首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 10.5 m core from Changeable Lake in the Severnaya Zemlya Archipelago just north of the Taymyr Peninsula intersects ca. 30 cm of diamicton at its base, interpreted as a basal till. Because the upper 10.13 m of this core consists of non‐glacial sediments, a maximum numeric age for these non‐glacial sediments would provide a clear lower limit to the timing of the last glaciation in the area of Changeable Lake. Radiocarbon (14C) dating of several materials from this core yielded widely scattered results. Consequently we applied photonic dating to sediments above the diamicton. The experimental single‐aliquot‐regenerative (SAR) dose fine‐grain method was applied to two samples, using the ‘double SAR’ approach. With one exception, these fine‐grain SAR results and the results of application of the SAR method to sand‐sized quartz grains from two samples, at ca. 9.95 m and ca. 10.05 m depth, are discrepant with age estimates from the multi‐aliquot infrared‐photon‐stimulated luminescence (IR‐PSL) method applied to fine grains. Multi‐aliquot IR‐PSL dating of 10 samples produces ages increasing monotonically from ca. 4 ka at 2 m to 53 ± 4 ka at 9.97 m. These self‐consistent multi‐aliquot IR‐PSL ages, along with limiting 14C ages of >47 ka at ca. 10 m, provide direct evidence that glacial ice did not advance over this lake basin during the Last Glacial Maximum, and thus delimit the northeastern margin of the Barents–Kara Sea ice‐sheet to somewhere west of this archipelago. The last regional glaciation probably occurred during marine isotope stage (MIS) 4 or earlier. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
Regional‐scale, high‐resolution terrain data permit the study of landforms across south‐central Ontario, where the bed of the former Laurentide Ice Sheet is well exposed and passes downflow from irregular topography on Precambrian Shield highlands to flat‐lying Palaeozoic carbonate bedrock, and thick (50 to >200 m) unconsolidated sediment substrates. Rock drumlins and megagrooves are eroded into bedrock and mega‐scale glacial lineations (MSGL) occur on patchy streamlined till residuals in the Algonquin Highlands. Downflow, MSGL pass into juxtaposed rock and drift drumlins on Palaeozoic bedrock and predominantly till‐cored drumlins in areas of thick drift. The Lake Simcoe Moraines, now traceable for more than 80 km across the Peterborough drumlin field (PDF), form a distinct morphological boundary: downflow of the moraine system, drumlins are larger, broader and show no indication of subsequent reworking by the ice, whereas upflow of the moraines, a higher degree of complexity in bedform pattern and morphology is distinguished. Discrete radial and/or cross‐cutting flowset terminate at subtle till‐cored moraine ridges downflow of local topographic lows, indicating multiple phases of late‐stage ice flow with strong local topographic steering. More regional‐scale flow switching is evident as NW‐orientated bedforms modify drumlins south of the Oak Ridges Moraine, and radial flowset emanate from areas within the St. Lawrence and Ottawa River valleys. Most of the drumlins in the PDF formed during an early, regional drumlinization phase of NE–SW flow that followed the deposition of a thick regional till sheet. These were subsequently modified by local‐scale, topographically controlled flows that terminate at till‐cored moraines, providing evidence that the superimposed bedforms record dynamic ice (re)advances throughout the deglaciation of south‐central Ontario. The patterns and relationships of glacial landform distribution and characteristics in south‐central Ontario hold significance for many modern and palaeo‐ice sheets, where similar downflow changes in bed topography and substrate lithology are observed.  相似文献   

