首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
45年来塔里木河流域气候变化对径流量的影响研究   总被引:5,自引:1,他引:4       下载免费PDF全文
陶辉  毛炜峄  白云岗  姜彤 《高原气象》2009,28(4):854-860
根据塔里木河流域40个气象站1961-2005年的降水、 气温资料及源区内7个水文站1957-2005年年径流量资料, 利用Mann-Kendall检验, 分析了近45年来塔里木河流域的气候变化的特征, 探讨了气候变化对塔里木河流域水资源的影响。结果表明: 整个流域除个别站点外, 塔里木河流域气温整体呈显著上升趋势, 且以秋季最显著, 降水增加以夏季最明显。特别是中天山南坡, 而流域西南部、 和田地区和巴州南部的降水量几乎没有增加。根据Mann-Kendall检验结果, 除阿克苏河年径流量呈显著增加趋势外, 其它3条源流(和田河、 叶尔羌河、 开都河)径流量近45年变化趋势均不显著。  相似文献   

2.
利用Mann-Kendall突变检验法对延河流域1952—2008年降水量与甘谷驿站径流量进行分析,并以1952—1994年为基准期,定量分析1995—2008年降水变化和人类活动对径流的影响。结果表明:57年来延河流域正常降水发生概率达80.7%,径流年型以偏枯和枯水年为主;年降水量和径流量均呈减少趋势,突变分别发生在1995和2005年;与1952—1994年相比,1995—2008年的降水量和径流量较基准期分别减少11.1%和27.3%;降水变化和人类活动对径流减少的贡献率分别为46.2%和53.8%。  相似文献   

3.
In this paper, we explored the trends of the atmospheric moisture budget, precipitation, and streamflow in summer during 1961 to 2005 and possible correlations between them by using the linear regression method in the Yangtze River basin, China. The results indicate that: (1) increasing tendencies can be detected in the atmospheric moisture budget, precipitation and streamflow in the Yangtze River basin; however, the significant increasing trends occur only in the atmospheric moisture budget and precipitation in the middle and lower Yangtze River basin; (2) both the ratio of summer moisture budget to annual moisture budget and the ratio of summer precipitation to annual precipitation exhibit a significant increasing trend in the Yangtze River basin. The ratio of summer streamflow to annual streamflow is in a significant increasing trend in Hankou station. Significant increasing summer precipitation can be taken as the major controlling factor responsible for the higher probability of flood hazard occurrences in the Yangtze River basin. The consecutively increasing summer precipitation is largely due to the consistently increasing moisture budget; (3) the zonal geopotential height anomaly between 1991 and 2005 and 1961 and 1990 is higher from the south to the north, which to a large degree, limits the northward propagation of the summer monsoon to north China. As a result, the summer moisture budget increases in the middle and lower Yangtze River basin, which leads to more summer precipitation. This paper sheds light on the changing properties of precipitation and streamflow and possible underlying causes, which will be greatly helpful for better understanding of the changes of precipitation and streamflow in the Yangtze River basin.  相似文献   

4.
Due to the substantial decrease of water resources as well as the increase in demand and climate change phenomenon, analyzing the trend of hydrological parameters is of paramount importance. In the present study, investigations were carried out to identify the trends in streamflow at 20 hydrometric stations and 11 rainfall gauging stations located in Karkheh River Basin (KRB), Iran, in monthly, seasonal, and annual time scales during the last 38 years from 1974 to 2011. This study has been conducted using two versions of Mann–Kendall tests, including (i) Mann–Kendall test by considering all the significant autocorrelation structure (MK3) and (ii) Mann–Kendall test by considering LTP and Hurst coefficient (MK4). The results indicate that the KRB streamflow trend (using both test versions) has decreased in all three time scales. There is a significant decreasing trend in 78 and 73 % of the monthly cases using the MK3 and MK4 tests, respectively, while these percentages changed to 80 and 70 % on seasonal and annual time scales, respectively. Investigation of the trend line slope using Theil–Sen’s estimator showed a negative trend in all three time scales. The use of MK4 test instead of the MK3 test has caused a decrease in the significance level of Mann–Kendall Z-statistic values. The results of the precipitation trends indicate both increasing and decreasing trends. Also, the correlation between the area average streamflow and precipitation shows a strong correlation in annual time scale in the KRB.  相似文献   

