首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Interleaved phyllosilicate grains (IPG) of various compositions are widespread in low-grade Verrucano metasediments of the northern Apennines (Italy). They are ellipsoidal or barrel shaped, up to 300–400 μm long and they are often kinked and folded; phyllosilicate packets occur as continuous lamellae or as wedge-shaped layers terminating inside the grain. Using electron microscopy techniques (SEM, TEM) six types of IPG have been distinguished on the basis of their mineralogical composition: (1) Chl+Ms ± Kln; (2) Chl+ Ms+Pg ± Kln; (3) Ms+Prl ± Pg; (4) Ms+Prl+Su; (5) Ms+Prl+Chl+Su; (6) Su+Ms. Types (1) and (2) are mainly composed of chlorite, with Ms and Pg as minor phases; Kln grows on Ms in highly weathered samples. Types (3), (4), (5), and (6) are composed of muscovite, with intergrown Prl, Chl, Su and new-formed muscovite. The IPG show all kinds of contacts: from coherent grain boundaries with parallel basal planes and along-layer transitions to low- and high-angle grain boundaries. The IPG formed on pristine minerals such as chlorite and muscovite. The transformations took place during the prograde and retrograde metamorphic path of the rocks: they were facilitated by deformation and they occurred in equilibrium with a fluid phase, which allowed cation diffusion. Prograde reactions [Chl = Ms (or Pg); Ms = Prl; Ms = Chl] involve dehydration and sometimes a decrease in volume, whereas retrograde reactions (Ms = Kln; Ms = Su) involve hydration and an increase in volume. These transformations do not simply occur through an interchange of cations, but often involve deep structural changes: transitions from one phyllosilicate to another generally proceed through dissolution-recrystallization reactions. In conclusion, Verrucano IPG represent microstructural sites which have not completely equilibrated with the whole rock and whose mineral assemblage depends on the original composition of the microstructural sites. Received: 20 June 1996 / Accepted: 3 February 1997  相似文献   

3.
《Tectonophysics》1987,142(1):87-98
Four nappes have been recognized in the Ligurian Apennines. In the Lavagna Nappe very low-grade metamorphism is combined with very large, originally W-facing isoclinal folds. In the other nappes, no evidence for metamorphism is found and all eutectonic folding was originally E- to NE-facing. Tectonic transport along the major nappe contacts was in an E- to NE-direction. A tectonic model is presented, which explains the generation of the large, originally W-facing folds as a result of originally E-inclined subduction within a young oceanic basin. Young oceanic lithosphere (maximum age approximately 25 Ma) subducted beneath oceanic lithosphere with a maximum age of approximately 40 Ma, under the influence of horizontally oriented compressional forces. Within the tectonic wedge, associated with the subduction, originally W-facing isoclinal folding and metamorphism occurred. Decrease and/or termination of compression resulted in the cessation of the subduction movements, followed by uplift of the region above the subducted plate by means of buoyancy. This uplift formed a slope from which sequences slid in an E- to NE-direction, causing E- to NE-facing folds. Ultimately, detachment and thrusting of gravitational nappes took place, by which process rock sequences of oceanic origin have been externally transported to attain ensialic (continental) domains. The Triassic-Early Oligocene tectonic events recognized in the Ligurian Apennines correlate quite well with the events that preceded the collision phase of the Alps.  相似文献   

