首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Relative sea‐level (RSL) change is reconstructed for central Cumbria, UK, based on litho‐ and biostratigraphical analysis from the Lateglacial to the late Holocene. The RSL curve is constrained using ten new radiocarbon‐dated sea‐level index points in addition to published data. The sea‐level curve identifies a clear Lateglacial sea‐level highstand approximately 2.3 m OD at c. 15–17 k cal a BP followed by rapid RSL fall to below ?5 m OD. RSL then rose rapidly during the early Holocene culminating in a mid‐Holocene highstand of approximately 1 m OD at c. 6 k cal a BP followed by gradual fall to the present level. These new data provide an important test for the RSL predictions from glacial isostatic adjustment models, particularly for the Lateglacial where there are very little data from the UK. The new RSL curve shows similar broad‐scale trends in RSL movement predicted by the models. However, the more recent models fail to predict the Lateglacial sea level highstand above present reconstructed by the new data presented here. Future updates to the models are needed to reduce this mismatch. This study highlights the importance for further RSL data to constrain Lateglacial sea level from sites in northern Britain. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
This paper presents two new pollen records and quantitative climate reconstructions from northern Chukotka documenting environmental changes over the last 27.9 ka. Open tundra- and steppe-like habitats dominated between 27.9 and 18.7 cal. ka BP. Betula and Alnus shrubs might have grown in sheltered microhabitats but disappeared after 18.7 cal. ka BP. Although the climate was rather harsh, local herb-dominated communities supported herbivores as is evident by the presence of coprophilous spores in the sediments. The increase in Salix and Cyperaceae ~16.1 cal. ka BP suggests climate amelioration. Shrub Betula appeared ~15.9 cal. ka BP, and became dominant after ~15.52 cal. ka BP, whilst typical steppe communities drastically reduced. Very high presence of Botryococcus in the Lateglacial sediments reflects widespread shallow habitats, probably due to lake level increase. Shrub Alnus became common after ~13 cal. ka BP reflecting further climate amelioration. Simultaneously, herb communities gradually decreased in the vegetation reaching a minimum ~11.8 cal. ka BP. A gradual decrease of algae remains suggests a reduction of shallow-water habitats. Shrubby and graminoid tundra was dominant ~11.8–11.1 cal. ka BP, later Salix stands significantly decreased. The forest-tundra ecotone established in the Early Holocene, shortly after 11.1 cal. ka BP. Low contents of green algae in the Early Holocene sediments likely reflect deeper aquatic conditions. The most favourable climate conditions were between ~10.6 and 7 cal. ka BP. Vegetation became similar to the modern after ~7 cal. ka BP but Pinus pumila came to the Ilirney area at about 1.2 cal. ka BP. It is important to emphasize that the study area provided refugia for Betula and Alnus during MIS 2. It is also notable that our records do not reflect evidence of Younger Dryas cooling, which is inconsistent with some regional environmental records but in good accordance with some others.  相似文献   

3.
Climate models suggest that the global warming during the early to mid‐Holocene may have partly resulted from the northward advance of the northern treeline and subsequent reduction of the planetary albedo. We investigated the Holocene vegetation history of low arctic continental Nunavut, Canada, from a radiocarbon‐dated sediment core from TK‐2 Lake, a small‐lake ca. 200 km north of the limit of the forest‐tundra. The pollen and loss‐on‐ignition data indicate the presence of dwarf shrub tundra in the region since the beginning of organic sedimentation at ca. 9000 cal. yr BP with dominance of Betula, especially since 8700 cal. yr BP. At 8100–7900 cal. yr BP the dominance of the shrub tundra was punctuated by a transient decline of Betula and coincident increases of Ericaceae undiff., Vaccinium‐type, and Gramineae. This suggests an abrupt disturbance of the Betula glandulosa population, approximately simultaneously with the sudden 8200 cal. yr BP event in the North Atlantic. However, in the absence of other sites studied in the area, linkage to the 8200 cal. yr BP event remains tentative. The lack of any evidence of forest‐tundra in the region constrains the northern limit of the mid‐Holocene advance of the forest‐tundra boundary in central northern Canada. Consequently, our results show that the climate models imposing a mid‐Holocene advance of the limit of the forest‐tundra to the arctic coast of Canada may have overestimated the positive climatic feedback effects that can result from the replacement of tundra by the boreal forest. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

