首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The international GLONASS experiment: products, progress and prospects   总被引:2,自引:0,他引:2  
 In October 1998 the IGEX field campaign, the first coordinated international effort to monitor GLONASS satellites on global basis, was started. Currently about 40 institutions worldwide support this effort either by providing GLONASS tracking data or in operating related data and analysis centers. The increasing quality and consistency of the calculated GLONASS orbits (about 25 cm early in 2000), even after the end of the official IGEX field campaign, are shown. Particular attention is drawn to the combination of precise ephemerides in order to generate a robust, reliable and complete IGEX orbits product. Some problems in modeling the effect of solar radiation pressure on GLONASS satellites are demonstrated. Finally, the expected benefits and prospects of the upcoming International GLOnass Service-Pilot Project (IGLOS-PP) of the International GPS Service (IGS) are discussed in more detail. Received: 17 August 2000 / Accepted: 12 April 2001  相似文献   

2.
 Until recently, the Global Positioning System (GPS) was the only operational means of distributing time to an arbitrary number of users and of synchronizing clocks over large distances with a high degree of precision and accuracy. Over the last few years it has been shown that similar performance can be achieved using the Russian Global Navigation Satellite System (GLONASS). GLONASS time transfer between continents was initially hampered by the lack of post-processed precise ephemerides. Results from the International GLONASS Experiment (IGEX) campaign are now available, however, and this paper reports on the first use of IGEX precise ephemerides for GLONASS P-code intercontinental time links. The results of GLONASS P-code and GPS C/A-code time transfer are compared under similar conditions. Received: 31 January 2000 / Accepted: 10 July 2000  相似文献   

3.
GPS-assisted GLONASS orbit determination   总被引:1,自引:0,他引:1  
 Using 1 week of data from a network of GPS/GLONASS dual-tracking receivers, 15-cm accurate GLONASS orbit determination is demonstrated with an approach that combines GPS and GLONASS data. GPS data are used to define the reference frame, synchronize receiver clocks and determine troposphere delay for the GLONASS tracking network. GLONASS tracking data are then processed separately, with the GPS-defined parameters held fixed, to determine the GLONASS orbit. The quality of the GLONASS orbit determination is currently limited by the size and distribution of the tracking network, and by the unavailability of a sufficiently refined solar pressure model. Temporal variations in the differential clock bias of the dual-tracking receivers are found to have secondary impact on the orbit determination accuracy. Received: 5 January 2000 / Accepted: 15 February 2001  相似文献   

4.
The Center for Orbit Determination in Europe (CODE) has been involved in the processing of combined GPS/GLONASS data during the International GLONASS Experiment (IGEX). The resulting precise orbits were analyzed using the program SORBDT. Introducing one satellites positions as pseudo-observations, the program is capable of fitting orbital arcs through these positions using an orbit improvement procedure based on the numerical integration of the satellites orbit and its partial derivative with respect to the orbit parameters. For this study, the program was enhanced to estimate selected parameters of the Earths gravity field. The orbital periods of the GPS satellites are —in contrast to those of the GLONASS satellites – 2:1 commensurable (P Sid:P GPS) with the rotation period of the Earth. Therefore, resonance effects of the satellite motion with terms of the geopotential occur and they influence the estimation of these parameters. A sensitivity study of the GPS and GLONASS orbits with respect to the geopotential coefficients reveals that the correlations between different geopotential coefficients and the correlations of geopotential coefficients with other orbit parameters, in particular with solar radiation pressure parameters, are the crucial issues in this context. The estimation of the resonant geopotential terms is, in the case of GPS, hindered by correlations with the simultaneously estimated radiation pressure parameters. In the GLONASS case, arc lengths of several days allow the decorrelation of the two parameter types. The formal errors of the estimates based on the GLONASS orbits are a factor of 5 to 10 smaller for all resonant terms. AcknowledgmentsThe authors would like to thank all the organizations involved in the IGS and the IGEX campaign, in particular those operating an IGS or IGEX observation site and providing the indispensable data for precise orbit determination.  相似文献   