4.
In the internal part of the Umbro-Marchean-Romagnan Apennines, the foredeep clastic wedge constituting the Neogene part of the sedimentary cover is completely detached from the underlying Mesozoic–Palaeogene succession. The resulting (Umbro-Romagnan) parautochthon consists of tectonostratigraphic units with a general geometry of broad synclinal blocks separated by narrow faulted anticlines.
Thrust-related structures observed in the field require thrust ramp propagation to have occurred within already folded rocks; therefore, they cannot be restored using simple fault-bend fold or fault-propagation folding models. Evidence for a passive fold origin in the studied rocks suggests that an early detachment folding episode preceded ramp propagation. The latter was facilitated by the enhanced thickness of incompetent material in the cores of detachment anticlines, which became the preferential sites where thrust ramps cut up-section. Depending on the trajectory of such thrust ramps, different types of fault-related structures could develop. Hanging-wall anticlines which give way to monoclinal structures higher up in the section are associated with listric thrust ramps, whereas hanging wall monoclines approximately parallel to the underlying fault surface are associated with straight-trajectory ramps.
This kinematic evolution, which occurred partly during syn-depositional compression, also accounts for the observed lithofacies distribution. The latter reflects an early differentiation of the foredeep trough into sub-basins that are progressively younger towards the foreland. The detachment anticlines that originally bounded such sub-basins were the site of later thrust propagation, leading to a tectonic juxtaposition of different tectonostratigraphic units consisting of broad NW-SE elongate synclinal blocks.  相似文献   

5.
Water samples from the river network and from some shallow and brackish springs located in a tectonic window of the northern Apennines of Italy were studied in the frame of a comprehensive hydrogeological investigation in order to better understand the origin and the mixing processes between the two water types noticed also in previous studies (Ca–HCO3 and Na–Cl). A sampling campaign covering the drought period during year 2010 was planned to gather electric conductivity, temperature and redox potential data along the river network and on groundwater occurrences located inside the tectonic structure. Additionally, eight water samples were collected for hydrochemical (major anions and cations: Na+, K+, Ca2+, Mg2+, HCO3 ?, Cl?, SO4 2? and trace ion Btot) and isotopic (δ18O, δ2H, 3H) analyses and compared with other eighteen samples from shallow and brackish springs collected near the study site during the period 2005–2012. Moreover, river discharge and water balance estimations were carried out. Results confirmed the presence of old Na–Cl water with salinity progressively increasing up to 5.5 g l?1 at the northern termination of the tectonic window. These values are in agreement with the ions contents of the most mineralized spring (Macognano spring: salinity of 7.6 g l?1), which has been considered as having the deepest and longest flow-path. Stable isotopes and trace ions contents are consistent with rainfall and snowmelt water mixed with brines associated with a hydrocarbon reservoir hosted at depth. Considering as end-member the more mineralized Na–Cl water, a cumulate inflow in the range of 12.9 ± 5.9 l s?1 has been estimated. This aliquot is released into the river network with different mixing proportions by the groundwater occurrences discharging from the autochthonous flysch unit.  相似文献   

6.
The Ca’ Lita landslide is a large and deep-seated mass movement located in the northern Apennines, about 70 km west of Bologna (Northern Italy). It consists of a composite landslide that affects Cretaceous to Eocene flysch rock masses and chaotic complexes. Many of the sectors making up the landslide have resumed activity between 2002 and 2006, threatening some villages and an important road connecting several key industrial facilities located in the upper watershed. This paper presents the management of the emergency, dealing with the investigation campaigns (geological, geomorphological and LiDAR surveys, borehole drillings, seismic surveys), with the monitoring (in situ instrumentation) and with the design and construction of mitigation measures. The whole process, from landslide reactivation to date, has been modelled on a numerical basis with the finite difference code FLAC 2D, to assess the efficiency of the mitigation system and to propose further countermeasure works in different scenarios.  相似文献   

7.
 More than 5 800 chemical analyses on water samples collected during 1987–1995 from 528 monitoring wells located in the southernmost part of the Po Valley (Emilia-Romagna region, northern Italy), one of the most urbanized, industrialized and agriculturally developed areas of Italy, have been processed. The analysis of data showed that: (1) waters are discharging from both confined and unconfined aquifers; (2) the water in the unconfined aquifer(s) is Ca(Mg)-HCO3 in composition while confined ones are Na-Cl and/or Na-(HCO3); (3) both confined and unconfined aquifer samples have δ18O and δD isotopic values of meteoric signature; (4) waters from both the aquifers are at least 40 years old; (5) the pumping rate has caused subsidence, particularly where the aquifer(s) is (are) unconfined; (6) the unconfined aquifer(s) is exposed to the risk of NO3 pollution; (7) considering the present "pressure" (i.e. pumping rate) on this natural environment by human activity, care must be taken in the future to preserve this "strategic" resource. Received: 27 October 1997 · Accepted: 12 March 1998  相似文献   

