首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The extent of the last British–Irish Ice Sheet (BIIS) in northern Scotland is disputed. A restricted ice sheet model holds that at the global Last Glacial Maximum (LGM; ca. 23–19 ka) the BIIS terminated on land in northern Scotland, leaving Buchan, Caithness and the Orkney Islands ice‐free. An alternative model implies that these three areas were ice‐covered at the LGM, with the BIIS extending offshore onto the adjacent shelves. We test the two models using cosmogenic 10Be surface exposure dating of erratic boulders and glacially eroded bedrock from the three areas. Our results indicate that the last BIIS covered all of northern Scotland during the LGM, but that widespread deglaciation of Caithness and Orkney occurred prior to rapid warming at ca. 14.5 ka. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents the first terrestrial age constraints from the outer continental shelf for the maximum extent of the NW sector of the last British–Irish Ice Sheet. Cosmogenic 10Be ages from eight glacially transported boulders on the island of North Rona show that the Late Devensian (Late Weichselian) British–Irish Ice Sheet overrode the island at its maximal stage and retreated c. 25 ka BP. These new dates, supported by other geological evidence, indicate that the north‐western part of the ice sheet was most extensive between 27 and 25 ka BP, reaching the outer continental shelf during the global eustatic sea‐level minimum at the Last Glacial Maximum. Copyright © 2012 British Geological Survey/Natural Environment Research Council copyright 2012. Reproduced with the permission of BGS/NERC. Published by John Wiley & Sons, Ltd.  相似文献   

3.
《第四纪科学杂志》2017,32(1):48-62
The southernmost terrestrial extent of the Irish Sea Ice Stream (ISIS), which drained a large proportion of the last British–Irish Ice Sheet, impinged on to the Isles of Scilly during Marine Isotope Stage 2. However, the age of this ice limit has been contested and the interpretation that this occurred during the Last Glacial Maximum (LGM) remains controversial. This study reports new ages using optically stimulated luminescence (OSL) dating of outwash sediments at Battery, Tresco (25.5 ± 1.5 ka), and terrestrial cosmogenic nuclide exposure dating of boulders overlying till on Scilly Rock (25.9 ± 1.6 ka), which confirm that the ISIS reached the Isles of Scilly during the LGM. The ages demonstrate this ice advance on to the northern Isles of Scilly occurred at ∼26 ka around the time of increased ice‐rafted debris in the adjacent marine record from the continental margin, which coincided with Heinrich Event 2 at ∼24 ka. OSL dating (19.6 ± 1.5 ka) of the post‐glacial Hell Bay Gravel at Battery suggests there was then an ∼5‐ka delay between primary deposition and aeolian reworking of the glacigenic sediment, during a time when the ISIS ice front was oscillating on and around the Llŷn Peninsula, ∼390 km to the north. Copyright © 2017 The Authors. Journal of Quaternary Science Published by John Wiley & Sons, Ltd.
  相似文献   

4.
The deglacial history of the central sector of the last British–Irish Ice Sheet is poorly constrained, particularly along major ice‐stream flow paths. The Tyne Gap Palaeo‐Ice Stream (TGIS) was a major fast‐flow conduit of the British–Irish Ice Sheet during the last glaciation. We reconstruct the pattern and constrain the timing of retreat of this ice stream using cosmogenic radionuclide (10Be) dating of exposed bedrock surfaces, radiocarbon dating of lake cores and geomorphological mapping of deglacial features. Four of the five 10Be samples produced minimum ages between 17.8 and 16.5 ka. These were supplemented by a basal radiocarbon date of 15.7 ± 0.1 cal ka BP, in a core recovered from Talkin Tarn in the Brampton Kame Belt. Our new geochronology indicates progressive retreat of the TGIS from 18.7 to 17.1 ka, and becoming ice free before 16.4–15.7 ka. Initial retreat and decoupling of the TGIS from the North Sea Lobe is recorded by a prominent moraine 10–15 km inland of the present‐day coast. This constrains the damming of Glacial Lake Wear to a period before ∼18.7–17.1 ka in the area deglaciated by the contraction of the TGIS. We suggest that retreat of the TGIS was part of a regional collapse of ice‐dispersal centres between 18 and 16 ka.
  相似文献   