5.
Laser-based validation of GLONASS orbits by short-arc technique   总被引:1,自引:0,他引:1  
 The International GLONASS Experiment (IGEX-98) was carried out between 19 October 1998 and 19 April 1999. Among several objectives was the precise orbit determination of GPS and GLONASS satellites and its validation by laser ranging observations. Local laser-based orbit corrections (radial, tangential and normal components in a rotating orbital local reference frame) are computed using a geometrical short-arc technique. The order of magnitude of these corrections is at the level of few decimeters, depending on the considered components. The orbit corrections are analyzed as a function of several parameters (date, orbital plane, geographical area). The mean corrections are at the level of several centimeters. However, when averaging over the entire campaign and for all the satellites, no mean radial, tangential and normal orbit corrections are found. The origin of the observed corrections is considered (errors due to the geocentric gravitational constant, the non-gravitational forces, the thermal equilibrium of on-board equipment, the reference systems, the location and the signature of the retroreflector array, and the precision of the satellite laser ranges). Some features are also due to errors in the radio-tracking GLONASS orbits. Further investigations will be needed to better understand the origin of various biases. Received: 17 February 2000 / Accepted: 31 January 2001  相似文献   

6.
 The solutions of the CODE Analysis Center submitted to the IGS, the International Global Position System (GPS) Service for Geodynamics, are based on three days of observation of about 80–100 stations of the IGS network. The Earth rotation parameters (ERPs) are assumed to vary linearly over the three days with respect to an a priori model. Continuity at the day boundaries as well as the continuity of the first derivatives are enforced by constraints. Since early April 1995 CODE has calculated a new ERP series with an increased time resolution of 2 hours. Again continuity is enforced at the 2-hours-interval boundaries. The analysis method is described, particularly how to deal with retrograde diurnal terms in the ERP series which may not be estimated with satellite geodetic methods. The results obtained from the first year of data covered by the time series (time interval from 4 April 1995 to 30 June 1996) are also discussed. The series is relatively homogeneous in the sense of the used orbit model and the a priori model for the ERPs. The largest source of excitation at daily and sub-daily periods is likely to be the effect of the ocean tides. There is good agreement between the present results and Topex/Poseidon ocean tide models, as well as with models based on Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data. Non-oceanic periodic variations are also observed in the series. Their origin is most probably a consequence of the GPS solution strategy; other possible sources are the atmospheric tides. Received: 13 July 1999 / Accepted: 21 March 2000  相似文献   

7.
Apropos laser tracking to GPS satellites   总被引:3,自引:0,他引:3  
. Laser tracking to GPS satellites (PRN5 and 6) provides an opportunity to compare GPS and laser systems directly and to combine data of both in a single solution. A few examples of this are given in this study. The most important results of the analysis are that (1) daily SLR station coordinate solutions could be generated with a few cm accuracy; (2) coordinates of nine stations were determined in a 2.3-year-long arc solution; (3) the contribution of laser data on the `SLR-GPS' combined orbit, resulting from the simultaneous processing of SLR and GPS data, is significant and (4) laser-only orbits have an accuracy of 10–20 cm, 1-day predictions of SLR orbits differ from IGS orbits by about 20–40 cm, 2-day predictions by 50–60 cm. Received: 1 October 1996 / Accepted: 14 February 1997  相似文献   

8.
Improving the orbit estimates of GPS satellites   总被引:2,自引:2,他引:0  
The Extended Center for Orbit Determination in Europe (CODE) Orbit Model, an empirical orbit model proposed by Beutler and colleagues in 1994, has been tested extensively since January 1996. Apart from six osculating Keplerian elements, this orbit model consists of nine (instead of the conventional two) parameters to take into account the deterministic part of the force field acting on the satellites. Based on the test results an improved orbit parameterization is proposed. The new orbit parameterization consists of the conventional two parameters plus three additional parameters, a constant and two periodic terms (a cosine and a sine term), in the X-direction to model the effects of the solar radiation pressure. Results based on one full year of routine orbit estimation, using the original and the new orbit parameterization, are presented to demonstrate the superiority of the new approach. An improvement of the orbit estimates with at least a factor of two is observed! Received: 20 January 1998 / Accepted: 30 November 1998  相似文献   