8.
Is compression across the northern Apennine fold‐and‐thrust system (Italy) still active? To address this question, we quantified the long‐term rates of migration and shortening of the system along with the measurement errors. Our approach integrates structural geology, seismicity patterns, and statistical treatment of tectonic activity. On the basis of recently published surface and subsurface data, we found a migration rate of 8.85 ± 0.61 mm yr−1. The inception age of individual fold structures follow closely this average rate, indicating that the system has been migrating at a constant rate for the past 17 Myr. Cumulative shortening of the system also increases linearly through time at 2.93 ± 0.31 mm yr−1. The location of the youngest structures in the easternmost portion of the system coincides with a significant peak of seismic moment released by historical earthquakes. We conclude that not only these easternmost thrusts are still active, but also that they generate earthquakes.  相似文献   

9.
10.
Sequence stratigraphic concepts can provide a powerful tool for understanding the tectono-sedimentary evolution of areas extending across different tectonic domains. An example is provided by the upper Serravallian strata of the northern Apennines, where a sedimentological and biostratigraphic study allows a sequence boundary to be traced across the foredeep and piggy-back basin successions. Turbidite sedimentation of predominantly alpine and subordinate apenninic provenance occurred in the apenninic foreland basin throughout the middle Miocene. Deep-water sedimentation in the foredeep was laterally associated with deposition in shelf to slope environments in the piggy-back basins. In the piggy-back basin succession, the upper Serravallian sequence boundary is a laterally extensive unconformity within homogeneous marly deposits. This unconfonnity is laterally correlative with the base of lenticular turbidite bodies. A stratigraphic lacuna affecting Zone N14 characterizes the marginal areas, where glaucony-rich deposits assigned to Zone N15 unconformably overlie marls displaying association of Zone N13. In the depocentres, where no significant stratigraphic gap has been detected, the sequence boundary is narrowly constrained to lowermost Zone N14. The upper Serravallian unconformity of the piggy-back basins succession is correlative with time-equivalent features in two distinct parts (inner basin and outer basin) of the foredeep. In the inner basin the sequence boundary separates basin margin turbidites from overlying slope hemipelagites. In a more external position (outer basin) the sequence boundary is the base of a characteristic mega turbidite of apenninic provenance (Turrito layer). In other sectors of the outer basin, where turbidite sedimentation was entirely of alpine provenance, the sequence boundary has no clear physical expression. The observed facies distribution in the study area suggests that an important thrusting event affected the northern Apennines in the late Serravallian, resulting in submarine channel incision and nondeposition in the piggy-back basins. Compressional activity in the foredeep was responsible for the closure of the inner basin and subsequent shifting of turbidite sedimentation in the outer basin. Slope instability led to widespread remobilization of previously deposited turbidites, triggering turbidite events of huge volume. The different characteristics of the sequence boundary in the various parts of the foredeep constitute an example of differential response of a multisourced supply system to tectonic deformation.  相似文献   

11.
The Lower Tagus Valley in Portugal contains a well-developed valley-fill succession covering the complete Late Pleistocene and Holocene periods. As large-scale stratigraphic and chronologic frameworks of the Lower Tagus Valley are not yet available, this paper describes facies, facies distribution, and sedimentary architecture of the late Quaternary valley fill. Twenty four radiocarbon ages provide a detailed chronological framework. Local factors affected the nature and architecture of the incised valley-fill succession. The valley is confined by pre-Holocene deposits and is connected with a narrow continental shelf. This configuration facilitated deep incision, which prevented large-scale marine flooding and erosion. Consequently a thick lowstand systems tract has been preserved. The unusually thick lowstand systems tract was probably formed in a previously (30,000–20,000 cal BP) incised narrow valley, when relative sea-level fall was maximal. The lowstand deposits were preserved due to subsequent rapid early Holocene relative sea-level rise and transgression, when tidal and marine environments migrated inland (transgressive systems tract). A constant sea level in the middle to late Holocene, and continuous fluvial sediment supply, caused rapid bayhead delta progradation (highstand systems tract). This study shows that the late Quaternary evolution of the Lower Tagus Valley is determined by a narrow continental shelf and deep glacial incision, rapid post-glacial relative sea-level rise, a wave-protected setting, and large fluvial sediment supply.  相似文献   

