首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cities have a negative impact on the quality of shallow groundwater. Many of Lithuania's urban residents drink water from dug wells. Moreover, polluted shallow groundwater contaminates deeper aquifers of fresh drinking water. Therefore, this situation should be controlled and managed, as far as possible. In order to evaluate the quality of shallow groundwater in an urban area and to create an optimal monitoring system, an original methodology for groundwater mapping has been proposed. It resembles the GIS (geographical information system) technologies. The set of maps, laid one over another, consists of the following: (1) urbanization map, (2) geological-hydrogeological map, (3) groundwater chemistry map, (4) resulting groundwater chemistry factorial analysis map, and (5) pollution and pollutant transport map. The data obtained from studies on dug and geotechnical wells have been used for compilation of the maps. The system for shallow groundwater monitoring in the city with an area of 70 sq km and a population of 140,000 is proposed to consist of about 30 monitoring wells and several dug wells.  相似文献   

2.
冀中山前农业区地下水位强降弱升特征与机制   总被引:1,自引:0,他引:1       下载免费PDF全文
针对冀中山前平原农业区浅层地下水位不断下降问题,采用时间序列异变特征和趋势分析方法,基于小时级、自记监测的地下水位动态资料,通过农业区灌溉期、非灌溉期地下水位变化程度的差异特征及机制研究,结果表明:该平原农业区浅层地下水位变化在主灌溉期呈"cm/d"级(大于1.0 cm/d)下降、非灌溉期呈"mm/d"级(小于1.0 cm/d)上升的特征,这些特征与降水量、年内降水分配状况及其影响的农业开采强度密切相关。前期降水偏枯,灌溉期地下水位下降过程线和年内水位上升过程线的大部分位于当地多年地下水位变化趋势线之下;前期降水偏丰,位于趋势线之上。农业集中开采是地下水位"cm/d"级下降特征的动因,厚大包气带是地下水位"mm/d"级上升特征形成的重要条件。  相似文献   

3.
Increasing water demands,especially in arid and semi-arid regions,continuously exacerbate groundwater as the only reliable water resources in these regions.Samalqan watershed,Iran,is a groundwater-based irrigation watershed,so that increased aquifer extraction,has caused serious groundwater depletion.So that the catchment consists of surface water,the management of these resources is essential in order to increase the groundwater recharge.Due to the existence of rivers,the low thickness of the alluvial sediments,groundwater level fluctuations and high uncertainty in the calculation of hydrodynamic coefficients in the watershed,the SWAT and MODFLOW models were used to assess the impact of irrigation return flow on groundwater recharge and the hydrological components of the basin.For this purpose,the irrigation operation tool in the SWAT model was utilized to determine the fixed amounts and time of irrigation for each HRU(Hydrological Response Unit)on the specified day.Since the study area has pressing challenges related to water deficit and sparsely gauged,therefore,this investigation looks actual for regional scale analysis.Model evaluation criteria,RMSE and NRMSE for the simulated groundwater level were 1.8 m and 1.1%respectively.Also,the simulation of surface water flow at the basin outlet,provided satisfactory prediction(R2=0.92,NSE=0.85).Results showed that,the irrigation has affected the surface and groundwater interactions in the watershed,where agriculture heavily depends on irrigation.Annually 11.64 Mm3 water entered to the aquifer by surface recharge(precipitation,irrigation),transmission loss from river and recharge wells 5.8 Mm3 and ground water boundary flow(annually 20.5 Mm3).Water output in the watershed included ground water extraction and groundwater return flow(annually 46.4 Mm3)and ground water boundary flow(annually 0.68 Mm3).Overally,the groundwater storage has decreased by 9.14 Mm3 annually in Samalqan aquifer.This method can be applied to simulate the effects of surface water fluxes to groundwater recharge and river-aquifer interaction for areas with stressed aquifers where interaction between surface and groundwater cannot be easily assessed.  相似文献   