4.
The postglacial tree line and climate history in the Swedish Scandes have been inferred from megafossil tree remains. Investigated species are mountain birch (Betula pubescens ssp. czerepanovii), Scots pine (Pinus sylvestris) and grey alder (Alnus incana). Betula and Pinus first appeared on early deglaciated nunataks during the Lateglacial. Their tree lines peaked between 9600 and 9000 cal. a BP, almost 600 m higher than present‐day elevations. This implies (adjusted for land uplift) that early Holocene summer temperatures may have been 2.3°C above modern ones. Elevational tree line retreat characterized the Holocene tree line evolution. For short periods, excursions from this trend have occurred. Between c. 12 000 and 10 000 cal. a BP, a pine‐dominated subalpine belt prevailed. A first major episode of descent occurred c. 8200 cal. a BP, possibly forced by cooling and an associated shift to a deeper and more persistent snow pack. Thereafter, the subalpine birch forest belt gradually evolved at the expense of the prior pine‐dominated tree line ecotone. A second episode of pine descent took place c. 4800 cal. a BP. Historical tree line positions are viewed in relation to early 21st century equivalents, and indicate that tree line elevations attained during the past century and in association with modern climate warming are highly unusual, but not unique, phenomena from the perspective of the past 4800 years. Prior to that, the pine tree line (and summer temperatures) was consistently higher than present, as it was also during the Roman and Medieval periods, c. 1900 and 1000 cal. a BP, respectively.  相似文献   

5.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

6.
The Last Termination (19 000–11 000 a BP) with its rapid and distinct climate shifts provides a perfect laboratory to study the nature and regional impact of climate variability. The sedimentary succession from the ancient lake at Hässeldala Port in southern Sweden with its distinct Lateglacial/early Holocene stratigraphy (>14.1–9.5 cal. ka BP) is one of the few chronologically well‐constrained, multi‐proxy sites in Europe that capture a variety of local and regional climatic and environmental signals. Here we present Hässeldala's multi‐proxy records (lithology, geochemistry, pollen, diatoms, chironomids, biomarkers, hydrogen isotopes) in a refined age model and place the observed changes in lake status, catchment vegetation, summer temperatures and hydroclimate in a wider regional context. Reconstructed mean July temperatures increased between c. 14.1 and c. 13.1 cal. ka BP and subsequently declined. This latter cooling coincided with drier hydroclimatic conditions that were probably associated with a freshening of the Nordic Seas and started a few hundred years before the onset of Greenland Stadial 1 (c. 12.9 cal. ka BP). Our proxies suggest a further shift towards colder and drier conditions as late as c. 12.7 cal. ka BP, which was followed by the establishment of a stadial climate regime (c. 12.5–11.8 cal. ka BP). The onset of warmer and wetter conditions preceded the Holocene warming over Greenland by c. 200 years. Hässeldala's proxies thus highlight the complexity of environmental and hydrological responses across abrupt climate transitions in northern Europe.  相似文献   

7.
Here we present Holocene organic carbon, nitrogen, sulphur, carbon isotope ratio and macrofossil data from a small freshwater lake near Sisimiut in south‐west Greenland. The lake was formed c. 11 cal ka BP following retreat of the ice sheet margin and is located above the marine limit in this area. The elemental and isotope data suggest a complex deglaciation history of interactions between the lake and its catchment, reflecting glacial retreat and post‐glacial hydrological flushing probably due to periodic melting of local remnant glacial ice and firn areas between 11 and 8.5 cal ka BP. After 8.5 cal ka BP, soil development and associated vegetation processes began to exert a greater control on terrestrial–aquatic carbon cycling. By 5.5 cal ka BP, in the early Neoglacial cooling, the sediment record indicates a change in catchment–lake interactions with consistent δ13C while C/N exhibits greater variability. The period after 5.5 cal ka BP is also characterized by higher organic C accumulation in the lake. These changes (total organic carbon, C/N, δ13C) are most likely the result of increasing contribution (and burial) of terrestrial organic matter as a result of enhanced soil instability, as indicated by an increase in Cenococcum remains, but also Sphagnum and Empetrum. The impact of glacial retreat and relatively subdued mid‐ to late Holocene climate variation at the coast is in marked contrast to the greater environmental variability seen in inland lakes closer to the present‐day ice sheet margin. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Comparisons of palaeo‐equilibrium line altitudes between the Western and Eastern Cordilleras in the Central Andes are commonly based on the assumption that the tall outermost moraines visible in remotely sensed images of the Western Cordillera date to the Last Glacial Maximum (LGM). However, field investigation and geomorphic mapping at Nevado Sajama, Bolivia, indicates the tall moraines are relic features with shorter moraines overlying and in some cases extending beyond them. 36Cl exposure ages from the shorter moraines suggest that they date to Lateglacial times ca. 16.9–10.2 ka. Although Lateglacial deposits have been found throughout the Central Andes, the extent of these deposits relative to LGM deposits varies both between the Western and Eastern Cordilleras and north‐to‐south along the Western Cordillera. In the Western Cordillera in the zone of easterly winds, the Lateglacial appears to be the most extensive glacial advance of the last glacial cycle. Geomorphic evidence also suggests that some Lateglacial moraines were deposited by cold‐based ice, a previously unreported finding in the tropical Andes. Retreat from other glacial features occurred at about 7.0–4.4 ka and 4.7–3.3 ka. These are the first directly dated Holocene glacial deposits in the Western Cordillera of Bolivia, and their presence suggests that the mid Holocene may not have been as warm and dry as previously thought. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