9.
 A new method for calculating analytical solar radiation pressure models for GNSS spacecraft has been developed. The method simulates the flux of light from the Sun using a pixel array. The method can cope with a high level of complexity in the spacecraft structure and models effects due to reflected light. Models have been calculated and tested for the Russhar global navigation satellite system GLONASS IIv spacecraft. Results are presented using numerical integration of the force model and long-arc satellite laser ranging (SLR) analysis. The integrated trajectory differs from a precise orbit calculated using a network of global tracking stations by circa 2 m root mean square over a 160 000-km arc. The observed − computed residuals for the 400-day SLR arc are circa 28 mm. Received: 23 December 1999 / Accepted: 28 August 2000  相似文献   

10.
Reducing the draconitic errors in GNSS geodetic products   总被引:2,自引:2,他引:0  
Systematic errors at harmonics of the GPS draconitic year have been found in diverse GPS-derived geodetic products like the geocenter $Z$ -component, station coordinates, $Y$ -pole rate and orbits (i.e. orbit overlaps). The GPS draconitic year is the repeat period of the GPS constellation w.r.t. the Sun which is about 351 days. Different error sources have been proposed which could generate these spurious signals at the draconitic harmonics. In this study, we focus on one of these error sources, namely the radiation pressure orbit modeling deficiencies. For this purpose, three GPS+GLONASS solutions of 8 years (2004–2011) were computed which differ only in the solar radiation pressure (SRP) and satellite attitude models. The models employed in the solutions are: (1) the CODE (5-parameter) radiation pressure model widely used within the International GNSS Service community, (2) the adjustable box-wing model for SRP impacting GPS (and GLONASS) satellites, and (3) the adjustable box-wing model upgraded to use non-nominal yaw attitude, specially for satellites in eclipse seasons. When comparing the first solution with the third one we achieved the following in the GNSS geodetic products. Orbits: the draconitic errors in the orbit overlaps are reduced for the GPS satellites in all the harmonics on average 46, 38 and 57 % for the radial, along-track and cross-track components, while for GLONASS satellites they are mainly reduced in the cross-track component by 39 %. Geocenter $Z$ -component: all the odd draconitic harmonics found when the CODE model is used show a very important reduction (almost disappearing with a 92 % average reduction) with the new radiation pressure models. Earth orientation parameters: the draconitic errors are reduced for the $X$ -pole rate and especially for the $Y$ -pole rate by 24 and 50 % respectively. Station coordinates: all the draconitic harmonics (except the 2nd harmonic in the North component) are reduced in the North, East and Height components, with average reductions of 41, 39 and 35 % respectively. This shows, that part of the draconitic errors currently found in GNSS geodetic products are definitely induced by the CODE radiation pressure orbit modeling deficiencies.  相似文献   

11.
 The New Hebrides experiment consisted of setting up a pair of DORIS beacons in remote tropical islands in the southwestern Pacific, between 1993 and 1997. Because of orbitography requirements on TOPEX/Poséidon, the beacons were only transmitting to SPOT satellites. Root-mean-square (RMS) scatters at the centimeter level on the latitude and vertical components were achieved, but 2-cm RMS scatters affected the longitude component. Nevertheless, results of relative velocity (123 mm/year N250°) are very consistent with those obtained using the global positioning system (GPS) (126 mm/yr N246°). The co-seismic step (12 mm N60°) related to the Walpole event (M W = 7.7) is consistent with that derived from GPS (10 mm N30°) or from the centroid moment tensor (CMT) of the quake (12 mm N000°). Received: 19 November 1999 / Accepted: 17 May 2000  相似文献   