12.
One of the thickest and most extensive tufa deposits in northern France occurs at Daours, about 8 km upstream of Amiens at the confluence of the River Somme and its tributary the Hallue. It covers an area of about 80 ha and reaches 10 m above the level of the present valley, probably owing to the construction of a tufa barrage, which caused periodic damming of the valley. The molluscan succession from a 4‐m section through the Daours tufa provides an unusually detailed record of environmental change during the Holocene. The faunal record, supported by four radiocarbon dates, indicates that the tufa sequence at this location does not extend back to the early Holocene but began c. 7340 cal. a BP and ceased to form shortly after c. 4938 cal. a BP, consistent with the notion of a NW European ‘late Holocene tufa decline’. The molluscan record is divisible into six zones that define three aquatic phases separated by three terrestrial episodes, when the tufa surface dried out sufficiently to allow colonization by dry‐ground species, including some shade‐demanding elements. These events are also reflected by differences in the lithology of the tufa. The earliest aquatic phase at the base of the sequence represents the most stable and permanent water‐body. The two subsequent aquatic phases appear to represent smaller, more ephemeral, water‐bodies surrounded by marsh. The land snail assemblages show ecological changes within each terrestrial episode, as well as faunal differences between them. These events, which reflect changes in the local hydrology, were short‐lived, each lasting for only a few hundred years. The tufa at Daours has also yielded flint artefacts and pottery, but it seems unlikely that the dynamic environmental record of the site results from anthropogenic activity.  相似文献   

13.
A new genetic facies model for deep-water clastic evaporites is presented, based on work carried out on the Messinian Gessoso-solfifera Formation of the northern Apennines during the last 15 years. This model is derived from the most recent siliciclastic turbidite models and describes the downcurrent transformations of a parent flow mainly composed of gypsum clasts. The model allows clearer comprehension of processes controlling the production and deposition of clastic evaporites, representing the most common evaporite facies of the northern Apennines, and the definition of the genetic and stratigraphic relationship with primary shallow-water evaporites formed and preserved in marginal settings. Due to the severe recrystallization processes usually affecting these deposits, petrographic and geochemical analyses are needed for a more accurate interpretation of the large spectrum of recognized gravity-driven deposits ranging from debrisflow to low-density turbidites. Almost all the laminar ‘balatino’ gypsum, previously considered a deep-water primary deposit, is here reinterpreted as the fine-grained product of high to low-density gravity flows. Facies associations permit the framing of the distribution of clastic evaporites into the complex tectonically controlled depositional settings of the Apennine foredeep basin. The Messinian Salinity Crisis occurred during an intense phase of geodynamic reorganization of the Mediterranean area that also produced the fragmentation of the former Miocene Apennine foredeep basin. In this area, primary shallow-water evaporites equivalent to the Mediterranean Lower Evaporites, apparently only formed in semi-closed thrust-top basins like the Vena del Gesso Basin. The subsequent uplift and subaerial exposure of such basins ended the evaporite precipitation and promoted a widespread phase of collapse leading to the resedimentation of the evaporites into deeper basins. Vertical facies sequences of clastic evaporites can be interpreted in terms of the complex interplay between the Messinian tectonic evolution of the Apennine thrust belt and related exhumation–erosional processes. The facies model here proposed could be helpful also for better comprehension of other different depositional and geodynamic contexts; the importance of clastic evaporites deposits has been overlooked in the study of other Mediterranean areas. Based on the Apennine basins experience, it is suggested here that evaporites diffused into the deeper portions of the Mediterranean basin may consist mainly of deep-water resedimented deposits rather than shallow-water to supratidal primary evaporites indicative of a complete basin desiccation.  相似文献   