5.
This paper presents results of the analysis of paired cosmogenic isotopes (10Be and 26Al) from eight quartz‐rich samples collected from ice‐moulded bedrock on the Aran ridge, the highest land in the British Isles south of Snowdon. On the Aran ridge, comprising the summits of Aran Fawddwy (905 m a.s.l.) and Aran Benllyn (885 m a.s.l.), 26Al and 10Be ages indicate complete ice coverage and glacial erosion at the global Last Glacial Maximum (LGM). Six samples from the summit ridge above 750–800 m a.s.l. yielded paired 10Be and 26Al ages ranging from 17.2 to 34.4 ka, respectively. Four of these samples are very close in age (10Be ages of 17.5 ± 0.6, 17.5 ± 0.7, 19.7 ± 0.8 and 20.0 ± 0.7 ka) and are interpreted as representing the exposure age of the summit ridge. Two other summit samples are much older (10Be ages of 27.5 ± 1.0 and 33.9 ± 1.2 ka) and these results may indicate nuclide inheritance. The 26Al/10Be ratios for all samples are indistinguishable within one‐sigma uncertainty from the production rate ratio line, indicating that there is no evidence for a complex exposure history. These results indicate that the last Welsh Ice Cap was thick enough to completely cover the Aran ridge and achieve glacial erosion at the LGM. However, between c. 20 and 17 ka ridge summits were exposed as nunataks at a time when glacial erosion at lower elevations (below 750–800 m a.s.l.) was achieved by large outlet glaciers in the valleys surrounding the mountains. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
《Quaternary Science Reviews》2007,26(9-10):1197-1203
Reconstructions of the British–Irish Ice Sheet (BIIS) during the Last Glacial Maximum (LGM) in the Celtic Sea and southern Ireland have been hampered by a paucity of well-dated stratigraphic records. As a result, the timing of the last advance of the largest outlet of the BIIS, the Irish Sea Ice Stream, to its maximum limit in the Celtic Sea has been variously proposed as being pre-last glaciation, Early Devensian and LGM. The Irish Sea Till was deposited by the Irish Sea Ice Stream during its last advance into the Celtic Sea. We present 26, stratigraphically well constrained, new AMS radiocarbon dates on glacially transported marine shells from the Irish Sea Till in southern Ireland, which constrain the maximum age of this advance. The youngest of these dates indicate that the BIIS advanced to its overall maximum limit in the Celtic Sea after 26,000–20,000 14C yr BP, thus during the last glaciation. The most extensive phase of BIIS growth therefore appears to have occurred during the LGM, at least along the Celtic Sea and Irish margins. These data further demonstrate that the uppermost inland glacial tills, from the area of supposed “older drift” in southern Ireland, a region previously regarded as having been unglaciated during the LGM also date from the last glaciation. Thus most of southern Ireland was ice covered at the LGM. Advance of the BIIS to its maximum southern limit in the Celtic Sea may have been a short-lived glaciodynamic response facilitated by subglacial bed conditions, rather than a steady-state response to climate forcing alone.  相似文献   

7.
Here we combine 10Be depth profile techniques applied to late glacial ice‐contact marine and lacustrine deltas, as well as boulder exposure dating of associated features in the Scoresby Sound region, east Greenland, to determine both the surface age and the magnitude of cosmogenic nuclide inheritance. Boulder ages from an ice‐contact delta in northern Scoresby Sund show scatter typical of polar regions and yield an average age of 12.8 ± 0.5 ka – about 2 ka older than both our average profile surface age of 10.9 ± 0.7 ka from three depth profiles and a radiocarbon‐based estimate. On the other hand, boulder exposure ages from a set of moraines in southern Scoresby Sund show excellent internal consistency for polar regions and yield an average age of 11.6 ± 0.2 ka. The profile surface age from a corresponding ice‐contact delta is 8.1 ± 0.9 ka, while a second delta yields an age of 10.0 ± 0.4 ka. Measured 10Be inheritance concentrations from all depth profiles are internally consistent and are between 10% and 20% of the surface concentrations, suggesting a regional cosmogenic inheritance signal for the Scoresby Sound landscape. Based on the profile inheritance concentrations, we explore the first‐order catchment‐averaged bedrock erosion under the Greenland ice sheet, yielding estimates of total erosion during the last glacial cycle of the order of 2–30 m. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The now acknowledged thinning of the Greenland Ice Sheet raises concerns about its potential contribution to future sea level rise. In order to appreciate the full extent of its contribution to sea level rise, reconstruction of the ice sheet's most recent last deglaciation could provide key information on the timing and the height of the ice sheet at a time of rapid climate readjustment. We measured 10Be concentrations in 12 samples collected along longitudinal and altitudinal transects from Sisimiut to within 10 km of the Isunguata Sermia Glacier ice margin on the western coast of Greenland. Along the longitudinal transect, we collected three perched boulders and two bedrocks. In addition, we sampled seven perched boulders along a vertical transect in a valley within 10 km of the Isunguata Sermia Glacier ice margin. Our pilot dataset constrains the height of the ice sheet during the Last Glacial Maximum (LGM) between 500 m and 840 m (including the 120 m relative sea level depression at the time of the LGM, 21 ka BP). From the transect we estimate the thinning of the ice sheet at the end of the deglaciation between 12.3 ± 1.5 10Be ka (n = 2) and 8.3 ± 1.2 10Be ka (n = 3) to be ~6 cm a?1 over this time period. Direct dating of the retreat of the western margin of the Greenland Ice Sheet has the potential to better constrain the retreat rate of the ice margin, the thickness of the former ice sheet as well as its response to climate change. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