4.
Temporal changes in the quantity and chemical status of groundwater resources must be accurately quantified to aid sustainable management of aquifers. Monitoring data show that the groundwater level in Shahrood alluvial aquifer, northeastern Iran, continuously declined from 1993 to 2009, falling 11.4 m in 16 years. This constitutes a loss of 216 million m3 from the aquifer’s stored groundwater reserve. Overexploitation and reduction in rainfall intensified the declining trend. In contrast, the reduced abstraction rate, the result of reduced borehole productivity (related to the reduction in saturated-zone thickness over time), slowed down the declining trend. Groundwater salinity varied substantially showing a minor rising trend. For the same 16-year period, increases were recorded in the order of 24% for electrical conductivity, 12.4% for major ions, and 9.9% for pH. This research shows that the groundwater-level declining trend was not interrupted by fluctuation in rainfall and it does not necessarily lead to water-quality deterioration. Water-level drop is greater near the aquifer’s recharging boundary, while greater rates of salinity rise occur around the end of groundwater flow lines. Also, fresher groundwater experiences a greater rate of salinity increase. These findings are of significance for predicting the groundwater level and salinity of exhausted aquifers.  相似文献   

5.
The management of groundwater poses challenges in basaltic terrain as its availability is not uniform due to the absence of primary porosity. Indiscriminate excessive withdrawal from shallow as well as deep aquifers for meeting increased demand can be higher than natural recharge, causing imbalance in demand and supply and leading to a scarcity condition. An innovative artificial recharge system has been conceived and implemented to augment the groundwater sources at the villages of Saoli and Sastabad in Wardha district of Maharashtra, India. The scheme involves resectioning of a stream bed to achieve a reverse gradient, building a subsurface dam to arrest subsurface flow, and installation of recharge shafts to recharge the deeper aquifers. The paper focuses on analysis of hydrogeological parameters like porosity, specific yield and transmissivity, and on temporal groundwater status. Results indicate that after the construction of the artificial recharge system, a rise of 0.8–2.8 m was recorded in the pre- and post-monsoon groundwater levels in 12 dug wells in the study area; an increase in the yield was also noticed which solved the drinking water and irrigation problems. Spatial analysis was performed using a geographic information system to demarcate the area of influence of the recharge system due to increase in yields of the wells. The study demonstrates efficacy, technical viability and applicability of an innovative artificial recharge system constructed in an area of basaltic terrain prone to water scarcity.  相似文献   

6.
The rapid expansion of agriculture, industries and urbanization has triggered unplanned groundwater development leading to severe stress on groundwater resources in crystalline rocks of India. With depleting resources from shallow aquifers, end users have developed resources from deeper aquifers, which have proved to be counterproductive economically and ecologically. An integrated hydrogeological study has been undertaken in the semi-arid Madharam watershed (95 km2) in Telangana State, which is underlain by granites. The results reveal two aquifer systems: a weathered zone (maximum 30 m depth) and a fractured zone (30–85 m depth). The weathered zone is unsaturated to its maximum extent, forcing users to tap groundwater from deeper aquifers. Higher orders of transmissivity, specific yield and infiltration rates are observed in the recharge zone, while moderate orders are observed in an intermediate zone, and lower orders in the discharge zone. This is due to the large weathering-zone thickness and a higher sand content in the recharge zone than in the discharge zone, where the weathered residuum contains more clay. The NO3 ? concentration is high in shallow irrigation wells, and F? is high in deeper wells. Positive correlation is observed between F? and depth in the recharge zone and its proximity. Nearly 50 % of groundwater samples are unfit for human consumption and the majority of irrigation-well samples are classed as medium to high risk for plant growth. Both supply-side and demand-side measures are recommended for sustainable development and management of this groundwater resource. The findings can be up-scaled to other similar environments.  相似文献   