10.
Here, we present and discuss results from geo‐archaeological and palaeo‐zoological investigations at the Palaeolithic site Pymva Shor, in the Russian Arctic. As many as 3324 vertebrate fauna remains were recovered during two excavations. This includes bones of mammals, birds and fish. Radiocarbon dates were obtained from 26 specimens. The results show ages in the range 30–3 cal. ka BP. Hare and reindeer are the best represented amongst the identified mammalian species, whilst ptarmigan and various wader species dominate the avian bones. The Pleistocene assemblage includes herbivorous herd animals such as horse, bison and musk ox. These species are typical of the treeless tundra‐steppe landscape that existed during the Lateglacial. Of particular interest is a cave lion specimen that has been radiocarbon dated to approximately 15.5 cal. ka BP. According to our knowledge, this is one of the latest dated examples of this species in Eurasia. The faunal composition in the Holocene assemblage is strikingly different and includes distinct forest taxa such as beaver and pine marten. The avifauna also supports a forested environment with the presence of black grouse. A few stone artefacts were found within the strata, and have been radiocarbon dated to 16–15 cal. ka BP, suggesting that there were humans in the Pymva Shore area at that time. We identified impact notches and cut marks on some radiocarbon‐dated reindeer and bison bones, showing that humans were present twice during the Younger Dryas period. A fourth occupation phase is identified during the mid‐Holocene (6–5 cal. ka BP). We also investigated river terraces and obtained a series of luminescence dates. These have been used to reconstruct the geological history and the relationship to the find‐bearing strata.  相似文献   

11.
Birks, H. H. & van Dinter, M. 2010: Lateglacial and early Holocene vegetation and climate gradients in the Nordfjord–Ålesund area, western Norway. Boreas, Vol. 39, pp. 783–798. 10.1111/j.1502‐3885.2010.00161.x. ISSN 0300‐9483. Modern climate in western Norway shows a strong west–east gradient in oceanicity–continentality (coast to inner fjord) and altitudinal temperature gradients that control the regional and altitudinal zonation of vegetation. To discover if similar gradients existed during the Lateglacial and early Holocene, plant‐macrofossil analyses were made from five lacustrine sediment sequences in the Nordfjord–Ålesund region selected to sample the present climatic gradients. The macrofossil assemblages could be interpreted as analogues of the present vegetation, thus allowing reconstruction of past vegetation and climates. When the five sites were compared, climatic gradients could be detected. During the Lateglacial interstadial, mid‐alpine assemblages with Salix herbacea and S. polaris occurred at the lowland coast and upland inland sites, whereas the inland lowland site had low‐alpine dwarf‐shrub heath dominated by Betula nana, demonstrating a strong west–east gradient in temperature and precipitation and an altitudinal gradient inland. During the Younger Dryas stadial, assemblages at the lowland coast and upland inland sites resembled high‐alpine vegetation, whereas the inland lowland site was warmer with mid‐alpine vegetation, demonstrating west–east and altitudinal temperature gradients. Gradients became less pronounced in the Holocene. The early abundance of Betula nana in the inner fjord sites but its rarity at the coast is striking and reflects the oceanicity gradient. All sites became forested with Betula pubescens a few centuries into the Holocene. This forest was probably close to tree line at 370 m a.s.l. at the coast. Inland, there was no detectable altitudinal gradient, with the tree line well above 400 m a.s.l. reflecting the present pattern of tree‐line elevation.  相似文献   