5.
Climate variability, coupled with increasing demand is raising concerns about the sustainability of water resources in the western United States. Tree-ring reconstructions of stream flow that extend the observational record by several centuries provide critical information on the short-term variability and multi-decadal trends in water resources. In this study, precipitation sensitive Douglas-fir (Pseudotsuga menzeisii) tree ringrecords are used to reconstruct annual flow of the Yellowstone River back to A.D. 1706. Linkages between precipitation in the Greater Yellowstone Region and climate variability in the Pacific basin were incorporated into our model by including indices Pacific Ocean interannual and decadal-scale climatic variability, namely the Pacific Decadal Oscillation and the Southern Oscillation. The reconstruction indicates that 20th century streamflow is not representative of flow during the previous two centuries. With the exception of the 1930s, streamflow during the 20th century exceeded average flows during the previous 200 years. The drought of the 1930s resulted in the lowest flows during the last three centuries, however, this probably does not represent a worst-case scenario for the Yellowstone as other climate reconstructions indicate more extreme droughts prior to the 18th century.  相似文献   

6.
曹丽娟  张冬峰  张勇 《大气科学》2010,34(4):726-736
使用区域气候模式(RegCM3)和大尺度汇流模型(LRM), 研究土地利用/植被覆盖变化对长江流域气候及水文过程的影响。RegCM3嵌套于欧洲数值预报中心 (ECMWF) 再分析资料ERA40, 分别进行了中国区域在实际植被和理想植被分布情况下两个各15年 (1987~2001年) 时间长度的积分试验。随后, RegCM3 两个试验的输出径流结果分别用来驱动LRM, 研究土地利用/植被覆盖变化对长江流域河川径流的影响。研究结果指出, 中国当代土地利用变化对长江流域降水、蒸散发、径流深及河川径流等水文气候要素的改变较大, 对气温的改变并不明显。土地利用变化引起长江干流河川径流量在夏季(6~8月)有所增加, 并且越向下游增加幅度越大, 其中大通站径流量增加接近15%。总体而言, 土地利用改变加剧了长江流域夏季水循环过程, 使得夏季长江中下游地区降水增多, 径流增大。  相似文献   

7.
Robert Coats 《Climatic change》2010,102(3-4):435-466
The purpose of this study was to quantify the decadal-scale time trends in air temperature, precipitation phase and intensity, spring snowmelt timing, and lake temperature in the Tahoe basin, and to relate the trends to large-scale regional climatic trends in the western USA. Temperature data for six long-term weather stations in the Tahoe region were analyzed for trends in annual and monthly means of maximum and minimum daily temperature. Precipitation data at Tahoe City were analyzed for trends in phase (rain versus snow), decadal standard deviation, and intensity of rainfall. Daily streamflow data for nine gaging stations in and around the Tahoe basin were examined for trends in snowmelt timing, by two methods, and an existing record for the temperature of Lake Tahoe was updated. The results for the Tahoe basin, which contrast somewhat with the surrounding region, indicate strong upward trends in air temperature, a shift from snow to rain, a shift in snowmelt timing to earlier dates, increased rainfall intensity, increased interannual variability, and continued increase in the temperature of Lake Tahoe. Two hypotheses are suggested that may explain why the basin could be warming faster than surrounding regions. Continued warming in the Tahoe basin has important implications for efforts to manage biodiversity and maintain clarity of the lake.  相似文献   

8.
In the absence of a sufficiently dense network of climate stations covering all topographic regions of the Indus River basin and delivering high quality data over the last 30 years or more, daily precipitation data were obtained from the National Centers for Environmental Prediction-Department of the Enviornment (NCEP-DOE) Reanalysis 2 dataset for the period 1979 to 2011. The daily precipitation data were transformed into time series of frequency of extreme precipitation events of 1-day and 10-day durations defined in terms of 90th and 99th percentile threshold exceedances. The non-parametric Mann-Kendall trend test was applied to determine whether statistically significant changes in precipitation extremes occurred over time, in due consideration of autocorrelation in the data.