3.
While contributing <1 m equivalent eustatic sea‐level rise the British Isles ice sheet produced glacio‐isostatic rebound in northern Britain of similar magnitude to eustatic sea‐level change, or global meltwater influx, over the last 18 000 years. The resulting spatially variable relative sea‐level changes combine with observations from far‐field locations to produce a rigorous test for quantitative models of glacial isostatic adjustment, local ice‐sheet history and global meltwater influx. After a review of the attributes of relative sea‐level observations significant for constraining large‐scale models of the isostatic adjustment process we summarise long records of relative sea‐level change from the British Isles and far‐field locations. We give an overview of different global theoretical models of the isostatic adjustment process before presenting intercomparisons of observed and predicted relative sea levels at sites in the British Isles and far‐field for a range of Earth and ice model parameters in order to demonstrate model sensitivity and the resolving power available from using evidence from the British Isles. For the first time we show a good degree of fit between relative sea‐level observations and predictions that are based upon global Earth and ice model parameters, independently derived from analysis of far‐field data, with a terrain‐corrected model of the British Isles ice sheet that includes extensive glaciation of the North Sea and western continental shelf, that does not assume isostatic equilibrium at the Last Glacial Maximum and keeps to trimline constraints of ice surface elevation. We do not attempt to identify a unique solution for the model lithosphere thickness parameter or the local‐scale detail of the ice model in order to provide a fit for all sites, but argue that the next stage should be to incorporate an ice‐sheet model that is based on quantitative, glaciological model simulations. We hope that this paper will stimulate this debate and help to integrate research in glacial geomorphology, glaciology, sea‐level change, Earth rheology and quantitative modelling. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
5.
Hormes, A., Akçar, N. & Kubik, P. W. 2011: Cosmogenic radionuclide dating indicates ice‐sheet configuration during MIS 2 on Nordaustlandet, Svalbard. Boreas, 10.1111/j.1502‐3885.2011.00215.x. ISSN 0300‐9483.0300‐9843 Glacial geological field surveys, aerial image interpretation and cosmogenic radionuclide (CRN) dating allowed us to reconstruct the ice‐sheet configuration on Nordaustlandet, the northernmost island of the European sector on the margin of the Arctic Ocean. The timing of deglaciation was investigated by determining the 26Al and 10Be ages of glacially scoured bedrock, weathered periglacial blockfields and glacial erratic boulders. Only 10Be ages were useful for our interpretations, because of unresolved analytical problems with 26Al. Fjords and lowlands on Nordaustlandet yielded Late Weichselian 10Be ages, indicating that actively erosive ice streams scoured the coastal fjord bathymetry during marine isotope stage (MIS) 2. In Murchisonfjorden, ground‐truthed air‐photograph interpretation and 10Be ages of boulders indicated a cold‐based glacier ice cover during MIS 2 on higher plateaus. 10Be ages and lithological studies of erratic boulders on higher and interior plateaus of Prins Oscars Land (>200–230 m a.s.l.) suggest that the Mid‐Weichselian glaciation (MIS 4) might have been more extensive than that during MIS 2.  相似文献   

6.
This study examines the morphology, sedimentology and genesis of the point bars and floodplain of the Beatton River. The formation of point bars occurs in distinct stages. An initial point bar platform composed mainly of coarse sediment is formed adjacent to the convex bank of a migrating meander bend, and is the base on which develops a single scroll bar of fine traction and suspended load. With continued sedimentation, the scroll bar grows, eventually supporting vegetation and becoming a floodplain ridge. Scroll bars form with greatest size and frequency in rapidly migrating bends, and the shape of the meander bend appears to determine both the location of the initial bar deposit, and its direction of growth up or downstream. Approximately one-half of the floodplain sediment is derived from suspended load, and the initiation of a scroll bar appears to be due to excessive deposition of suspended load in a zone of flow separation over a point bar platform. The critical flow condition for the initiation of a scroll bar does not occur with the same recurrence interval on different shaped meander bends, however, the average recurrence interval within the study reach is approximately every 30 years. Sedimentation rates on point bars and on the floodplain indicate two relatively distinct stages of floodplain alluviation. The most rapid is for surfaces less than 50 years old, although sediment accumulation still persists on surfaces up to 250 years in age. Although frequently flooded, surfaces older than this accumulate very little sediment. Despite 2–3 m of overbank deposition, the amplitude of floodplain ridges is maintained by secondary currents which sweep sediment from the swales towards the ridge crests.  相似文献   

7.
Decay of the last Cordilleran Ice Sheet (CIS) near its geographical centre has been conceptualized as being dominated by passive downwasting (stagnation), in part because of the lack of large recessional moraines. Yet, multiple lines of evidence, including reconstructions of glacio‐isostatic rebound from palaeoglacial lake shoreline deformation suggest a sloping ice surface and a more systematic pattern of ice‐margin retreat. Here we reconstructed ice‐marginal lake evolution across the subdued topography of the southern Fraser Plateau in order to elucidate the pattern and style of lateglacial CIS decay. Lake stage extent was reconstructed using primary and secondary palaeo‐water‐plane indicators: deltas, spillways, ice‐marginal channels, subaqueous fans and lake‐bottom sediments identified from aerial photograph and digital elevation model interpretation combined with field observations of geomorphology and sedimentology, and ground‐penetrating radar surveys. Ice‐contact indicators, such as ice‐marginal channels, and grounding‐line moraines were used to refine and constrain ice‐margin positions. The results show that ice‐dammed lakes were extensive (average 27 km2; max. 116 km2) and relatively shallow (average 18 m). Within basins successive lake stages appear to have evolved by expansion, decanting or drainage (glacial lake outburst flood, outburst flood or lake maintenance) from southeast to northwest, implicating a systematic northwestward retreating ice margin (rather than chaotic stagnation) back toward the Coast Mountains, similar in style and pattern to that proposed for the Fennoscandian Ice Sheet. This pattern is confirmed by cross‐cutting drainage networks between lake basins and is in agreement with numerical models of North American ice‐sheet retreat and recent hypotheses on lateglacial CIS reorganization during decay. Reconstructed lake systems are dynamic and transitory and probably had significant effects on the dynamics of ice‐marginal retreat, the importance of which is currently being recognized in the modern context of the Greenland Ice Sheet, where >35% of meltwater streams from land‐terminating portions of the ice sheet end in ice‐contact lakes.  相似文献   