12.
This paper investigates a detailed well‐dated Lateglacial floristic colonisation in the eastern Baltic area, ca. 14 000–9000 cal. a BP, using palynological, macrofossil, loss‐on‐ignition, and 14C data. During 14 000–13 400 cal. a BP, primarily treeless pioneer tundra vegetation existed. Tree birch (Betula sect. Albae) macro‐remains and a high tree pollen accumulation rate indicate the presence of forest‐tundra with birch and possibly pine (Pinus sylvestris L.) trees during 13 400–12 850 cal. a BP. Palaeobotanical data indicate that the colonisation and development of forested areas were very rapid, arising within a period of less than 50 years. Thus far, there are no indications of conifer macrofossils in Estonia to support the presence of coniferous forests in the Lateglacial period. Signs of Greenland Interstadial 1b cooling during 13 100 cal. a BP are distinguishable. Biostratigraphic evidence indicates that the vegetation was again mostly treeless tundra during the final colder episode of the Lateglacial period associated with Greenland Stadial 1, approximately 12 850–11 650 cal. a BP. This was followed by onset of the Holocene vegetation, with the expansion of boreal forests, in response to rapid climatic warming. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
Physical properties, grain size, bulk mineralogy, elemental geochemistry and magnetic parameters of three sediment piston cores recovered in the Laurentian Channel from its head to its mouth were investigated to reconstruct changes in detrital sediment provenance and transport related to climate variability since the last deglaciation. The comparison of the detrital proxies indicates the succession of two sedimentary regimes in the Estuary and Gulf of St. Lawrence (EGSL) during the Holocene, which are associated with the melting history of the Laurentide Ice Sheet (LIS) and relative sea‐level changes. During the early Holocene (10–8.5 cal. ka BP), high sedimentation rates together with mineralogical, geochemical and magnetic signatures indicate that sedimentation in the EGSL was mainly controlled by meltwater discharges from the local retreat of the southeastern margin of the LIS on the Canadian Shield. At this time, sediment‐laden meltwater plumes caused the accumulation of fine‐grained sediments in the ice‐distal zones. Since the mid‐Holocene, postglacial movements of the continental crust, related to the withdrawal of the LIS (c. 6 cal. ka BP), have triggered significant variations in relative sea level (RSL) in the EGSL. The significant correlation between the RSL curves and the mineralogical, geochemical, magnetic and grain‐size data suggest that the RSL was the dominant force acting on the sedimentary dynamics of the EGSL during the mid‐to‐late Holocene. Beyond 6 cal. ka BP, characteristic mineralogical, geochemical, magnetic signatures and diffuse spectral reflectance data suggest that the Canadian Maritime Provinces and western Newfoundland coast are the primary sources for detrital sediments in the Gulf of St. Lawrence, with the Canadian Shield acting as a secondary source. Conversely, in the lower St. Lawrence Estuary, detrital sediments are mainly supplied by the Canadian Shield province. Finally, our results suggest that the modern sedimentation regime in the EGSL was established during the mid‐Holocene.  相似文献   

14.
A new geochemical record from the paaleolake Santiaguillo documents the hydrological variability of sub‐tropical northern Mexico over the last 14 cal. ka. Summer‐season runoff, lake water salinity and deposition of sediments by aeolian activity were reconstructed from concentrations of K, Ca and Zr/K in bulk sediments. More‐than‐average runoff during c. 12.39.3 cal. ka BP represented an interval of enhanced summer precipitation. Arid intervals of c. 1412.3 cal. ka BP and c. 6–4.3 cal. ka BP were characterized by average and more‐than‐average aeolian activity. Comparison with proxy records of summer as well as winter precipitation from tropical and sub‐tropical North America and sea surface temperatures from the Atlantic and Pacific provides insight into the source of moisture and possible forcing. The wet Pleistocene?Holocene transition and early Holocene was contemporary with warmer conditions in the Gulf of California. We suggest that the Atlantic had minimal influence on the summer precipitation of the western part of sub‐tropical northern Mexico and that the source of moisture was dominantly Pacific.  相似文献   