10.
《Quaternary Science Reviews》2007,26(3-4):494-499
Cosmogenic surface-exposure ages from boulders on a terminal moraine complex establish the timing of the local last glacial maximum (LGM) in the Taylor River drainage basin, central Colorado. Five zero-erosion 10Be ages have a mean of 19.5±1.8 ka while that for three 36Cl ages is 20.7±2.3 ka. Corrections for modest rates (∼1 mm ka−1) of boulder surface erosion result in individual and mean ages that are generally within 2% of their zero-erosion values. Both the means and the range in ages of individual boulders are consistent with those reported for late Pleistocene moraines elsewhere in the southern and middle Rocky Mountains, and thus suggest local LGM glacier activity was regionally synchronous. Two anomalously young (?) zero-erosion 10Be ages (mean 14.4±0.8 ka) from a second terminal moraine are tentatively attributed to the boulders having been melted out during a late phase of ice stagnation.  相似文献   

11.
《Quaternary Science Reviews》2007,26(19-21):2316-2321
Traditional ice sheet reconstructions have suggested two distinctly different ice sheet regimes along the East Greenland continental margin during the Last Glacial Maximum (LGM): ice to the shelf break south of Scoresby Sund and ice extending no further than to the inner shelf at and north of Scoresby Sund. We report new 10Be ages from erratic boulders perched at 250 m a.s.l. on the Kap Brewster peninsula at the mouth of Scoresby Sund. The average 10Be ages, calculated with an assumed maximum erosion rate of 1 cm/ka and no erosion (respectively, 17.3±2.3 ka and 15.1±1.7 ka) overlap with a period of increased sediment input to the Scoresby Sund fan (19–15 ka). The results presented here suggest that ice reached at least 250 m a.s.l. at the mouth of Scoresby Sund during the LGM and add to a growing body of evidence indicating that LGM ice extended onto the outer shelf in northeast Greenland.  相似文献   

