首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Groundwater potential map is important for environmental assessment and water resources management. In this work, a groundwater recharge potential map was established for the watershed of Oued Djelfa Hadjia in Algeria, based on new multiparameters hybrid model. The model has hydroclimatic parameters, geological settings, slope factor, and stream network density factor as inputs. The groundwater recharge estimated by the model range from 0.71 to 14 mm. The model allows delineation of potential area of recharge. The total water abstraction in Djelfa city is about of 14 hm3; however, the calculated groundwater recharge is about 3 mm/year (min 0.71 mm and max 14 mm), which correspond to an average recharge volume of 3.9 hm3 which mean that the aquifer is under over exploitation.  相似文献   

2.
Significant intrusion of geothermal water into fresh groundwater takes place in the Puebla Valley aquifer system, Mexico. The decline in the potentiometric surface due to the overexploitation of the groundwater induces this intrusion. This hydrological system comprises three aquifers located in Plio-Quaternary volcanic sediments and Mesozoic calcareous rocks. The hydraulic balance of the aquifer shows that the annual output exceeds the natural inputs by 12 million m3. Between 1973 and 2002, a drop in the potentiometric surface, with an 80 m cone of depression, was identified in a 5-km-wide area located southwest of the city of Puebla. Chemical analyses performed on water samples since 1990 have shown an increase in total dissolved solids (TDS) of more than 500 mg/L, coinciding with the region showing a cone of depression in the potentiometric surface. A three-dimensional flow and transport model, based on the hydrogeological and geophysical studies, was computed by using the MODFLOW and MT3D software. This model reproduces the evolution of the aquifer system during the last 30 years and predicts for 2010 an additional drawdown in the potentiometric surface of 15 m, and an increase in the geothermal water intrusion.  相似文献   

3.
通过对淮北市地质、水文地质条件的综合分析 ,建立了淮北市双含水层系统水文地质概念模型。引入准三维流数学模型进行地下水动态预报及建立地下水管理模型。用线性规划模型提出淮北市地下水资源的最佳管理方案。最后提出开展地下水回灌研究、建立岩溶含水层地下水库、限制发展耗水型工业及用法律和经济手段管理水资源开发等建议  相似文献   

4.
The water demand in arid regions is commonly covered by groundwater resources that date back to more humid periods of the Pleistocene and Holocene. Within the investigated arid part of SE Saudi-Arabia information about climate, groundwater levels, and pumping rates are only available for regions where groundwater extractions occur at present-day. For the prediction of the impact of long-term climate changes on groundwater resources an understanding of the hydrogeological and hydrological past and the development of the aquifers is necessary. Therefore, all available information about hydrology and hydrogeology for the past 10,000 years BP were collected and compiled to a conceptual model of the aquifer development on the Arabian Peninsula since the last Ice-Age. The climatic history was displayed by changes in precipitation, temperature and recharge during the mid-S and late Holocene. The hydrogeological development is described by groundwater ages, sea level fluctuations, movement of the coastline, and the development of sabkhas. The most sensitive parameter to describe the development of aquifer system is recharge. Present-day recharge was calculated with the hydrological model system HEC-HMS accounting for current precipitation, temperature, wind, soil types, and geomorphology. With respect to changes in precipitation and temperature over the past 10,000 years the temporal and spatial variability of groundwater recharge was calculated using empirical equations valid for semi-arid and arid settings. Further inflow into the groundwater system results from surface water infiltration in wadi beds, while natural outflow from the groundwater system occurs by discharge to the Gulf, evaporation from sabkhas, and spring discharge. Backward predictions can be verified by sedimentological observations of palaeo-river systems and lakes indicating that groundwater levels reached temporarily the surface under wetter climate conditions and 14C groundwater ages displaying groundwater residence times.  相似文献   

5.
The Tabriz area is a densely populated area of northwestern Iran (more than 1.5 million in population) with a large proportion of its drinking, domestic, industrial and agricultural water supplied from groundwater resources. The average rate of drinking and industrial water use in the city of Tabriz is about 3.45 m3 s–1. The Plio-Pleistocene unconfined alluvial tuff aquifer (about 1,275 km2), the most important aquifer in the area, has been known for many years as a reliable resource. The greatest estimated thickness of the alluvial tuff lies in the Saidabad area, with 350 m thickness. There are 994 deep and 284 shallow active pumping wells and 83 qanats operate in the alluvial tuff aquifer. The total water withdrawal from all these artificial discharge points has been measured at 72, 3.8 and 17 million m3/year, respectively. Analytical and numerical methods have been applied to the constant rate pumping test data from the Saidabad wellfield (eight pumping and three observation wells). The values of electrical conductivity in the groundwater of alluvial tuff aquifer range from 203 to 960 μS cm–1 and bicarbonate type water dominates.  相似文献   