14.
The boundary area between the Apenninic fold‐and‐thrust belt and the crystalline Calabrian Arc, located around Sangineto in northern Calabria, has been investigated. New geological mapping in the Sant'Agata area has been performed on the Triassic successions traditionally attributed to the metasedimentary San Donato Unit. This, coupled with a reappraisal of the stratigraphy and tectonics of coeval successions present more to the south in the Cetraro Unit, results in a new reconstruction of the Triassic evolution of all the metasedimentary successions found in the region. Four informal stratigraphic units have been distinguished in the S. Agata area. The lowest one (Unit A) consists of well‐bedded metalimestones and bioturbated marly limestones that correlate with Ladinian–Carnian carbonates in nearby areas. A second unit (Unit B), never recognized before, contains a complex alternation of dolomites, phyllites and some meta‐arenites containing several beds of Cavernoso facies, attributed to the Carnian. They grade upward to platform and platform‐margin dolomites of Norian–Rhaetian age (Unit C) that in turn are replaced upward and laterally by a fourth unit (Unit D) consisting of well‐bedded, dark dolomites and metalimestones with marly interlayers locally found as resedimented large blocks in slope conglomerates. Unit D correlates with Rhaetian–Liassic beds in nearby areas. Several pieces of evidence of post‐metamorphic contractional tectonics, with 140°N and 30°N trends, are found together with evidence of SW‐directed extension. The siliciclastic Carnian beds of Unit B are correlated with the phyllites of Cetraro, formerly believed to be Middle Triassic; moreover, it is suggested that in the Cetraro area Unit C is almost totally replaced by Unit D. This demonstrates that the former distinction between the two tectonic units in the whole area has to be discarded. We have made a general palaeoenvironmental reconstruction which progresses laterally, during Ladinian–Carnian times, from (i) a coastal, mixed siliciclastic–carbonate–evaporitic area at Cetraro to (ii) a transitional carbonate shelf where siliciclastic input was only episodic, and finally to (iii) a bioconstructed margin which was later replaced by a steepened margin created by tectonic instability. Starting from the Norian, subsidence shifted toward the former coastal area where an intraplatform, restricted basin developed. The proposed stratigraphy corresponds closely to the Alpujarride units of the Betic Cordillera, Spain. Moreover, it is shown that strong affinities also exist, in terms of the structural framework, with the metamorphic units of Tuscany and Liguria. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
Spalluto  Luigi  Fiore  Antonio  Miccoli  Maria Nilla  Parise  Mario 《Natural Hazards》2021,105(1):277-292
Natural Hazards - Flooding poses a serious public health hazard throughout the world. Flood modeling is an important tool for emergency preparedness and response, but some common methods require a...  相似文献   

16.
The Gran Sasso range is a striking salient formed by two roughly rectilinear E–W and N–S limbs. In the past 90° counterclockwise (CCW) rotations from the eastern Gran Sasso were reported [Tectonophysics 215 (1992) 335], suggesting west–east increase of rotation-related northward shortening along the E–W limb. In this paper, we report on paleomagnetic data from Meso-Cenozoic sedimentary dykes and strata cropping out at Corno Grande (central part of the E–W Gran Sasso limb), the highest summit of the Apennine belt. Predominant northwestward paleomagnetic declinations (in the normal polarity state) from both sedimentary dykes and strata are observed. When compared to the expected declination values for the Adriatic foreland, our data document no thrusting-related rotation at Corno Grande. The overall paleomagnetic data set coupled with the available geological information shows that the Gran Sasso arc is in fact a composite structure, formed by an unrotated-low shortening western (E–W trending) limb and a strongly CCW rotated eastern salient. Late Messinian and post-early Pliocene shortening episodes documented along the Gran Sasso front indicate that belt building and arc formation occurred during two distinct episodes. We suggest that the southern part of a late Messinian N–S front was reactivated during early–middle Pliocene time, forming a tight range salient due to CCW rotations and differential along-front shortening rates. The formation of a northward displacing bulge in an overall NW–SE chain is likely a consequence of the collision between the Latium-Abruzzi and Apulian carbonate platforms during northeastward propagation of the Apennine wedge, inducing lateral northward extrusion of Latium-Abruzzi carbonates towards ductile basinal sediment areas.  相似文献   