12.
The offshore sector around Shetland remains one of the least well-studied parts of the former British–Irish Ice Sheet with several long-standing scientific issues unresolved. These key issues include (i) the dominance of a locally sourced ‘Shetland ice cap’ vs an invasive Fennoscandian Ice Sheet; (ii) the flow configuration and style of glaciation at the Last Glacial Maximum (i.e. terrestrial vs marine glaciation); (iii) the nature of confluence between the British–Irish and Fennoscandian Ice Sheets; (iv) the cause, style and rate of ice sheet separation; and (v) the wider implications of ice sheet uncoupling on the tempo of subsequent deglaciation. As part of the Britice-Chrono project, we present new geological (seabed cores), geomorphological, marine geophysical and geochronological data from the northernmost sector of the last British–Irish Ice Sheet (north of 59.5°N) to address these questions. The study area covers ca. 95 000 km2, an area approximately the size of Ireland, and includes the islands of Shetland and the surrounding continental shelf, some of the continental slope, and the western margin of the Norwegian Channel. We collect and analyse data from onshore in Shetland and along key transects offshore, to establish the most coherent picture, so far, of former ice-sheet deglaciation in this important sector. Alongside new seabed mapping and Quaternary sediment analysis, we use a multi-proxy suite of new isotopic age assessments, including 32 cosmogenic-nuclide exposure ages from glacially transported boulders and 35 radiocarbon dates from deglacial marine sediments, to develop a synoptic sector-wide reconstruction combining strong onshore and offshore geological evidence with Bayesian chronosequence modelling. The results show widespread and significant spatial fluctuations in size, shape and flow configuration of an ice sheet/ice cap centred on, or to the east of, the Orkney–Shetland Platform, between ~30 and ~15 ka BP. At its maximum extent ca. 26–25 ka BP , this ice sheet was coalescent with the Fennoscandian Ice Sheet to the east. Between ~25 and 23 ka BP the ice sheet in this sector underwent a significant size reduction from ca. 85 000 to <50 000 km2, accompanied by several ice-margin oscillations. Soon after, connection was lost with the Fennoscandian Ice Sheet and a marine corridor opened to the east of Shetland. This triggered initial (and unstable) re-growth of a glaciologically independent Shetland Ice Cap ca. 21–20 ka BP with a strong east–west asymmetry with respect to topography. Ice mass growth was followed by rapid collapse, from an area of ca. 45 000 km2 to ca. 15 000 km2 between 19 and 18 ka BP , stabilizing at ca. 2000 km2 by ~17 ka BP. Final deglaciation of Shetland occurred ca. 17–15 ka BP , and may have involved one or more subsidiary ice centres on now-submerged parts of the continental shelf. We suggest that the unusually dynamic behaviour of the northernmost sector of the British–Irish Ice Sheet between 21 and 18 ka BP – characterized by numerous extensive ice sheet/ice mass readvances, rapid loss and flow redistributions – was driven by significant changes in ice mass geometry, ice divide location and calving flux as the glaciologically independent ice cap adjusted to new boundary conditions. We propose that this dynamism was forced to a large degree by internal (glaciological) factors specific to the strongly marine-influenced Shetland Ice Cap.  相似文献   

13.
During the last glacial maximum (LGM), the western Uinta Mountains of northeastern Utah were occupied by the Western Uinta Ice Field. Cosmogenic 10Be surface-exposure ages from the terminal moraine in the North Fork Provo Valley and paired 26Al and 10Be ages from striated bedrock at Bald Mountain Pass set limits on the timing of the local LGM. Moraine boulder ages suggest that ice reached its maximum extent by 17.4 ± 0.5 ka (± 2σ). 10Be and 26Al measurements on striated bedrock from Bald Mountain Pass, situated near the former center of the ice field, yield a mean 26Al/10Be ratio of 5.7 ± 0.8 and a mean exposure age of 14.0 ± 0.5 ka, which places a minimum-limiting age on when the ice field melted completely. We also applied a mass/energy-balance and ice-flow model to investigate the LGM climate of the western Uinta Mountains. Results suggest that temperatures were likely 5 to 7°C cooler than present and precipitation was 2 to 3.5 times greater than modern, and the western-most glaciers in the range generally received more precipitation when expanding to their maximum extent than glaciers farther east. This scenario is consistent with the hypothesis that precipitation in the western Uintas was enhanced by pluvial Lake Bonneville during the last glaciation.  相似文献   

14.
Only a few chronological constraints on Lateglacial and Early Holocene glacier variability in the westernmost Alps have hitherto been obtained. In this paper, moraines of two palaeoglaciers in the southern Écrins massif were mapped. The chronology of the stabilization of selected moraines was established through the use of 10Be cosmic ray exposure (CRE) dating. The equilibrium line altitude (ELA) during moraine deposition was reconstructed assuming an accumulation area ratio (AAR) of 0.67. Ten pre‐Little Ice Age (LIA) ice‐marginal positions of the Rougnoux palaeoglacier were identified and seven of these have been dated. The 10Be CRE age of a boulder on the lowermost sampled moraine indicates that the landform may have been first formed during a period of stable glaciers at around 16.2±1.7 ka (kiloyears before AD 2017) or that the sampled boulder experienced pre‐exposure to secondary cosmic radiation. The moraine was re‐occupied or, alternatively, shaped somewhat before 12.2±0.6 ka when the ELA was lowered by 230 m relative to the LIA ELA. At least six periods of stable ice margins occurred thereafter when the ELA was 220–160 m lower than during the LIA. The innermost dated moraine stabilized at or before 10.9±0.7 ka. Three 10Be CRE ages from a moraine of the Prelles palaeoglacier indicate a period of stationary ice margins at or before 10.9±0.6 ka when the ELA was lowered by 160 m with respect to the end of the LIA. The presented 10Be CRE ages are in good agreement with those of moraines that have been attributed to the Egesen stadial. Assuming unchanged precipitation, summer temperature in the southern Écrins massif at ~12 ka must have been at least 2 °C lower relative to the LIA.  相似文献   