15.
Predominantly laminated lake sediments from a saline closed‐basin lake on the northeastern Tibetan Plateau were investigated using a multi‐proxy approach (14C‐accelerator mass spectrometry dating, smear‐slide analysis, loss on ignition, grain size, X‐ray diffraction, elemental concentration, ostracod assemblages, stable isotopes of ostracod shells) to trace the regional environmental and climatic history in the Lateglacial and Holocene. Before about 15 cal. ka BP, small saline water bodies probably filled the basin under unstable cold and harsh environmental conditions. Soon after about 14.9 cal. ka BP, a relatively deep saline lake was established, probably as a result of runoff from melting snow, ice and frozen ground in the lake's catchment. Large changes in flux of aeolian material to the lake were recorded during this initial period of formation of Lake Kuhai. Highest lake levels, a low sediment accumulation rate and less saline conditions were maintained between about 12.8 and 7.1 cal. ka BP when the aeolian influx diminished significantly. After about 7.1 cal. ka BP, the aeolian influx remained at a moderate level apart from a strongly increased dust delivery to the lake between about 6.1 and 5.4 cal. ka BP and a minor short‐lived period of slightly enhanced aeolian influx at about 2.7 cal. ka BP. The strongly enhanced dust input to the lake between 6.1 and 5.4 cal. ka BP represented the largest influx of aeolian material to Lake Kuhai during the entire Holocene. However, evidence for climatic deterioration during this period is not seen at most other palaeoclimate sites on the Tibetan Plateau, but instead a significant increase in aridity has been recorded at numerous sites in the northern foreland of the Tibetan Plateau and on the Chinese Loess Plateau. The large dust input to Lake Kuhai between 6.1 and 5.4 cal. ka BP probably did not result from a severe climate deterioration on the Tibetan Plateau itself, but from the pronounced aridity in its northern and eastern foreland. In contrast, the increase in dust influx about 2.7 cal. ka BP seems to correspond to a brief warming spell recorded at other sites on the Tibetan Plateau too. A slight increase in lake level and decrease in salinity after about 0.6 cal. ka BP suggests a slightly higher effective moisture during the final lake stage, accompanied by a somewhat larger dust influx. This apparent contradiction possibly results from enhanced human activities on the northeastern Tibetan Plateau during the last 600 years. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
From the synthesis of the malacological data collected from 12 sites in the large flood‐plain of the Seine basin, three main environmental stages have been reconstructed. During the first half of the Holocene, forest environments are prevalent (Seine 1). As early as c. 6.5 cal. ka BP, the first evidence of woodland clearance is observed (Seine 2) and, from c. 3.4 cal. ka BP, the lowlands were largely cleared of trees and are dominated by grassland (Seine 3). This three‐stage development of environmental conditions is consistent with the environmental developments reconstructed from molluscan successions in England, Germany, Luxembourg, Switzerland, Poland, the Czech Republic and Slovakia. Our results highlight anthropogenic disturbance as the key factor in the openness of the Holocene landscape and pinpoint the period between c. 3.6 and c. 2.8 cal. ka BP as a transitional phase of this large‐scale environmental change.  相似文献   

17.
Here we present the results of a detailed cryptotephra investigation through the Lateglacial to early Holocene transition, from a new sediment core record obtained from Lake Hämelsee, Germany. Two tephra horizons, the Laacher See Tephra (Eifel Volcanic Field) and the Saksunarvatn Ash (Iceland), have been previously described in this partially varved sediment record, indicating the potential of the location as an important Lateglacial tephrochronological site in northwest Europe. We have identified three further tephra horizons, which we correlate to: the c. 12.1 ka BP Vedde Ash (Iceland), the c. 11 ka BP Ulmener Maar tephra (Eifel Volcanic Field) and the c. 10.8 ka BP Askja‐S tephra (Iceland). Three additional cryptotephra deposits have been found (locally named HÄM_T1616, HÄM_T1470 and HÄM_T1456‐1455), which cannot be correlated to any known eruption at present. Geochemical analysis of the deposits suggests that these cryptotephras most likely have an Icelandic origin. Our discoveries provide age constraints for the new sediment records from Lake Hämelsee and enable direct stratigraphical correlations to be made with other tephra‐bearing sites across Europe. The new tephrostratigraphical record, within a partially varved Lateglacial sediment record, highlights the importance of Lake Hämelsee as a key site within the European tephra lattice.  相似文献   