Extreme precipitation showed a high spatial variability, with the highest daily and 10-day precipitation totals, and thus highest 90th and 99th percentiles, in the southeastern lowlands at the foot of the Himalayas and the lowest in the Karakorum. Significantly decreasing trends in extreme precipitation were observed in the western part of the Indus River basin; significantly increasing trends were mainly detected in the very high mountainous regions in the east (Transhimalaya and Himalayas) and in the north (Hindu Kush and Karakorum) of the Indus basin. High precipitation rates are not common in the arid climate of these high mountainous regions. Future flood management plans need to consider the increasing trends in extreme precipitation events in these areas.  相似文献   


9.
The Yiluo River is the largest tributary of the middle and lower Yellow River below the Sanmenxia Dam. Hydro-climatic variables have changed in the Yiluo River during the last half century. In this study, the trends in the annual precipitation and streamflow were analyzed in the Yiluo River during 1960–2006. The results indicated that both the annual precipitation and streamflow decreased significantly (P?<?0.05) from 1960 to 2006. Pettitt’s test shows that there was a change point for annual streamflow series around the year 1986 (P?<?0.05), while there was no change point identified for the annual precipitation series from 1960 to 2006. Annual streamflow decreased more significantly than annual precipitation since 1986. The relationship between the annual precipitation and streamflow presented a non-stationary state since 1986. This non-stationary relationship was mainly influenced by human activities. The average annual amount of water diversion from the Yiluo River increased significantly since the mid-1980s, accounting for 31.3 % of the total streamflow decrease from 1986 to 2006. In addition, land use/cover change (LUCC) contributed to 27.1–29.8 % of the decrease in streamflow. Human activities, including water diversion and LUCC, together contributed to 58.4–61.1 % of the decrease in streamflow and led to the non-stationary relationship between the annual precipitation and streamflow from 1986 to 2006. This study detected the changes in the precipitation–streamflow relationship and investigated the possible causes in the Yiluo River, which will be helpful for the understanding of the changes in streamflow in the Yellow River Basin.  相似文献   

10.
In this paper, change-points in time series of annual extremes in temperature and precipitation in the Zhujiang River Basin are analyzed with the CUSUM test. The data cover the period 1961–2007 for 192 meteorological stations. Annual indicators are analyzed: mean temperature, maximum temperature, warm days, total precipitation, 5-day maximum precipitation, and dry days. Significant change-points (1986/87, 1997/98, 1968/69, and 2003/04) are detected in the time series of most of the indicators. The change-point in 1986/87 is investigated in more detail. Most stations with this change-point in temperature indicators are located in the eastern and coastal areas of the basin. Stations with this change-point in dry days are located in the western area. The means and trends of the temperature indicators increase in the entire basin after 1986/87. The highest magnitudes can be found at the coast and delta. Decreasing (increasing) tendencies in total and 5-day maximum precipitation (dry days) are mostly observed in the western and central regions. The detected change-points can be explained by changes in the indices of the Western Pacific subtropical high and the East Asian summer monsoon as well as by change-points in wind directions. In years when the indices simultaneously increase and decrease (indices taking reverse directions to negative and positive) higher annual temperatures and lower annual precipitation occur in the Zhujiang River Basin. The high station density and data quality are very useful for spatially assessing change-points of climatic extreme events. The relation of the change points to large-scale oscillation can provide valuable data for planning adaptation measures against climate risks, e.g. for flood control, disaster preparedness, and water resource management.  相似文献   

11.
塔里木河流域下游的气候变化与生态环境   总被引:31,自引:0,他引:31  
在了解塔里木河水量变化事实的基础上,使用塔里木河干流沿线11个气象站37年(1961~1997)的气候观测资料,揭示了塔里木河流域的气候变化特征,着重分析了沙尘暴、浮尘和大风等灾害的时空分布特征,认为近30年尤其是90年代以来塔里木河流域上中游气候条件总的来说是向好的方向变化,其自然降水的增加十分有利于塔里木流域内各河流水量的稳定增加和地表面植被的生物,但塔里木河流域下游气候变化与上中游并不完全一  相似文献   