15.
We present 23 cosmogenic surface exposure ages from 10 localities in southern Sweden. The new 10Be ages allow a direct correlation between the east and west coasts of southern Sweden, based on the same dating technique, and provide new information about the deglaciation of the Fennoscandian Ice Sheet in the circum‐Baltic area. In western Skåne, southernmost Sweden, a single cosmogenic surface exposure sample gave an age of 16.8±1.0 ka, whereas two samples from the central part of Skåne gave ages of 17.0±0.9 and 14.1±0.8 ka. Further northeast, in southern Småland, two localities gave ages ranging from 15.2±0.8 to 16.9±0.9 ka (n=5) indicating a somewhat earlier deglaciation of the area than has previously been suggested. Our third locality, in S Småland, gave ages ranging from 10.2±0.5 to 18.4±1.6 ka (n=3), which are probably not representative of the timing of deglaciation. In central Småland one locality was dated to 14.5±0.8 ka (n=3), whereas our northernmost locality, situated in northern Småland, was dated to 13.8±0.8 ka (n=3). Samples from the island of Gotland suggest deglaciation before 13 ka ago. We combined the new 10Be ages with previously published deglaciation ages to constrain the deglaciation chronology of southern Sweden. The combined deglaciation chronology suggests a rather steady deglaciation in southern Sweden starting at c. 17.9 cal. ka BP in NW Skåne and reaching northern Småland, ~200 km further north, c. 13.8 ka ago. Overall the new deglaciation ages agree reasonably well with existing deglaciation chronologies, but suggest a somewhat earlier deglaciation in Småland.  相似文献   

16.
The behaviour of ice sheets as they retreated from their Last Glacial Maximum (LGM) positions provides insights into Lateglacial and early Holocene ice‐sheet dynamics and climate change. The pattern of deglaciation of the Laurentide Ice Sheet (LIS) in arctic fiord landscapes can now be well dated using cosmogenic exposure dating. We use cosmogenic exposure and radiocarbon ages to constrain the deglaciation history of Clyde Inlet, a 120 km long fiord on northeastern Baffin Island. The LIS reached the continental shelf during the LGM, retreated from the coastal lowlands by 12.5 ± 0.7 ka (n = 3), and from the fiord mouth by 11.7 ± 2.2 ka (n = 4). Rapid retreat from the outer fiord occurred 10.3 ± 1.3 ka (n = 6), with the terminus reaching the inner fiord shortly after 9.4 ka (n = 2), where several moraine systems were deposited between ca. 9.4 and ca. 8.4 ka. These moraines represent fluctuations of the LIS during the warmest summers since the last interglaciation, and this suggests that the ice sheet was responding to increased snowfall. Before retreating from the head of Clyde Inlet, the LIS margin fluctuated at least twice between ca. 7.9 and ca. 8.5 ka, possibly in response to the 8.2 ka cold event. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

17.
A database consisting of radiocarbon (14C), optically stimulated luminescence (OSL), thermoluminescence (TL) and beryllium (10Be) dates was used for timing the advance of the Late Weichselian Scandinavian Ice Sheet (SIS), determining the age of the Last Glacial Maximum (LGM) and the rate of deglaciation. The study area encompasses the southeastern sector of the last SIS between the Baltic Sea and the LGM position in the western part of the East European Plain, covering the Karelian Ice‐Stream Complex (ISC) area in the east and the Baltic ISC area in the west. The linear advance and recession rates of the last SIS were estimated to be between 110 and 330 m a?1 and between 50 and 170 m a?1, respectively. The onset of the last SIS in the Karelian ISC area reached the western shores of Latvia not before 26 OSL ka, and in the Baltic ISC area, on the southern shores of the Gulf of Finland, not before 21 OSL ka. The last SIS reached close to the LGM position earliest in NW Belarus, not earlier than 22.6 cal. 14C ka BP, and latest in the NE of Belarus, not earlier than 19.1 cal. 14C ka BP. The Baltic ISC area between the LGM position and the western shores of Latvia was deglaciated in about 8 ka, and in the Karelian ISC area, between the LGM position and the southern shores of the Gulf of Finland, in about 2.6 ka. The whole area between the LGM position and the Baltic Sea was deglaciated between 14.2 10Be ka and 13.3 cal. 14C ka BP.  相似文献   