7.
The semi-arid Sahel regions of West Africa rely heavily on groundwater from shallow to moderately deep(100 m b.g.l.)crystalline bedrock aquifers for drinking water production.Groundwater quality may be affected by high geogenic arsenic(As)concentrations(10μg/L)stemming from the oxidation of sulphide minerals(pyrite,arsenopyrite)in mineralised zones.These aquifers are still little investigated,especially concerning groundwater residence times and the influence of the annual monsoon season on groundwater chemistry.To gain insights on the temporal aspects of As contamination,we have used isotope tracers(noble gases,~3H,stable water isotopes(~2 H,~(18)O))and performed hydrochemical analyses on groundwater abstracted from tube wells and dug wells in a small study area in southwestern Burkina Faso.Results revealed a great variability in groundwater properties(e.g.redox conditions,As concentrations,water level,residence time)over spatial scales of only a few hundred metres,characteristic of the highly heterogeneous fractured underground.Elevated As levels are found in oxic groundwater of circum-neutral pH and show little relation with any of the measured parameters.Arsenic concentrations are relatively stable over the course of the year,with little effect seen by the monsoon.Groundwater residence time does not seem to have an influence on As concentrations,as elevated As can be found both in groundwater with short(50 a)and long(10~3 a)residence times as indicated by ~3He/~4He ratios spanning three orders of magnitude.These results support the hypothesis that the proximity to mineralised zones is the most crucial factor controlling As concentrations in the observed redox/pH conditions.The existence of very old water portions with residence times10~3 years already at depths of50 m b.g.l.is a new finding for the shallow fractured bedrock aquifers of Burkina Faso,suggesting that overexploitation of these relatively low-yielding aquifers may be an issue in the future.  相似文献   

8.
The lower Jia Bharali catchment and adjoining areas in central part of North Brahmaputra Plain (NBP) is characterized by more than 800m thick Older and Younger Alluvium deposited by the west flowing Brahmaputra river and the south flowing trans Himalayan rivers. Unconfined, shallow alluvial aquifers of the area with a general southward flow are largely tapped for domestic use through numerous dug well attached with almost every household. Monitoring of 180 dug wells for two hydrological years show strong seasonal fluctuation of the groundwater table linked to the summer monsoon that brings more than 1500mm precipitation in the area between June-September. This study has presents the first ever systematic database on toxic trace elements viz., As, Cr, Fe, Mn, Ni, Pb and Zn from the shallow aquifers in north Brahmaputra plain based on water samples from 50 monitoring wells collected in both dry and wet seasons. The data was analysed with respect to WHO standards for drinking water and significantly, 2 % of the measurements show As in excess of the WHO limit while 60% of the samples in the wet season and as much as 90 % of the same in dry season have Cr content more than the WHO permissible limit. Pb concentration is above permissible limit of 0.05 mg/L in most of the dry season samples although 88 % of the rainy season samples show Pb concentration exceeding this limit. 34 % of the samples in the wet seasons and 86 % of the samples in the dry seasons have Mn above the permissible limit of 0.1 mg/L while in case of Ni, 56 % of the aquifers in the wet season and 72 % of the aquifers in the dry season show Ni content above the permissible limit of 0.02 mg/L. Zn contents of the aquifers are however very low throughout the year.  相似文献   

9.
The study on water level conditions of fractured aquifer system in northeastern part of Anantapur district is of immense importance as the area is covered by varied geological formations and has different irrigation patterns. The monthly groundwater level data of 154 observation wells for five year period (2001–06) is analyzed to decipher the behavior of water levels in different seasons and geo-environments. The hydrographs of the average water level data of each Mandal (group of villages) indicate steady declining trend ranging from 0.50 to 2.91m/yr. Yellanuru Mandal has both the shallowest and the deepest water levels among eight Mandals, highly undulating terrain could be one of the reasons for this contrasting condition. The pre-monsoon water levels show decline of 8.22 m in one year from May 2002 to 2003. A negative seasonal fluctuation of ?1.49m has occurred in the year 2002 during which the area received 32% less than normal rainfall. The mean water levels are deeper by 42% in areas covered by sedimentary formations than those of granite terrain. Raise in water levels is significant where monthly rainfall is more than 200 mm. Due to erratic rainfall in space and time, deeper water levels are noticed even in post-monsoon period and shallow in February month at some locations. The water levels in command areas are deep and exhibit falling trend as the area forms the tail end part of the Tunga Bhadra High Level Canal. The deeper water level conditions and its declining feature is directly related to groundwater development in the form of increased agriculture activity, reduced area under rain-fed crops, high horticulture development. Arid climatic conditions, low precipitation and continuous exploitation of groundwater resources could be other factors contributing for steady decline in water levels in the area. The wide variations in groundwater levels could be due to uneven topography, heterogeneous and anisotropic conditions of granites and poor porosity — permeability of shales, lack of vegetation, and increased groundwater extraction.  相似文献   