12.
基于1933—2016年哈萨克斯坦北部伊希姆河彼得罗巴甫洛斯克水文站流量观测数据以及流域内格点气象数据,利用线性趋势法、Mann-Kendall检验、相关普查法和累积量斜率变化率比较法等方法,探讨了气候变化背景下伊希姆河流量变化及其主要驱动因子。结果显示:(1)伊希姆河流域近84年气温和降水呈上升趋势,且在20世纪70年代后增加趋势更加明显。(2)伊希姆河流量年内分布不均,年际流量变化总体呈下降趋势,但趋势不明显。(3)伊希姆河流量受流域内降水和气温共同影响,其中降水与流量相关性最大,且降水的变化对流量补给具有滞后性,6—9月气温对同时期流量影响较大。(4)T1时段(1969—1996年)和T2时段(1997—2016年)与T时段(1933—1968年)相比,气候变化对流量减少的贡献率分别为16.09%和44.83%,而人类活动对流量减少的贡献率为83.91%和55.17%。流域内水资源的开发及利用、人口数量和土地利用方式的变化等人类活动因素在很大程度上影响了伊希姆河流量。  相似文献   

13.
水资源是制约中国西北干旱区社会经济可持续发展和生态安全的关键因素.以发源于帕米尔高原东部的喀什噶尔河和叶尔羌河流域为研究区,基于该区6个气象站月平均气温和降水量观测资料,以及5条代表性河流的出山口水文站1950年代晚期以来的月径流量观测数据,分析了该区域气候和水文年际变化特征,以及气候变化背景下径流量的响应特征.结果发...  相似文献   

14.
相空间中划分大尺度异常雨型的进一步研究   总被引:4,自引:1,他引:3  
使用1962~2001年的逐日台站降水资料,考察中国夏季大尺度低频降水的时空特征。对于20d以上的低频尺度降水异常,在前8个主要EOF模态支撑的相空间中,采用聚类分析方法划分了6种大尺度异常雨型:东北型、黄河型、秦岭淮河型、长江江南型、华南型和少雨型。分析表明,这些雨型的物理意义明确,具有较好的持续性,优于使用2维概率密度函数的划分结果,从而说明相空间中的聚类分型是整体性和区域性兼顾的划分方式,同时也证实了多维相空间的不均匀性。统计结果显示,新雨型在季节内交替出现,能够反映出大尺度异常降水的低频演变特征,并且具有不同于季风雨带变化的特点。通过分析新雨型在历史上的分布情况,并与以往分型相比较,进一步反映出新雨型划分的客观性和合理性。  相似文献   

15.
In the snowmelt dominated hydrology of arid western US landscapes, late summer low streamflow is the most vulnerable period for aquatic ecosystem habitats and trout populations. This study analyzes mean August discharge at 153 streams throughout the Central Rocky Mountains of North America (CRMs) for changes in discharge from 1950–2008. The purpose of this study was to determine if: (1) Mean August stream discharge values have decreased over the last half-century; (2) Low discharge values are occurring more frequently; (3) Climatic variables are influencing August discharge trends. Here we use a strict selection process to characterize gauging stations based on amount of anthropogenic impact in order to identify heavily impacted rivers and understand the relationship between climatic variables and discharge trends. Using historic United States Geologic Survey discharge data, we analyzed data for trends of 40–59 years. Combining of these records along with aerial photos and water rights records we selected gauging stations based on the length and continuity of discharge records and categorized each based on the amount of diversion. Variables that could potentially influence discharge such as change in vegetation and Pacific Decadal Oscillation (PDO) were examined, but we found that that both did not significantly influence August discharge patterns. Our analyses indicate that non-regulated watersheds are experiencing substantial declines in stream discharge and we have found that 89% of all non-regulated stations exhibit a declining slope. Additionally our results here indicate a significant (α?≤?0.10) decline in discharge from 1951–2008 for the CRMs. Correlations results at our pristine sites show a negative relationship between air temperatures and discharge and these results coupled with increasing air temperature trends pose serious concern for aquatic ecosystems in CRMs.  相似文献   

16.
河南省棉花气候适宜度变化趋势分析   总被引:24,自引:1,他引:24       下载免费PDF全文
结合前人的研究确立河南省棉花气候适宜度模型, 对所选46个站点1961—2000年的适宜度进行计算, 分析1961—2000年全省及各站点适宜度的变化趋势, 表明1981—2000年适宜度变化趋势显著。对1981—2000年各站点适宜度的变化趋势根据变化的方向和强度进行分类, 将河南省划分为适宜度强增长型、弱增长型、减弱型。分析结果表明:河南省棉花气候适宜度总体呈下降的变化趋势, 各地的变化趋势依据热量带和地形地貌的不同有明显的地域差异。结合各地1981—2000年的气候资料对各类型的气候适宜度变化原因进行了初步分析。  相似文献   