18.
In this study we have obtained 17 cosmogenic exposure ages from three well‐developed moraine systems – Halland Coastal Moraines (HCM), Göteborg Moraine (GM) and Levene Moraine (LM) – which were formed during the last deglaciation in southwest Sweden by the Scandinavian Ice Sheet (SIS). The inferred ages of the inner HCM, GM and LM are 16.7 ± 1.6, 16.1 ± 1.4 and 13.6 ± 1.4 ka, respectively, which is slightly older than previous estimates of the deglaciation based on the minimum limiting radiocarbon ages and pollen stratigraphy. During this short interval from 16.7 ± 1.6 to 13.6 ± 1.4 ka a large part (100–125 km) of the marine‐based sector of the SIS in southwest Sweden was deglaciated, giving an average ice margin retreat between 20 to 50 m a?1. The inception of the deglaciation pre‐dated the Bølling/Allerød warming, the rapid sea level rise at 14.6 cal. ka BP and the first inflow of warm Atlantic waters into Skagerrak. We suggest that ice retreat in southwest Sweden is mainly a dynamical response governed by the disintegration of the Norwegian Channel Ice Stream and not primarily driven by climatic changes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
We determined in situ cosmogenic 10Be ages for nine boulders sampled on the Salpausselkä I (Ss I) Moraine. Previous dating of this moraine indicated that it formed during the Younger Dryas Stadial along the southern margin of the Scandinavian Ice Sheet in southern Finland. Our new exposure ages range from 10.9±1.0 to 13.5±1.2 10Be ka, with an error-weighted mean age of 12.4±0.7 10Be ka. Our results confirm four previous 10Be ages obtained 40 km northeast of our sample location. The combined data (n=13) indicate that retreat from the Ss I Moraine occurred at 12.5±0.7 10Be ka, in excellent agreement with an age of 12.1 ka for retreat from the Ss I Moraine based on varve chronologies. These results identify the Ss I Moraine as among the best-dated margins associated with Late Quaternary ice sheets.  相似文献   

20.
Understanding the pace and drivers of marine-based ice-sheet retreat relies upon the integration of numerical ice-sheet models with observations from contemporary polar ice sheets and well-constrained palaeo-glaciological reconstructions. This paper provides a reconstruction of the retreat of the last British–Irish Ice Sheet (BIIS) from the Atlantic shelf west of Ireland during and following the Last Glacial Maximum (LGM). It uses marine-geophysical data and sediment cores dated by radiocarbon, combined with terrestrial cosmogenic nuclide and optically stimulated luminescence dating of onshore ice-marginal landforms, to reconstruct the timing and rate of ice-sheet retreat from the continental shelf and across the adjoining coastline of Ireland, thus including the switch from a marine- to a terrestrially-based ice-sheet margin. Seafloor bathymetric data in the form of moraines and grounding-zone wedges on the continental shelf record an extensive ice sheet west of Ireland during the LGM which advanced to the outer shelf. This interpretation is supported by the presence of dated subglacial tills and overridden glacimarine sediments from across the Porcupine Bank, a westwards extension of the Irish continental shelf. The ice sheet was grounded on the outer shelf at ~26.8 ka cal bp with initial retreat underway by 25.9 ka cal bp. Retreat was not a continuous process but was punctuated by marginal oscillations until ~24.3 ka cal bp. The ice sheet thereafter retreated to the mid-shelf where it formed a large grounding-zone complex at ~23.7 ka cal bp. This retreat occurred in a glacimarine environment. The Aran Islands on the inner continental shelf were ice-free by ~19.5 ka bp and the ice sheet had become largely terrestrially based by 17.3 ka bp. This suggests that the Aran Islands acted to stabilize and slow overall ice-sheet retreat once the BIIS margin had reached the inner shelf. Our results constrain the timing of initial retreat of the BIIS from the outer shelf west of Ireland to the period of minimum global eustatic sea level. Initial retreat was driven, at least in part, by glacio-isostatically induced, high relative sea level. Net rates of ice-sheet retreat across the shelf were slow (62–19 m a−1) and reduced (8 m a−1) as the ice sheet vacated the inner shelf and moved onshore. A picture therefore emerges of an extensive BIIS on the Atlantic shelf west of Ireland, in which early, oscillatory retreat was followed by slow episodic retreat which decelerated further as the ice margin became terrestrially based. More broadly, this demonstrates the importance of localized controls, in particular bed topography, on modulating the retreat of marine-based sectors of ice sheets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号