10.
Groundwater accounts for about half of the water use for irrigation in India.The fluctuation pattern of the groundwater level is examined by observing rainfall replenishment and monitoring wells.The southern part of Rajasthan has experienced abrupt changes in rainfall and has been highly dependent on groundwater over decades.This study presents the impact of over-dependence on groundwater usage for irrigation and other purposes,spatially and temporally.Hence,the objective of this study is to examine the groundwater level trend by using statistical analysis and geospatial technique.Rainfall factor was also studied in groundwater level fluctuation during 2009-2019.To analyze the influence of each well during recharge or withdrawal of groundwater,thiessien polygonswere generated from them.In the Jakham River basin,75 wells have been identified for water level trend study using the Mann-Kendall statistical test.The statistics of trend analysis show that 15%wells are experiencing water level decline in pre-monsoon,while very low percentage of wells have such trend during post-monsoon season.The average rate of water level decline is 0.245 m/a in pre-monsoon and 0.05 m/a in post-monsoon.The aquifer recharge potential is also decreasing by year.it is expected that such type of studies will help the policy makers to adopt advanced management practices to ensure sustainable groundwater resource management.  相似文献   

11.
Data on spatiotemporal variations in groundwater levels are crucial for understanding arsenic (As) behavior and dynamics in groundwater systems. Little is known about the influences of groundwater extraction on the transport and mobilization of As in the Hetao Basin, Inner Mongolia (China), so groundwater levels were recorded in five monitoring wells from 2011 to 2016 and in 57 irrigation wells and two multilevel wells in 2016. Results showed that groundwater level in the groundwater irrigation area had two troughs each year, induced by extensive groundwater extraction, while groundwater levels in the river-diverted (Yellow River) water irrigation area had two peaks each year, resulting from surface-water irrigation. From 2011 to 2016, groundwater levels in the groundwater irrigation area presented a decreasing trend due to the overextraction. Groundwater samples were taken for geochemical analysis each year in July from 2011 to 2016. Increasing trends were observed in groundwater total dissolved solids (TDS) and As. Owing to the reverse groundwater flow direction, the Shahai Lake acts as a new groundwater recharge source. Lake water had flushed the near-surface sediments, which contain abundant soluble components, and increased groundwater salinity. In addition, groundwater extraction induced strong downward hydraulic gradients, which led to leakage recharge from shallow high-TDS groundwater to the deep semiconfined aquifer. The most plausible explanation for similar variations among As, Fe(II) and total organic carbon (TOC) concentrations is the expected dissimilatory reduction of Fe(III) oxyhydroxides.  相似文献   

12.
For the delineation of water-bearing fractures in hard rock areas, a new hydro-chemical technique has been developed which is based on electrical conductivity (EC) logs. The EC logs were carried out in experimental shallow bore wells (≈50 m) in three different parts of India. A sharp variation in EC was observed near water-bearing fractures in hard rock areas. To access applications of this technique, different locations in India were selected and experimental bore wells (≈50 m) were drilled. These were:
(1)  Maheswaram (30 km South of Hyderabad): nine shallow bore wells in a watershed of 60 km2 in granitic aquifers,
(2)  Wailpally (60 km East of Hyderabad): four shallow bore wells in a watershed of 50 km2 in granitic terrain.
(3)  Sadras (60 km SSW of Chennai): four shallow bore wells in a watershed 12 km2 in a charnokite aquifers.
Observations on EC logs were made at short intervals of 1.0 m from the water table (narrow spacing wherever required) until reaching the bottom of the wells. EC showed remarkable changes in value, which was attributed to the presence of water-bearing fractures in the hard rock areas. The results of this study are in good agreement with geophysical and geological findings. In addition to identifying the water-bearing fractures, the EC logs also provide various other hydrological and hydrochemical information, i.e., water table, total depth of the bore well, total dissolved solids (TDS), behavior of water–rock interaction, water quality, information about the chemistry of aquifers, etc.  相似文献   