6.
The groundwater of the deep Ye?ilköy aquifer is the only water resource for agricultural and domestic consumption at the Karpaz Peninsula of Cyprus, which stretches approximately 100 km from the northeast of capital Nicosia to the northern tip of Cyprus. During the last decade, over-pumping and following dry periods have depleted the groundwater resources and the water surface elevation of the aquifer has dropped. The aim of this study is to understand the behavior of the Ye?ilköy aquifer in the last decade for the proper management of groundwater resources. This has been achieved based on well survey and field survey studies, monitoring programs followed by pumping tests, and safe yield analysis. Most of the research effort has been focused on field and well survey studies to quantify agricultural water consumption and abstraction rates from the aquifer. A long-term groundwater level monitoring program, short-term continuous groundwater monitoring and pumping tests provided information for the regression analyses while deriving a sixth order polynomial relationship between the period parameter and the head parameter. The equation was helpful to predict the short-term behavior of the water level when the present hydrogeological conditions prevail. The pumping test results satisfied the hydraulic properties of calcarenite formation yielding T = 1,782 m2/day and S = 0.0012. The results of safe yield analysis show that the annual deficit of the aquifer is 0.496 million cubic meters (MCM), which is equivalent to a 0.6 m drop in groundwater levels per year. Finally, the resultant annual safe yield of the aquifer is estimated as 0.84 MCM.  相似文献   

7.
A heterogeneous anisotropic steady-state groundwater flow model for the multi-aquifer system of a part of southern Bengal Basin shows that human intervention has changed the natural groundwater flow system. At present, the shallow groundwater flow is restricted within the aquifer, with very short travel time of tens of years and vertical path length. The deep aquifer is fed by surface water or rainwater from distant locations with travel time of thousands of years and has no hydraulic connection with the arsenic-rich shallow aquifer. Numerical simulations indicate that the future pumping of deep groundwater is not likely to drive in arsenic from the shallow aquifer. Therefore, new wells may be installed in the deep aquifer. High pumping of shallow unpolluted aquifer consisting of brown sand will drive in groundwater containing organic matter from the post-Last Glacial Maximum aquifer-aquitard system. The organic matter drives reduction of manganese oxides at strip interfaces between palaeo-channel and palaeo-interfluve. After the completion of manganese reduction, FeOOH reduction may take place in the marginal palaeo-interfluvial aquifer and release sorbed arsenic. Arsenic then moves into the interior of palaeo-interfluvial aquifer polluting its fresh groundwater. Arsenic migration rates ranges between 0.21 and 6.3 and 1.3 × 10?2 and 0.4 m/year in horizontal and vertical directions, respectively. Therefore, palaeo-interfluvial aquifer will remain arsenic-free for hundreds to thousands of years to supply safe drinking water.  相似文献   

8.
Access to water resources is one of the major challenges being faced worldwide. Water scarcity, particularly groundwater resource, is the major ubiquitous concern for the country. Almost half of the country is reeling under severe ground water crisis due to anthropogenic and natural reasons (basalt rock surface). Agra region situated in the western part of Uttar Pradesh state of India has a semi-arid climate. The study area, which has a history of water scarcity since medieval ages, has seen a spurt of acute water shortage in recent times owing to the expansion of a very dense built-up area and excessive haulage accompanied by decline in rainfall. A study was under taken for identifying the trends in pre- and post-monsoon groundwater levels for Agra city, Uttar Pradesh. Pre-monsoon and post-monsoon groundwater depth data of 16 observation wells for the 2007–2016 period were collected and analyzed using ARC GIS 10.2 software. The rainfall trend during the study period was also studied to understand its role in groundwater fluctuation level. Statistical tests like Mann-Kendall, Sen’s slope estimator, and linear regression model were applied to understand the trend and rate of change in groundwater level. The land use/land cover map of the study area was integrated with groundwater map to have a primary understanding of the spatial trend of groundwater scenario of the study area. The result obtained is quite alarming for the city’s groundwater scenario. Results showed that the groundwater levels had significantly declined during 2007–2016. Average rates of water level decline were 0.228 and 0.267 m/year during pre- and post-monsoon seasons, respectively. There was a rapid decline in water level between 2008 and 2009 and between 2013 and 2014. The average rate of decline of pre- and post-monsoon groundwater level in the city during this period is 0.32 and 0.30 m/year, respectively. Significant decrease in groundwater level is found in 84.21% of wells for pre- and post-monsoon as obtained through Mann-Kendall analysis at 95% confidence level. During pre-monsoon season, the rate of decline according to Sen’s slope estimator varied between 0.74 and 2.05 m/year. Almost similar picture of decline is portrayed through linear regression slope wherein the computed rate of decline varied between 0.75 and 2.05 m/year. During post-monsoon, the rate of decline according to Sen’s slope varied between 0.13 and 1.94 m/year. Similar trend statistic is obtained through linear regression method where the declining rate is between 0.14 and 1.91 m/year. Comparison of the three statistical tests indicates similar nature of declining trend. The result of this research raises concern about the future of groundwater resources in Agra city. The findings of this study will assist planners and decision-makers in developing better land use and water resource management.  相似文献   