12.
 Ten days of GPS data from 1998 were processed to determine how the accuracy of a derived three-dimensional relative position vector between GPS antennas depends on the chord distance (denoted L) between these antennas and on the duration of the GPS observing session (denoted T). It was found that the dependence of accuracy on L is negligibly small when (a) using the `final' GPS satellite orbits disseminated by the International GPS Service, (b) fixing integer ambiguities, (c) estimating appropriate neutral-atmosphere-delay parameters, (d) 26 km ≤ L ≤ 300 km, and (e) 4 h ≤T ≤ 24 h. Under these same conditions, the standard error for the relative position in the north–south dimension (denoted S n and expressed in mm) is adequately approximated by the equation S n =k n /T  0.5 with k n =9.5 ± 2.1 mm · h0.5 and T expressed in hours. Similarly, the standard errors for the relative position in the east–west and in the up-down dimensions are adequately approximated by the equations S e =k e /T  0.5 and S u =k u /T  0.5, respectively, with k e =9.9 ± 3.1 mm · h0.5 and k u =36.5 ± 9.1 mm · h0.5. Received: 5 February 2001 / Accepted: 14 May 2001  相似文献   

13.
Homogeneous reprocessing of GPS,GLONASS and SLR observations   总被引:3,自引:2,他引:1  
The International GNSS Service (IGS) provides operational products for the GPS and GLONASS constellation. Homogeneously processed time series of parameters from the IGS are only available for GPS. Reprocessed GLONASS series are provided only by individual Analysis Centers (i. e. CODE and ESA), making it difficult to fully include the GLONASS system into a rigorous GNSS analysis. In view of the increasing number of active GLONASS satellites and a steadily growing number of GPS+GLONASS-tracking stations available over the past few years, Technische Universität Dresden, Technische Universität München, Universität Bern and Eidgenössische Technische Hochschule Zürich performed a combined reprocessing of GPS and GLONASS observations. Also, SLR observations to GPS and GLONASS are included in this reprocessing effort. Here, we show only SLR results from a GNSS orbit validation. In total, 18 years of data (1994–2011) have been processed from altogether 340 GNSS and 70 SLR stations. The use of GLONASS observations in addition to GPS has no impact on the estimated linear terrestrial reference frame parameters. However, daily station positions show an RMS reduction of 0.3 mm on average for the height component when additional GLONASS observations can be used for the time series determination. Analyzing satellite orbit overlaps, the rigorous combination of GPS and GLONASS neither improves nor degrades the GPS orbit precision. For GLONASS, however, the quality of the microwave-derived GLONASS orbits improves due to the combination. These findings are confirmed using independent SLR observations for a GNSS orbit validation. In comparison to previous studies, mean SLR biases for satellites GPS-35 and GPS-36 could be reduced in magnitude from \(-35\) and \(-38\)  mm to \(-12\) and \(-13\)  mm, respectively. Our results show that remaining SLR biases depend on the satellite type and the use of coated or uncoated retro-reflectors. For Earth rotation parameters, the increasing number of GLONASS satellites and tracking stations over the past few years leads to differences between GPS-only and GPS+GLONASS combined solutions which are most pronounced in the pole rate estimates with maximum 0.2 mas/day in magnitude. At the same time, the difference between GLONASS-only and combined solutions decreases. Derived GNSS orbits are used to estimate combined GPS+GLONASS satellite clocks, with first results presented in this paper. Phase observation residuals from a precise point positioning are at the level of 2 mm and particularly reveal poorly modeled yaw maneuver periods.  相似文献   

