrite with minor chalcopyrite, galena and limonite. Most gold minerals appear as native gold and electrum. Hydrothermal alterations associated with the ore formation are actinolitization, silicatization, sulfidation and carbonation. A total of 100 two-phase H2O-rich and 7 three-phase daughter crystal-beating inclusions were measured in seven goldbearing quartz samples from the Zhulazhaga gold deposit. The homogenization temperatures of the two-phase H2O-rich inclusions range from 155 to 401℃, with an average temperature of 284℃ and bimodal distributions from 240 to 260℃ and 300 to 320℃ respectively. The salinities of the two-phase H2O-rich inclusions vary from 9.22wt% to 24.30wt% NaCl eqniv, with a mode between 23 wt% and 24wt% NaC1 equiv. Comparatively, the homogenization temperatures of the threephase daughter crystal-beating inclusions vary from 210 to 435℃ and the salinities from 29.13wt% to 32.62wt% NaCl equiv. It indicates that the ore-forming fluid is meso-hypothermal and characterized by high salinity, which is apparently different from the metamorphic origin with low salinity. It suggests a magmatic origin of the gold-bearing fluid. The δ^18O values of quartz from auriferous veins range from 11.9 to 16.3 per mil, and the calculated δ^18OH2O values in equilibrium with quartz vary from 1.06 to 9.60 per mil, which fall between the values of meteoric water and magmatic water. It reflects that the ore-forming fluid may be the product of mixing of meteoric water and magmatic water.Based on geological and geochemical studies of the Zhulazhaga gold deposit, it is supposed that the volcanism in the Mesoproterozoic might make gold pre-concentrate in the strata. The extensive and intensive Hercynian tectono-magmatic activity not only brought along a large number of ore-forming materials, but also made the gold from the strata rework. It can be concluded that the ore bodies were mainly formed in late hydrothermal reworking stage. Compared with typical gold deposits associated with epimetamorphic clastic rocks, the Zhulazhaga deposit has similar features in occurrence of ore bodies, ore-controlling structure, wall-rock alterations and mineral assemblages. Therefore, the Zhulazhaga gold deposit belongs to the epimetamorphic clastic rock type.  相似文献   

14.
The Yangla copper deposit, located in western Yunnan Province, China, is a typical giant, newly started mining copper deposit with an estimated Cu reserves of about 1,200,000 tons. The deposit is spatially and temporally associated with the Linong granodiorite, which is rich in SiO2 (SiO2=58.25 wt%–69.84 wt%) and alkalis (Na2O+K2O=5.98 wt%–8.34 wt%), indicating an association with shoshonitic series to high-K calc-alkaline series granites, and shows low contents of TiO2 (0.35 wt%–0.48 wt%), MgO (1.51 wt%–1.72 wt%), and Al2O3 (13.38 wt%–19.75 wt%). The δ34S values of sulfides of the main ore stage from copper ores vary range from ?4.2‰ to ?0.9‰, indicating a much greater contribution from the mantle to the ore-forming fluids. The δ34S values of the late ore stage is ?9.8‰, indicating enrichment of biogenic sulfur which may derive from the crustal hydrothermal fluid. The 208Pb/204Pb, 207Pb/204Pb and 206Pb/204Pb of sulfides of the main ore stage from copper ores range within 38.66–38.73, 15.71–15.74 and 18.35–19.04, respectively, implying that the Pb was derived from the mantle, with the crustal component, probably representing mixtures of mantle lead and crustal lead. Sulfide of the late ore stage in their Pb isotopic composition, 208Pb/204Pb= 38.69, 207Pb/204Pb=15.70, 206Pb/204Pb=18.35, implying that the Pb was derived from the crust. The Linong granodiorite is syn-collisional, produced by partial melting of thickened lower crust, which was triggered by the westward subduction of the Jinshajiang Oceanic plate. During a transition in geodynamic setting from collision-related compression to extension, gently dipping ductile shear zones (related to subduction) were transformed to brittle shear zones, consisting of a series of thrust faults in the Jinshajiang tectonic belt. The tensional thrust faults would have been a favorable environment for ore-forming fluids. The ascending magma provided a channel for the ore-forming fluid from the mantle wedge. After the magma arrived at the base of the early-stage Linong granodiorite, the platy granodiorite at the base of the body would have shielded the late-stage magma from the fluid. The magma would have cooled slowly, and some of the ore-forming fluid in the magma would have entered the gently dipping thrust faults near the Linong granodiorite, resulting in mineralization.  相似文献   