9.
The city of Querétaro, located near the political boundary of the Mexican states of Querétaro and Guanajuato, relies on groundwater as it sole water supply. Groundwater extraction in the city increased from 21?×?106 m3/yr in 1970 to 104?×?106 m3/yr in 2010, with an associated drawdown of 100 m in some parts of the aquifer. A three-dimensional numerical groundwater-flow model has been developed that represents the historical evolution of the aquifer’s potentiometric levels and is used to simulate the effect of two scenarios: (1) a 40 % reduction in the extraction rate from public water supply wells in early 2011 (thus reducing the extraction to 62?×?106 m3/yr), and (2) a further reduction in 2021 to 1?×?106 m3/yr. The modeling results project a temporary recovery of the potentiometric levels after the 40 % reduction of early 2011, but a return to 2010 levels by 2020. If scenario 2 is implemented in 2021, the aquifer will take nearly 30 years to recover to the simulated levels of 1995. The model also shows that the wells located in the city of Querétaro started to extract water from part of the aquifer beneath the State of Guanajuato in the late 1970s, thus showing that the administrative boundaries used in Mexico to study and develop water resources are inappropriate, and consideration should be given to physical boundaries instead. A regional approach to studying aquifers is needed in order to adequately understand groundwater flow dynamics.  相似文献   

10.
Korba aquifer is one of the most typical examples of overexploited coastal aquifer in the Mediterranean countries. In fact, from 1985, a considerable piezometric level drop, water salinization, and seawater intrusion were registered in the aquifer. In December 2008, Tunisian authorities initiated a general plan to groundwater management in order to augment groundwater resources, restore the piezometric levels, and improve water quality. The plan consists of artificial recharge of groundwater used treated wastewater through three infiltration basins. During the first 4 years (from December 2008 to December 2012), 1.41 Mm3 of treated wastewater was injected to the Korba aquifer. This study presents a hydrogeological assessment of groundwater evolution during the recharge processes. In this study, 32 piezometric and chemical surveys of 70 piezometers and observed wells are used to present hydrogeological investigation and water quality evolution of wastewater reuse through artificial recharge in Korba coastal aquifer. The piezometric evolution maps are used to specify the positive effect in groundwater level that exceeding 1.5 m in some regions. The interpretation of salinity evolution maps are used to indicate the improving of groundwater quality.  相似文献   

11.
深层地下水是鲁西北平原区特有的含水系统,具有分布范围广、埋藏深和开采恢复能力差等水文地质特征。近30年来的人工开采使天然流场发生了较大改变,形成多个规模不一、形态各异的超采漏斗。利用多年来区域研究成果和实测资料,在研究区域地下水循环系统的基础上,分析开采初期和开采条件下特征年份深层地下水动力场特征,研究鲁西北平原深层地下水演化程度。研究发现,近30年来,区域水头整体下降,地下水动力场发生了显著变化。除黄河三角洲全咸水区、莘县阳谷、嘉祥凸起周围降幅较小外,其余地区均大于20m,其中德州一武城、滨州-博兴、菏泽城区降幅均在60m以上,德州、滨州漏斗中心降幅大于100m。目前已造成德州、滨州、东营、菏泽、济宁等城区不同程度的地面沉降。  相似文献   