17.
Late Pliocene–Pleistocene tectonic evolution of the Apennines is driven by progressive eastward migration of extensional downfaulting superposed onto the Late Miocene–Early Pliocene compressional thrust belt. This process has led to distinct structural domains that show decreasing transcrustal permeability from conditions of pervasive mixing between deep and surface fluids in the hinterland (west) to conditions of restricted fluid circulation and overpressuring in the foreland (east). At present, the highest rates of normal faulting and the strongest seismicity occur in the area bounded by stretched, highly permeable crust to the west and thick, poorly permeable crust to the east. In this area, the seismogenic sources of the largest earthquakes (5<Ms<7) are potentially related to mature normal faults that deeply penetrate thick brittle upper crust, and act as transient high-permeability channels during seismic activity. In this framework, it is plausible that domains of overpressuring govern progressive inception of normal faulting and fluid redistribution in the crust, leading to eastward migration of the belt of maximum seismicity with time.  相似文献   

18.
A new Lower Cretaceous (lower Aptian) dinosaur tracksite, from the eastern side of Monte Cagno (Abruzzi, Italy), is described. Different styles of track formation are represented on the site surface. Most of the footprints are preserved as deep tracks, produced by trackmakers sinking into soft mud. Some tracks, better preserved than the others, are characterized by metatarsal impressions and were interpreted as the resting traces of a crouching theropod (based on their orientation and three-dimensional morphology). The 135 cm length of the track with metatarsal impressions indicates huge pedal proportions and represents the largest theropod trackmaker ever documented from the Mesozoic peri-Adriatic platforms of Italy.  相似文献   

19.
Chemosynthetic carbonates, identified by isotopic, palaeoecological and sedimentological features, are concentrated in middle-late Miocene satellite and foredeep deposits of the northern Apennines. Chemoherms in the foredeep are hosted in thick pelitic intervals, probably deposited in intrabasinal structural highs, which are entirely or partly involved in large slumps, in many cases associated with extrabasinal slides. Sediment textures in carbonates and in the enclosing foredeep pelitic sediments indicate a link between hydrocarbon-fluid venting, sediment deformation and mobilisation, and tectonics. The intensity and style of fluid release phases directly influenced chemoherm typology, and also determined overpressure conditions in low shear strength pelitic sediments, favouring sediment mobilisation and influencing slope instability, which widely affected the Apennine foredeep. Chemosynthetic carbonates are associated with sites of tectonically fractured and compressed sediments in the Apennine foredeep-thrust belt system, thus indicating a relation with the tectonic loading of the Apennine thrust-sheets, which favoured fluid expulsion along forerunner faults. Possible gas hydrate contributions to fluid expulsion processes are discussed, based on sediment textures compared with modern vent areas. Finally, sediment instability may have facilitated a large amount of fluid escape, thus stopping carbonate precipitation.  相似文献   

20.
The Umbria-Marche foreland fold-and-thrust belt in the northern Apennines of Italy provides excellent evidence to test the hypothesis of synsedimentary-structural control on thrust ramp development. This orogenic belt consists of platform and pelagic carbonates, Late Triassic to Miocene in age, whose deposition was controlled by significant synsedimentary extension. Normal faulting, mainly active from Jurassic through Late Cretaceous-Paleogene time, resulted in significant lateral thickness variability within the related stratigraphic sequences. By Late Miocene time the sedimentary cover was detached from the underlying basement and was deformed by east-verging folds and west-dipping thrusts. Two restored balanced cross sections through the southernmost part of the belt show a coincidence between the early synsedimentary normal faults and the late thrust fault ramps. These evidences suggest that synsedimentary tectonic structures, such as faults and the related lithological lateral changes, can be regarded as mechanically important controlling factors in the process of thrust ramp development during positive tectonic inversion processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号