18.
Climate change with respect to summer temperature throughout the Holocene is inferred from oscillations in the local Pinus sylvestris, Alnus incana and Betula pubescens forest‐lines, as recorded by fossil pollen and plant macrofossils in lake sediments at four altitudinal levels. Mt Skrubben (848 m a.s.l.), in Dividalen, was deglaciated down to below 280 m a.s.l. during 10 800–10 300 cal. yr BP. Betula pubescens established 10100 cal. yr BP at 280 m a.s.l. and expanded up to near the summit during the next 700 years. Birch woodland prevailed on the mountain plateau until 3300 cal. yr BP. Local Pinus sylvestris stands are recorded up to 400 m a.s.l. at 8450 cal. yr BP and >548 m a.s.l. about 8160 cal. yr BP. Alnus incana expanded from 400 to nearly 790 m a.s.l. during the period 7900–7600 cal. yr BP. The maximum forest distribution lasted until ca. 6000 cal. yr BP. Marked climatic deteriorations caused lowering of the forest‐lines around 4600 and 3000 cal. yr BP. Reconstruction of the summer temperature indicated mean July temperatures at 400 m a.s.l. of 1.5–3°C above the present during the period of maximum forest expansion, whereas >3°C above the present temperature at 548 m a.s.l. This is in accordance with other regional temperature reconstructions from northern Europe. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Lauterbach, S., Brauer, A., Andersen, N., Danielopol, D. L., Dulski, P., Hüls, M., Milecka, K., Namiotko, T., Plessen, B., von Grafenstein, U. & DecLakes participants 2010: Multi‐proxy evidence for early to mid‐Holocene environmental and climatic changes in northeastern Poland. Boreas, 10.1111/j.1502‐3885.2010.00159.x. ISSN 0300‐9483. We investigated the sedimentary record of Lake Hańcza (northeastern Poland) using a multi‐proxy approach, focusing on early to mid‐Holocene climatic and environmental changes. AMS 14C dating of terrestrial macrofossils and sedimentation rate estimates from occasional varve thickness measurements were used to establish a chronology. The onset of the Holocene at c. 11 600 cal. a BP is marked by the decline of Lateglacial shrub vegetation and a shift from clastic‐detrital deposition to an autochthonous sedimentation dominated by biochemical calcite precipitation. Between 10 000 and 9000 cal. a BP, a further environmental and climatic improvement is indicated by the spread of deciduous forests, an increase in lake organic matter and a 1.7‰ rise in the oxygen isotope ratios of both endogenic calcite and ostracod valves. Rising δ18O values were probably caused by a combination of hydrological and climatic factors. The persistence of relatively cold and dry climate conditions in northeastern Poland during the first one and a half millennia of the Holocene could be related to a regional eastern European atmospheric circulation pattern. Prevailing anticyclonic circulation linked to a high‐pressure cell above the retreating Scandinavian Ice Sheet might have blocked the influence of warm and moist Westerlies and attenuated the early Holocene climatic amelioration in the Lake Hańcza region until the final decay of the ice sheet.  相似文献   

20.
Heikkilä, M. & Seppä, H. 2010: Holocene climate dynamics in Latvia, eastern Baltic region: a pollen‐based summer temperature reconstruction and regional comparison. Boreas, Vol. 39, pp. 705–719. 10.1111/j.1502‐3885.2010.00164.x. ISSN 0300‐9483. A pollen‐based summer temperature (Tsummer) reconstruction reveals the Holocene climate history in southeastern Latvia and contributes to the limited understanding of past climate behaviour in the eastern sector of northern Europe. Notably, steady climate warming of the early Holocene was interrupted c. 8350–8150 cal. yr BP by the well‐known 8.2 ka cold event, recorded as a decrease of 0.9 to 1.8 °C in Tsummer. During the Holocene Thermal Maximum, c. 8000–4000 cal. yr BP, the reconstructed summer temperature was ~2.5–3.5 °C higher than the modern reconstructed value, and subsequently declined towards present‐day values. Comparison of the current reconstruction with other pollen‐based reconstructions in northern Europe shows that the 8.2 ka event is particularly clearly reflected in the Baltic region, possibly as a result of distinct climatic and ecological gradients and the sensitivity of the vegetation growth pattern to seasonal temperature change. The new reconstruction also reveals that the Holocene Thermal Maximum was warmer in Latvia than in central Europe and Fennoscandia. In fact, a gradient of increasing positive temperature anomalies is detected from northernmost Fennoscandia towards the south and from the Atlantic coast in Norway towards the continental East European Plain. The dynamics of the temperate broadleaved tree species Tilia and Quercus in Latvia and adjacent northern Europe during the mid‐Holocene give complementary information on the multifaceted climatic and environmental changes in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号