12.
The origin and movement of groundwater are the fundamental questions that address both the temporal and spatial aspects of ground water run and water supply related issues in hydrological systems. As groundwater flows through an aquifer, its composition and temperature may variation dependent on the aquifer condition through which it flows. Thus, hydrologic investigations can also provide useful information about the subsurface geology of a region. But because such studies investigate processes that follow under the Earth's shallow, obtaining the information necessary to answer these questions is not continuously easy. Springs, which discharge groundwater table directly, afford to study subsurface hydrogeological processes.The present study of estimation of aquifer factors such as transmissivity (T) and storativity (S) are vital for the evaluation of groundwater resources. There are several methods to estimate the accurate aquifer parameters (i.e. hydrograph analysis, pumping test, etc.). In initial days, these parameters are projected either by means of in-situ test or execution test on aquifer well samples carried in the laboratory. The simultaneous information on the hydraulic behavior of the well (borehole) that provides on this method, the reservoir and the reservoir boundaries, are important for efficient aquifer and well data management and analysis. The most common in-situ test is pumping test performed on wells, which involves the measurement of the fall and increase of groundwater level with respect to time. The alteration in groundwater level (drawdown/recovery) is caused due to pumping of water from the well. Theis (1935) was first to propose method to evaluate aquifer parameters from the pumping test on a bore well in a confined aquifer. It is essential to know the transmissivity (T = Kb, where b is the aquifer thickness; pumping flow rate, Q = TW (dh/dl) flow through an aquifer) and storativity (confined aquifer: S = bSs, unconfined: S = Sy), for the characterization of the aquifer parameters in an unknown area so as to predict the rate of drawdown of the groundwater table/potentiometric surface throughout the pumping test of an aquifer. The determination of aquifer's parameters is an important basis for groundwater resources evaluation, numerical simulation, development and protection as well as scientific management. For determining aquifer's parameters, pumping test is a main method. A case study shows that these techniques have been fast speed and high correctness. The results of parameter's determination are optimized so that it has important applied value for scientific research and geology engineering preparation.  相似文献   

13.
Agriculture sector by using 80% of freshwater is the greatest water consumer in Iran. Excessive use of agricultural fertilizers in last decade, caused accumulation of enormous amounts of salts and subsequence declined the physical properties of soil. In desert and dry regions such as Rafsanjan plain, use of the groundwater resources is more than the surface water resources. Therefore, information about the quality of these resources remains a necessary task for optimum management, protection of water resources, and stopping the future damages. In this study, the groundwater quantity and quality of Rafsanjan plain was investigated by MODFLOW and MT3DMS. The presented quantitative model for this aquifer was compared by observed data and calibrated. This model was used to predict a 10-year period. Results show that water elevation decreases approximately 15 m for 10 years to come in this plain. Qualitative model results show that most quality parameters will increase. Electrical conductivity will increase more than other parameters. As values of this parameter will reach 16,000 µs/l for next 5 years. Therefore, we suggest that exploitation of water from these resources should be reduced and discharge from some of agricultural wells stop; also we suggested that recharge to groundwater resources should be increased and agricultural activities should be limited or improved using of modern irrigation systems in this plain.  相似文献   

14.
In the Apalachicola-Chattahoochee-Flint (ACF) river basin in Alabama, Georgia, and Florida (USA), population growth in the city of Atlanta and increased groundwater withdrawal for irrigation in southwest Georgia are greatly affecting the supply of freshwater to downstream regions. This study was conducted to understand and quantify the effect of irrigation pumpage on the karst Upper Floridan Aquifer and river–aquifer interactions in the lower ACF river basin in southwest Georgia. The groundwater MODular Finite-Element model (MODFE) was used for this study. The effect of two drought years, a moderate and a severe drought year, were simulated. Comparison of the results of the irrigated and non-irrigated scenarios showed that groundwater discharge to streams is a major outflow from the aquifer, and irrigation can cause as much as 10 % change in river–aquifer flux. The results also show that during months with high irrigation (e.g., June 2011), storage loss (34 %), the recharge and discharge from the upper semi-confining unit (30 %), and the river–aquifer flux (31 %) are the major water components contributing towards the impact of irrigation pumpage in the study area. A similar scenario plays out in many river basins throughout the world, especially in basins in which underlying karst aquifers are directly connected to a nearby stream. The study suggests that improved groundwater withdrawal strategies using climate forecasts needs to be developed in such a way that excessive withdrawals during droughts can be reduced to protect streams and river flows.  相似文献   