17.
利用最新的CFSR(Climate Forecast System Reanalysis)再分析及观测的降水和地表气温资料驱动陆面水文耦合模式CLHMS(Coupled Land surface and Hydrologic Model System),对淮河流域1980~2003年共24年的水文水循环过程进行了模拟,系统评估了CLHMS对淮河流域水文过程的模拟能力及其不确定性。分析结果表明,CLHMS模式对淮河流域水文过程具有良好的模拟能力,模式尤其对湿润年份流域的水量平衡以及河道流量的季节、年际变化具有很强的模拟能力,而对降水偏少的干旱年份,模式模拟的河道流量通常会高于观测实况,与实况间存在着一定的偏差,而这也是导致CLHMS对流域水文过程模拟能力存在显著年代际差异的主要原因。基于三组不同降水强迫的流域水文过程模拟结果比较表明,降水驱动资料准确与否是陆面水文模拟最主要的不确定性来源之一,正是由于CFSR再分析降水与观测降水之间存在较大的差异,从而导致CFSR降水驱动下模式模拟的淮河流域河道流量与观测存在较大的偏差,其模拟性能相对较差。进一步分析还表明,可以保持较强降水日变化的时间解集方法,也是保证合理模拟流域水文过程的重要因素。  相似文献   

18.
近50年渭河流域秋雨的特征与成因分析   总被引:4,自引:0,他引:4  
利用渭河流域64个测站1960-2009年秋季(9~10月)的月降水量和≥0.1mm逐日降水量资料以及NCEP/NCAR再分析资料,采用线性倾向估计、EOF、Morlet小波分析、SVD及相关分析方法系统地分析了渭河流域秋雨的变化趋势和分布特征,着重研究了与此相关的欧亚地区秋季大气环流的年代际变化以及渭河流域秋雨与前期海温、青藏高原积雪和大气环流特征量等之间的关系。结果表明,近50年渭河流域秋雨呈线性减少趋势,其中中雨和暴雨减少趋势明显,突变发生在1985年前后,1960-1985年为偏多时段,1986-2000年为偏少时段,2001年以来又趋向偏多。渭河流域秋雨从南到北呈递减分布,该流域内各站秋雨主要表现为一致的减少趋势,其上游的漳县、甘谷和北部的合水呈增加趋势。欧亚大陆秋季大气环流明显的年代际变化造成了渭河流域秋雨多寡模态的变化。欧洲西部高压脊、西风带低槽和西太平洋副热带高压是造成渭河流域降水多寡的主要影响系统。根据渭河流域秋雨与大气内外部因子的关系,初步建立了渭河流域秋雨预测的概念模型。  相似文献   

19.
Results of statistical analysis of changes in the precipitation regime in the steppe and foothill climatic zones of the Central Northern Caucasus from the data of five weather stations for 1955–2004 on precipitation amount, its diurnal maximum, number of days with precipitation amount of 5 mm or more in different seasons of the year are considered.  相似文献   

20.
Streamflows have a direct dependence on precipitation and these are directly linked to the climate. Then, in this paper the temporal climatic variability in the Río de la Plata Basin is analysed through the changes in the river's discharges. These are the reflection of the climatic inputs areally integrated, and in consequence, contain more information on climate variability than that provided by the scarce punctual records of precipitation and temperature. The time series of streamflows correspond to monthly and annual means in stations selected in the basin for the period 1931–1992. However, in the present paper, the period 1901–1992 was considered in all cases whenever possible. The following changes and tendencies in the flow series were detected: 1. An important change of tendency between 1970 and 1972, and another not so significant before that date were detected in 1917–1918 and 1943–1944. 2. The jumps in the means in several sub-periods were detected using different methods. They showed jumps mainly in the period 1970–1972 in the annual streamflows series. The jumps in the annual streamflow series consist of an abrupt change in climatic variables affecting temporarily the averages of such variables during a certain period of time (years). The results are consistent with the conclusions obtained by other authors for the same region, both in precipitation and in the general circulation of the atmosphere. Keeping in mind this analysis of the series of streamflows, indicators of normal variability of tendencies relative to natural regional causes were detected, although the local causes were not anthropogenically analysed, and so no other manifestations of randomless in the zone of the Basin under study because of the lacking of data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号