13.
A major problem of the islanders is the availability of fresh water for drinking purpose. Groundwater is the only source of fresh water for the islanders. The demand for groundwater is increasing very year due to growing population and urbanization. A proper understanding of the groundwater condition is important in order to meet this increasing demand and to formulate future development and management strategies. It is in this context, principal hydrogeologic units; water table fluctuation pattern, general groundwater potential, existing groundwater withdrawal structures and draft, water quality, etc. have been studied in an elliptical shape Andrott Island of Union Territory of Lakshadweep, India, through field investigation and secondary data collection. Groundwater occurs under phreatic condition and seawater is in hydraulic continuity with the groundwater as evidenced by the tidal influence in almost all the wells. Groundwater level fluctuation due to seasonal variation varies from 0 to 0.542 m depending on the distance of the well from the coast. Depth to groundwater level varies from less than 1.234 to 3.520 m depending on the topography. Groundwater level fluctuation is due to the combination of factors like rainfall, tidal activities, sub-surface runoff, and draft. Large diameter dug wells are the main groundwater extraction structures in this island. There are 2,143 dug wells with almost each family having its own well and the density of the dug wells is about 437/km2. The stage of groundwater development is estimated as 37% and hence “Safe” for further groundwater development in this island. However, considering the very limited fresh-water resources and also the growing demand for groundwater, various management strategies such as rainwater harvesting, artificial recharge of groundwater, public participation in water conservation and wise use of groundwater, etc., have been suggested.  相似文献   

14.
Fluoride (F?) is essential for normal bone growth, but higher concentration in the drinking water causes health problems which are reported in many states of India. Andhra Pradesh is one of the states which suffer from excess fluoride in groundwater particularly in the hard rock terrain. In this context, a study was conducted in Andhra Pradesh based on chemical analysis of water samples from hydrograph net work stations (dug wells) and exploratory bore wells. The concentration of fluoride in groundwaters ranges from traces to 9.75 mg/l. The occurrence of fluoride is mostly sporadic, uneven and varies with depth. The highly affected districts include Nalgonda and Warangal in Telangana region, Prakasam in coastal region, Anantapur and Kurnool in Rayalaseema region. In certain areas of Nalgonda district, 85% of wells have fluoride more than permissible limit (> 1.5 mg/l) for drinking water. High F? is present in all the geological formations, predominantly in granitic aquifers, compared to the other formations. The average value of fluoride is high in the deeper zone (1.10 mg/L), compared to the shallow zone (0.69 mg/L). The fluoride-rich minerals present are the main sources for fluoride concentrations in groundwater. Residence time, evapotranspiration and weathering processes are some of the other supplementary factors for high fluoride concentrations in groundwater. Long-term data of hydrograph net work stations (dug wells) reveal that fluoride concentrations do not show any marked change of trend with respect to time. The concentration of fluoride is found to increase with increase of Na+and HCO 3 ? , and decrease with increase of Ca2+. Sodium bicarbonate waters are more effective in releasing fluoride from minerals into groundwater. High fluoride waters are of Na+ type. The paper presents a brief account of the study and its results.  相似文献   

15.
合理布局抽水井和回灌井是地下水源热泵系统长期有效运行的关键因素。以郑州市郑东新区为例,利用HST3D软件建立水热运移数值模型,优化设计地下水源热泵系统抽灌水井布局,预测地下水源热泵系统长期运行后对含水层的水热影响。结果表明:介质比热容及渗透率分别对含水层温度及水位影响显著,是较敏感的参数。方案3(3个回灌井垂直天然流向分布且位于抽水井下游)为最佳布井方式。抽灌量900,1 200,1 500及2 000m3/d所对应的合理布井间距分别为50,65,70及75m。相应布井方案的水源热泵系统运行20a,对含水层温度场的影响仅限于200m×200m的范围,抽水井温度变化小于1℃。  相似文献   