15.
The Paris–Abu Bayan area located along the Darb El Arbaein road is involved in the New Valley Project in the Egyptian Western Desert (EWD) as part of ongoing efforts since the 1960s. In this dryland area, groundwater stored in the Nubian Sandstone Aquifer System (NSAS) serves as the only water resource for a number of different uses. A major concern is the significant groundwater withdrawals from 74 pumped wells since the beginning of agricultural activities in 2000. The recent rapid expansion of agricultural activity and the lack of sufficient groundwater recharge as a result of unplanned groundwater development have led to severe stress on the aquifer. Field measurements have shown a rapid decline in groundwater levels, creating a crisis situation for this sole source of water in the area. In this study, mathematical modeling of the groundwater system (single aquifer layer) of the Paris–Abu Bayan reclaimed area was implemented using MODFLOW to devise a new strategy for the sustainable use of groundwater, by applying a number of scenarios in a finite-difference program. The conceptual model and calibration were developed by generating and studying the hydrogeological records, NSA parameters, production wells, and water level measurements for 2005 and 2012. Three management scenarios were applied on the calibrated model to display the present and future stresses on this aquifer over a 30-year period (2012–2042). The results clearly show a high decline in the heads of the NSA, by about 13.8 m, due to the continuous withdrawal of water (first scenario: present conditions, 102,473 m3/day). In the second scenario, the water level is expected to decrease significantly, by about 16 m, in most of the reclamation area by increasing the pumping rates by about 25% (over-pumping) to meet the continuous need for more cultivation land in the area. To reduce the large decline in water levels, the third plan tests the aquifer after reducing the water withdrawal by approximately 25%, applying modern irrigation systems, and suggesting two new reclaimed areas in the northeastern and northwestern parts (areas 1 and 2), with 20 new wells, at 500 m3/day/well. The results in this case show that groundwater levels are slightly decreased, by about 9.5 m, while many wells (especially the new wells in the northern part) show a slight decrease in groundwater levels (0.8 m). The results comparison shows that the groundwater level in the modeled area is lowered by 0.3 m/year with an increase in the number of wells to 94 and increased cultivation area by about 18% (third scenario), versus 0.45 m/year and 0.60 m/year recorded for the first and second scenarios, respectively. Therefore, based on the results, the third scenario is recommended as a new strategy for improving groundwater resource sustainability in the region.  相似文献   

16.
The karst hydrological processes are the response of karst groundwater system to precipitation. The precipitation penetrates through the vadose zone, the subsequent groundwater pressure wave propagates to a spring outlet, and then, the spring discharge changes. This paper proposes a grey auto-incidence analysis for studying the karst hydrological processes. The method can detect the periodicity of a time series, for example, precipitation and spring discharge. Then the approach is applied to Liulin Springs Basin, China. The results show that the auto-incidence degree of precipitation reaches to the maximum (i.e., 0.816) when time delay equals to 8 years. The auto-incidence degree of spring discharge reaches to the maximum (i.e., 0.865) when time delay equals to 3 years. These results show that the periodicity of precipitation is 8 years, and of spring discharge is 3 years. The difference of periodicity between the precipitation and the spring discharge reveals that the processes of precipitation recharging groundwater and groundwater transport are regulated or controlled by karst aquifer. Because of heterogeneity of karst aquifer, the quick flow and base flow occur during the groundwater propagation, which causes the periodicity of spring discharge is not coincidence with of precipitation.  相似文献   

17.
Water management is one of the most challenges in Algeria, a semi-arid Mediterranean country confronted to a serious water stress. The country will have to endure, beyond 2025, a situation of chronic water penury, adding an excessive pollution of the majority of groundwater reservoirs. The management of water resources by combined approach using hydrogeological model and nitrates evolution model was experimented in the Middle Soummam valley. The alluvial aquifer, offering good hydrodynamic and geometrical characteristics, is over-exploited, providing in drinking water Akbou and Tazmalt cities and irrigation perimeters. If exploitation continues at these steady paces, the depletion of the water resource and the hydrochemical imbalance will be inevitable. On the one hand, the results of hydrodynamic model, based on an increase of the water takings and simulated needs from 24.71 Mm3/year in 2015 into 39.69 Mm3/year in 2030, show a critical withdrawal. The aquifer budget expresses the inversion of flow between the wadi and the aquifer where the wadi feeds the groundwater reservoir. This hydrodynamic inversion was attributed to simulated pumping rates which increased and exceeded 100,000 m3/day, but the aquifer was partially relieved by the weight of the exploitation through Tichy Haf dam. The water management strategy adopted in this study was based on management measures promoting zones, which have been delimited between Tazmalt and Akbou, and containing important water quantities available in the axis of the valley. However, according to the depleted in isotopes of 18O and 2H, which could be explained by the influence of a paleoclimatic effect and suggested that the aquifer recharge would have largely been made under a colder climate, pumped groundwater could be old, and the implementation of new pumping sites has been studied minutely. On the other hand, the hydrogeochemical modelling allowed following nitrates concentrations in order to project their evolution. Four wells on 25 react in face to the imposed conditions in each scenario simulated until 2030, showing inertia of pollution, and confirmed after three series of tests. This inertia would be related to the hydraulic gradients and hydraulic conductivities, aquifer thickness and recharge. The low hydraulic gradients lead to a rather slow flow velocity and thus to an inertia in the dispersion of nitrates, with a mass transport weakened by the hydrodynamic conditions. It is also related to the aquifer thickness; when the aquifer is powerful (65–85 m), the stock of water would be important and allows a dilution process. The reverse is true for the simulated boreholes where the concentrations remain invariant; the aquifer is less powerful (32–37 m). Finally, the recharge effect through the rain was evoked; the aquifer is unconfined, and the rain water and pollution that reached the piezometric level can remain in position in slow hydrodynamic conditions. The methodology was demonstrated through a combination of monitoring and modelling for both water quantity and quality and the importance to use numerical models to support water resources management strategy in the Mediterranean aquifers.  相似文献   