14.
The impact of accelerometry on CHAMP orbit determination   总被引:6,自引:0,他引:6  
 The contribution of the STAR accelerometer to the CHAMP orbit precision is evaluated and quantified by means of the following results: orbital fit to the satellite laser ranging (SLR) observations, GPS reduced-dynamic vs SLR dynamic orbit comparisons, and comparison of the measured to the modeled non-gravitational accelerations (atmospheric drag in particular). In each of the four test periods in 2001, five CHAMP arcs of 2 days' length were analyzed. The mean RMS-of-fit of the SLR observations of the orbits computed with STAR data or the non-gravitational force model were 11 and 24 cm, respectively. If the accelerometer calibration parameters are not known at least at the few percent level, the SLR orbit fit deteriorates. This was tested by applying a 10% error to the along-track scale factor of the accelerometer, which increased the SLR RMS-of-fit on average to 17 cm. Reference orbits were computed employing the reduced-dynamic technique with GPS tracking data. This technique yields the most accurate orbit positions thanks to the estimation of a large number of empirical accelerations, which compensate for dynamic modeling errors. Comparison of the SLR orbits, computed with STAR data or the non-gravitational force model, to the GPS-based orbits showed that the SLR orbits employing accelerometer observations are twice as accurate. Finally, comparison of measured to modeled accelerations showed that the level of geomagnetic activity is highly correlated with the atmospheric drag model error, and that the largest errors occur around the geomagnetic poles. Received: 7 May 2002 / Accepted: 18 November 2002 Correspondence to: S. Bruinsma Acknowledgments. The TIGCM results were obtained from the CEDAR database. This study was supported by the Centre National d'Etudes Spatiales (CNES). The referees are thanked for their helpful remarks and suggestions.  相似文献   

15.
GNSS processing at CODE: status report   总被引:26,自引:19,他引:7  
Since May 2003, the Center for Orbit Determination in Europe (CODE), one of the analysis centers of the International GNSS Service, has generated GPS and GLONASS products in a rigorous combined multi-system processing scheme, which promises the best possible consistency of the orbits of both systems. The resulting products, in particular the satellite orbits and clocks, are easily accessible by the user community. In the first part of this article, we focus on the generation of the combined global products at CODE, where we put emphasis not only on accuracy, but also on completeness. We study the impact of GLONASS on the CODE products, and the benefit of using them. Last, but not least, we introduce AGNES (Automated GNSS Network for Switzerland), a regional tracking network of small extensions (roughly 400 km East–West, 200 km North–South), which consequently tracks all GNSS satellites and analyzes their measurements using the CODE products.  相似文献   

16.
Time transfer using GPS carrier phase: error propagation and results   总被引:1,自引:3,他引:1  
 A joint time-transfer project between the Astronomical Institute of the University of Berne (AIUB) and the Swiss Federal Office of Metrology and Accreditation (METAS) was initiated to investigate the power of the time transfer using GPS carrier phase observations. Studies carried out in the context of this project are presented. The error propagation for the time-transfer solution using GPS carrier phase observations was investigated. To this purpose a simulation study was performed. Special interest was focussed on errors in the vertical component of the station position, antenna phase-center variations and orbit errors. A constant error in the vertical component introduces a drift in the time-transfer results for long baselines in east–west directions. The simulation study was completed by investigating the profit for time transfer when introducing the integer carrier phase ambiguities from a double-difference solution. This may reduce the drift in the time-transfer results caused by constant vertical error sources. The results from the present time-transfer solution are shown in comparison to results obtained with independent time-transfer techniques. The interpretation of the comparison benefits from the investigations of the error propagation study. Two types of solutions are produced on a regular basis at AIUB: one based on the rapid orbits from CODE, the other on the CODE final orbits. The rapid solution is available the day after the observations and has nearly the same quality as the final solution, which has a latency of about one week. The differences between these two solutions are below the nanosecond level. The differences from independent time-transfer techniques such as TWSTFT (two-way satellite time and frequency transfer) are a few nanoseconds for both products. Received: 15 November 2001 / Accepted: 6 September 2002 Correspondence to:R. Dach  相似文献   