8.
A fully integrated ice‐sheet and glacio‐isostatic numerical model was run in order to investigate the crustal response to ice loading during the Late Weichselian glaciation of the Barents Sea. The model was used to examine the hypothesis that relative reductions in water depth, caused by glacio‐isostatic uplift, may have aided ice growth from Scandinavia and High Arctic island archipelagos into the Barents Sea during the last glacial. Two experiments were designed in which the bedrock response to ice loading was examined: (i) complete and rapid glaciation of the Barents Sea when iceberg calving is curtailed except at the continental margin, and (ii) staged growth of ice in which ice sheets are allowed to ground at different water depths. Model results predict that glacially generated isostatic uplift, caused by an isostatic forebulge from loads on Scandinavia, Svalbard and other island archipelagos, affected the central Barents Sea during the early phase of glaciation. Isostatic uplift, combined with global sea‐level fall, is predicted to have reduced sea level in parts of the central Barents Sea by up to 200 m. This reduction would have been sufficient to raise the sea floor of the Central Bank into a subaerial position. Such sea‐floor emergence is conducive to the initiation of grounded ice growth in the central Barents Sea. The model indicates that, prior to its glaciation, the depth of the Central Deep would have been reduced from around 400 m to 200 m. Such uplift aided the migration of grounded ice from the central Barents Sea and Scandinavia into the Central Deep. We conclude that ice loading over Scandinavia and Arctic island archipelagos during the first stages of the Late Weichselian may have caused uplift within the central Barents Sea and aided the growth of ice across the entire Barents Shelf. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
In sections and cores from an area of the Baltic Ice Lake in Blekinge complete varve series of fine-grained glacial sediments have been found. It is possible to divide the series, from bottom to top, into four varve types. A core from Karlshamn in Blekinge shows most varves of the investigated localities, in all 355 varves. Antevs' (1915) local chronology has been used, as the most recent revision of the Swedish time scale has not yet been completed. The chronology in this investigation ranges from - 325 to + 315, or 640 years. The varve chronology and the velocity of the ice recession, c. 90 m/year in northeastern Skåne, shows good agreement with the work of Antevs, whose unpublished diagrams have been re-worked and used in this investigation.  相似文献   

10.
Sand wedges and ice‐wedge casts in the Qinghai Lake area on the northeastern Qinghai‐Tibetan Plateau (QTP) occur within alluvial gravel or river terrace deposits. In this study, we report the results of quartz Optically Stimulated Luminescence (OSL) dating of the infill of five relict sand wedges and one ice‐wedge cast. Combining our dating results with previously published luminescence ages of permafrost wedges in the Qinghai Lake area, we show that sand/ice wedges formed at c. 62 ka, c. 45 ka and between 30 and 15 ka, and that the mean annual air temperature (MAAT) was depressed by at least ~3°C relative to present during the sand/ice‐wedge formation periods. This new work is partially corroborated by post‐LGM proxy records from lakes and aeolian deposits reported from the northeastern QTP. It also significantly extends the palaeoenvironmental record in the region in the period before the LGM, when other proxy records are rare, allowing a better understanding of the palaeoenvironmental conditions on the northeastern QTP.  相似文献   