18.
辽河三角洲处于陆地和海洋的结合部,蕴含丰富的资源,具有十分重要的战略地位。项目通过三年的时间,查明了辽河三角洲地区主要含水层结构:第四系含水层系统(Q)、明化镇组含水层系统(Nm)、馆陶组含水层系统(Ng)。通过设立动态监测网,建立、完善地下水动态监测体系,实现地下水位和水质的实时监测;地下水水位动态:第四系松散岩类孔隙水较为稳定,水位动态变化不大;上新近系明化镇组和馆陶组地下水,受人类活动影响较大,由于多年连续大量开采,地下水位逐年下降,已形成了2个区域性地下水降落漏斗。地下水水质动态:第四系上更新统(Q3)浅层水Cl-、SO42-、Na+及矿化度持续升高,高矿化度水分布面积扩大,水化学类型复杂化,氯化物型和钠型水分布面积增大,向周边扩散;明化镇组和馆陶组地下水,水质优良,变化不大。针对地下水超采,注重水资源合理配置,适当减少新近系地下水资源的开采,充分利用地表水资源的对策。  相似文献   

19.
Management of groundwater resources can be improved by using groundwater models to perform risk analyses and to improve development strategies, but a lack of extensive basic data often limits the implementation of sophisticated models. Dar es Salaam in Tanzania is an example of a city where increasing groundwater use in a Pleistocene aquifer is causing groundwater-related problems such as saline intrusion along the coastline, lowering of water-table levels, and contamination of pumping wells. The lack of a water-level monitoring network introduces a problem for basic data collection and model calibration and validation. As a replacement, local water-supply wells were used for measuring groundwater depth, and well-top heights were estimated from a regional digital elevation model to recalculate water depths to hydraulic heads. These were used to draw a regional piezometric map. Hydraulic parameters were estimated from short-time pumping tests in the local wells, but variation in hydraulic conductivity was attributed to uncertainty in well characteristics (information often unavailable) and not to aquifer heterogeneity. A MODFLOW model was calibrated with a homogeneous hydraulic conductivity field and a sensitivity analysis between the conductivity and aquifer recharge showed that average annual recharge will likely be in the range 80–100 mm/year.  相似文献   

20.
Arid to semi-arid regions are characterized by low levels of surface water and low annual precipitation (generally <350 mm/year). In such areas, groundwater must be used to meet all the needs of the population for water. As a consequence, careful management is required to ensure the sustainability of this scarce resource in response to the demands of urban centers, industry, agriculture, and tourism. The concept of the aquifer recharge rate is particularly useful in the quantification of these groundwater resources and can be used to form the basis of a decision support system. This study determined the potential recharge rate in the Haouz aquifer using a multi-criteria analysis that included both the major and minor factors influencing the rate of infiltration of water into the aquifer. The analysis was based on the use of a geographical information system supported by remote sensing techniques to develop thematic data layers. These layers were then used to describe the spatial variation of the factors influencing the recharge rate of the aquifer and were subsequently integrated and analyzed to derive the spatial distribution of the potential recharge. This approach was used to classify the Haouz Plain (Morocco) into three different zones with respect to the recharge rate, with recharge rates ranging from 3.5 to 18.2 %.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号