17.
This article describes the processing strategy and the validation results of CODE’s MGEX (COM) orbit and satellite clock solution, including the satellite systems GPS, GLONASS, Galileo, BeiDou, and QZSS. The validation with orbit misclosures and SLR residuals shows that the orbits of the new systems Galileo, BeiDou, and QZSS are affected by modelling deficiencies with impact on the orbit scale (e.g., antenna calibration, Earth albedo, and transmitter antenna thrust). Another weakness is the attitude and solar radiation pressure (SRP) modelling of satellites moving in the orbit normal mode—which is not yet correctly considered in the COM solution. Due to these issues, we consider the current state COM solution as preliminary. We, however, use the long-time series of COM products for identifying the challenges and for the assessment of model-improvements. The latter is demonstrated on the example of the solar radiation pressure (SRP) model, which has been replaced by a more generalized model. The SLR validation shows that the new SRP model significantly improves the orbit determination of Galileo and QZSS satellites at times when the satellite’s attitude is maintained by yaw-steering. The impact of this orbit improvement is also visible in the estimated satellite clocks—demonstrating the potential use of the new generation satellite clocks for orbit validation. Finally, we point out further challenges and open issues affecting multi-GNSS data processing that deserves dedicated studies.  相似文献   

18.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

19.
 The results from a global positioning system (GPS) experiment carried out in Brittany, France, in October 1999, aimed at measuring crustal displacements caused by ocean loading and quantifying their effects on GPS-derived tropospheric delay estimates, are presented. The loading effect in the vertical and horizontal position time series is identified, however with significant disagreement in amplitude compared to ocean loading model predictions. It is shown that these amplitude misfits result from spatial tropospheric heterogeneities not accounted for in the data processing. The effect of ocean loading on GPS-derived zenith total delay (ZTD) estimates is investigated and a scaling factor of 4.4 between ZTD and station height for a 10° elevation cut-off angle is found (i.e. a 4.4-cm station height error would map into a 1-cm ZTD error). Consequently, unmodeled ocean loading effects map into significant errors in ZTD estimates and ocean loading modeling must be properly implemented when estimating ZTD parameters from GPS data for meteorological applications. Ocean loading effects must be known with an accuracy of better than 3 cm in order to meet the accuracy requirements of meteorological and climatological applications of GPS-derived precipitable water vapor. Received: 16 July 2001 / Accepted: 25 April 2002 Acknowledgments. The authors are grateful to H.G. Scherneck for fruitful discussions and for his help with the ocean loading calculations. They thank H. Vedel for making the HIRLAM data available; D. Jerett for helpful discussions; and the city of Rostrenen, the Laboratoire d'Océanographie of Concarneau, and the Institut de Protection et de S?reté Nucléaire (BERSSIN) for their support during the GPS measurement campaign. Reviews by C.K. Shum and two anonymous referees significantly improved this paper. This work was carried out in the framework of the MAGIC project (http://www.acri.fr/magic), funded by the European Commission, Environment and Climate Program (EC Contract ENV4-CT98–0745). Correspondence to: E. Calais, Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, IN 47907-1397, USA. e-mail: ecalais@purdue.edu Tel. : +1-765-496-2915; Fax:+1-765-496-1210  相似文献   

20.
Highly precise satellite-derived coordinates depend on accurate orbit predictions, which cannot be achieved with purely empirical models. Global positioning system (GPS) satellites undergo several periodic perturbing forces that have to be modeled and understood. In this scenario, small non-gravitational forces can no longer be neglected when the purpose of the orbital analysis is to obtain accurate results (Vilhena de Moraes 1994). Together with solar radiation pressure, thermal re-emission effects due to solar heating and Earth albedo are the two most important non-gravitational effects. While solar radiation pressure is widely understood, our knowledge about thermal re-emission effects on GPS satellites is in its infancy. Few models have been proposed in recent years and despite the interest of the scientific community, there is a lack of detailed results concerning the magnitude and the behavior of such forces. The aim of this work is to provide a thermal re-emission force model for GPS satellites, simple enough to minimize the problem of modeling a satellite of complex shape with several components on its surface, but accurate enough to provide an estimate of the magnitude and the behavior of these forces, as well as to provide some input to the present knowledge about photon thrust on GPS satellites. Some results of this work point to the fact that thermal re-emission effects are good candidates to partially explain the Y-bias for GPS satellites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号