16.
Analyses of groundwater samples collected from several locations in a small watershed of the Deccan Trap Hydrologic Province, indicated anomalously higher values of nitrate than the background. However, the NO3 concentrations in water from dug wells under pastureland where the subsurface material consisted of stony waste were minimum. The maximum values were reported for water from dug wells where the principal land use was agricultural. Lowering of NO3 values under shallow water-table conditions suggests denitrification. Higher concentrations of nitrate determined for samples collected from the wells with a deeper water-table indicate that denitrification process is inactive. The high values of nitrate coinciding with agricultural land use indicate fertilizers as the main source of nitrate pollution of ground-water. Decrease in Cl/NO3 ratio for agricultural land use confirms this inference.  相似文献   

17.
Hydrogeochemical characteristics of groundwater and its suitability for domestic, irrigation, and industrial purposes were evaluated in Nanded Tehsil. A total of 50 representative groundwater samples were collected from dug/bore wells during post monsoon season 2012 and analyzed for major cations and anions. The order of dominance of cation and anions were Na > Ca > Mg > K and HCO3 > Cl > CO3 > SO4 > NO3, respectively. The rock weathering and evaporation processes are dominant in controlling the groundwater quality in the study area. Electrical conductivity (EC) and total dissolved solid (TDS) show high positive correlation with total Hardness (TH), Ca, Na, and Cl. As per the WHO and BIS standards for domestic water purposes, TDS, TH, Ca, Mg, Na, and Cl exceed the safe limits in 16, 22, 6, 18, 12, and 15 %, respectively; therefore, majority of samples show that the groundwater is suitable for drinking. The spatial distribution maps of physicochemical parameters were prepared in ArcGIS. The suitability of groundwater for agriculture purpose was evaluated from EC, TDS, sodium adsorption ratio (SAR), residual sodium carbonate (RSC), and %Na which ranges from excellent to unsuitable, so majority of the groundwater samples are suitable for irrigation. The U.S. Salinity Laboratory (USSL) diagram shows that most of the groundwater samples are characterized as in high salinity-low sodium hazard type water (C3-S1). All the groundwater samples are suitable for industrial use except sample numbers 44 and 48. Thus, most of the groundwater samples from this study confirm the beneficial use of aquifers in the area for domestic, agricultural, and irrigation purposes. However, sample numbers 44 and 48 identify the two aquifers in the study area which are problematic and need particular remedial measures if they are to have beneficial use.  相似文献   

18.
Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.  相似文献   

19.
长春市地下水动态研究   总被引:2,自引:2,他引:2  
曹成立 《世界地质》2010,29(3):479-484
根据长春市地下水观测井的动态监测资料,分析了长春市主要地下水类型的动态变化规律及原因。2000年以后,地下水位处于回升状态,松散岩类孔隙水水位埋深值年均减少0.16m,基岩裂隙水年均减少0.78m,其主要原因为限制开采量。典型观测孔水位埋深变化趋势公式表明,浅层地下水水位与气温密切相关,但滞后于气温1~1.5个月。  相似文献   

20.
The continuous and large-scale abstraction of groundwater has created a groundwater depletion problem in several parts of the Punjab state including Bist Doab, the interfluve region of Beas and Satluj rivers. In the present study, a few important parameters, viz. water level, stable isotope, EC, temperature, groundwater age, that can be used to fingerprint the over-exploitation of groundwater have been examined. It has been observed that with the increase in over-exploitation, the yield of shallow aquifer is progressively getting reduced and as a result forcing the farmers to sink their wells to deeper depths. With abstraction of deeper aquifer, the storage of old groundwater at the deeper aquifer is declining and getting replaced by induced accelerated inflow of young water from the recharge zone and the overlying shallow aquifer. The signatures of the modern water have been observed in the data analyzed for isotopic, hydro-chemical facies, electrical conductivity and temperature of water from deeper aquifer. The study has identified the usefulness of these parameters for identifying groundwater over-exploitation in the region. Depleting water resource may stagnate the economic progress of the region. The paper provides suitable water resource management strategies to be adopted to improve the sustainability of water resources and economic growth in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号