15.
The Early Cretaceous Shihu gold deposit is located in the northern segment of the Taihang Tectonic belt, which extends across the central part of the North China Craton. The deposit is hosted predominantly by the Archean metamorphic crystalline units, and is spatially and temporally related to quartz diorite porphyry present extensively throughout the gold deposit. We studied the geology, geochronology and stable isotopic geochemistry. Zircon U–Pb LA–ICP–MS ages of the quartz diorite porphyry at deposit range from 134 ± 1 to 131 ± 2 Ma, which are coeval and probably genetically related to the mineralization. The majority of the sulfides of the gold deposit have δ34S values ranging from ?1 to 2‰, which suggest an homogeneous magmatic source. In addition, the isotopic compositions of δ18Ofluid and δ18Dfluid vary from 2.1 to 7.0‰ and ?93 to ?65‰, respectively, suggesting that the magmatic fluids mingled with meteoric water. The Pb isotopic analyses reveal that both the ore‐forming materials and the quartz diorite porphyry originated from the lower crust and may have been mixed with mantle material. The 87Sr/86Sri and 143Nd/144Nd (143Nd/144Nd)i ratios for the quartz diorite porphyry demonstrate that there was mixing of two end‐member (crust and the mantle) isotopic compositions. These results suggest that the ore‐forming fluids and materials were derived from lower‐crustal melting induced by mantle processes. Processes associated with the formation of the Shihu gold deposit differ significantly from those that characterize orogenic gold deposits, and instead are representative of formation in an intracontinental tectonic environment.  相似文献   

16.
Geological mapping coupled with structural investigations carried out in the Voltri Massif (eastern Ligurian Alps, Italy) provide new data for the interpretation of the tectonic context controlling main fabric development during exhumation of its high-pressure core. The Voltri Massif is here interpreted as a c. 30 km-long eclogite-bearing, asymmetric dome formed by the progressive verticalisation of the regional, second-phase mylonitic foliation developed during retrogressive greenschist metamorphic conditions. In this light, the exhumation history is driven by a ductile-to-brittle extensional process, operating through low-angle, top-to-the-W multiple detachment systems. A Late Eocene–Early Oligocene age for this extensional episode is proposed on the basis of structural correlations, stratigraphic and radiometric constraints. In this scenario, the Voltri Massif is interpreted as an extensional domain developed to accommodate the Late Eocene–Early Oligocene arching of the Western Alps–Northern Apennines orogenic system.  相似文献   

17.
The Antuoling Mo deposit is a major porphyry‐type deposit in the polymetallic metallogenic belt of the northern Taihang Mountains, China. The processes of mineralization in this deposit can be divided into three stages: an early quartz–pyrite stage, a middle quartz–polymetallic sulfide stage, and a late quartz–carbonate stage. Four types of primary fluid inclusions are found in the deposit: two‐phase aqueous inclusions, daughter‐mineral‐bearing multiphase inclusions, CO2–H2O inclusions, and pure CO2 inclusions. From the early to the late ore‐forming stages, the homogenization temperatures of the fluid inclusions are 300 to >500°C, 270–425°C, and 195–330°C, respectively, with salinities of up to 50.2 wt%, 5.3–47.3 wt%, and 2.2–10.4 wt% NaCl equivalent, revealing that the ore‐forming fluids changed from high temperature and high salinity to lower temperature and lower salinity. Moreover, based on the laser Raman spectra, the compositions of the fluid inclusions evolved from the NaCl–CO2–H2O to the NaCl–H2O system. The δ18OH2O and δD values of quartz in the deposit range from +3.9‰ to +7.0‰ and ?117.5‰ to ?134.2‰, respectively, reflecting the δD of local meteoric water after oxygen isotopic exchange with host rocks. The Pb isotope values of the sulfides (208Pb/204Pb, 36.320–37.428; 207Pb/204Pb, 15.210–15.495; 206Pb/204Pb, 16.366–17.822) indicate that the ore‐forming materials originated from a mixed upper mantle–lower crust source.  相似文献   

18.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

19.
<正>The Chang'an gold ore deposit in western Yunnan is located at the southern segment of the Ailaoshan metallogenic belt.The ore bodies are preserved in fractured Ordovician sedimentary clastic rocks.The gold-bearing minerals occur dominantly in sulfide-quartz veins.Fluid inclusion analysis shows that the Chang'an gold ore deposit is characterized by epithermal gold mineralization at temperatures between 200℃and 280℃at a shallow crustal level.The mineralizing fluids have intermediate to low salinity(6%-18%) and low densities(0.72-1.27 g/cm~3).The ore minerals haveδ~(34)S in a range from -13‰to 3.57‰,concentrated from -2.06‰to 3.57‰with an average of 1.55‰.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb values are 18.9977-19.5748,15.7093-15.784,39.3814-40.2004 respectively.These isotope data suggest that the ore-forming elements were mainly derived from mixed crustal and mantle sources.The Chang'an gold ore deposit and Tongchang Cu-Mo deposit are closely related to each other in their spatial distribution and age of formation.They have similar sources of mineralizing elements and identical ore-forming metal elements,and show a close relationship in physical and chemical conditions of mineralization.The two deposits constitute an epithermal-porphyry -skarn type Cu-Mo-Au mineralization system in the Tongchang-Chang'an area,which is related to the Cenozoic high-K alkaline magmatism.  相似文献   

20.
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ~(18)O_(fluid)values calculated from δ~(18)O_(quartz) and δ~(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ~(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号