11.
Heat flow increases northward along Intermontane Belt in the western Canadian Cordillera, as shown by geothermal differences between Bowser and Nechako sedimentary basins, where geothermal gradients and heat flows are ∼30 mK/m and ∼90 mW/m2 compared to ∼32 mK/m and 70 –80 mW/m2, respectively. Sparse temperature profile data from these two sedimenatary basins are consistent with an isostatic model of elevation and crustal parameters, which indicate that Bowser basin heat flow should be ∼20 mW/m2 greater than Nechako basin heat flow. Paleothermometric indicators record a significant northward increasing Eocene or older erosional denudation, up to ∼7 km. None of the heat generation, tectonic reorganization at the plate margin, or erosional denudation produce thermal effects of the type or magnitude that explain the north–south heat flow differences between Nechako and Bowser basins. The more southerly Nechako basin, where heat flow is lower, has lower mean elevation, is less deeply eroded, and lies opposite the active plate margin. In contrast, Bowser basin, where heat flow is higher, has higher mean elevation, is more deeply eroded, and sits opposite a transform margin that succeeded the active margin ∼40 Ma. Differences between Bowser and Nechako basins contrast with the tectonic history and erosion impacts on thermal state. Tectonic history and eroded sedimentary thickness suggest that Bowser basin lithosphere is cooling and contracting relative to Nechako basin lithosphere. This effect has reduced Bowser basin heat flow by ∼10–20 mW/m2 since ∼40 Ma. Neither can heat generation differences explain the northerly increasing Intermontane Belt heat flow. A lack of extensional structures in the Bowser basin precludes basin and range-like extension. Therefore, another, yet an unspecified mechanism perhaps associated with the Northern Cordilleran Volcanic Province, contributes additional heat. Bowser basin’s paleogeothermal gradients were higher, ∼36 mK/m, before the Eocene and this might affect petroleum and metallogenic systems.  相似文献   

12.
Natural levées of the Columbia River near Golden, British Columbia, were investigated to identify the mechanisms that control levée development and morphology. Topographic profiles of 12 levée pairs were surveyed, and measurements of water-surface elevation, flow velocity, flow direction and turbidity were obtained during an average magnitude flood (1·2 years recurrence interval). Sedimentation rates and grain-size distributions were measured from sediment traps placed along levée-to-floodbasin transects. Results show that water and sediment exchange between the channel and floodbasin was mainly by advection. During flooding, local floodbasins behave more as efficient water pathways than water storage features, resulting in down-valley floodbasin flows capable of limiting basinward growth of levées. Levée shape results primarily from two independent factors: (1) maximum channel water stage, which limits levée height; and (2) floodbasin hydraulics, which control width. In the Columbia River, the competence of floodbasin flows results in relatively narrow and steep levées. Natural levées grow under two general conditions of deposition as governed by flood-stage elevation relative to levée-crest elevation: front loading and back loading. During large floods when crests are inundated, front loading preferentially aggrades the proximal portions of levées with sediment directly from the channel, thus increasing levée slope. During average or below-average floods when many levée crests are not overtopped, back loading preferentially aggrades the distal levée areas and floodbasin floor, reducing levée slope. In the study area, a balance between front and back loading sustains these narrow and steep levée shapes for long periods, reflecting an equilibrium between hydraulic regime, floodplain morphology and deposition.  相似文献   

13.
The Pekulney Mountains and adjacent Tanyurer River valley are key regions for examining the nature of glaciation across much of northeast Russia. Twelve new cosmogenic isotope ages and 14 new radiocarbon ages in concert with morphometric analyses and terrace stratigraphy constrain the timing of glaciation in this region of central Chukotka. The Sartan Glaciation (Last Glacial Maximum) was limited in extent in the Pekulney Mountains and dates to 20,000 yr ago. Cosmogenic isotope ages > 30,000 yr as well as non-finite radiocarbon ages imply an estimated age no younger than the Zyryan Glaciation (early Wisconsinan) for large sets of moraines found in the central Tanyurer Valley. Slope angles on these loess-mantled ridges are less than a few degrees and crest widths are an order of magnitude greater than those found on the younger Sartan moraines. The most extensive moraines in the lower Tanyurer Valley are most subdued implying an even older, probable middle Pleistocene age. This research provides direct field evidence against Grosswald’s Beringian ice-sheet hypothesis.  相似文献   

14.
Clague, J. J., Mathewes, R. W., Guilbault, J.-P., Hutchinson, I. & Ricketts, B. D. 1997 (September): Pre-Younger Dryas resurgence of the southwestern margin of the Cordilleran ice sheet, British Columbia, Canada. Boreas , Vol. 26, pp. 261–278. Oslo. ISSN 0300–9483.
A lobe of the Cordilleran ice sheet readvanced into the central Fvaser Lowland, southwestern British Columbia, Canada, on at least two occasions near the end of the last glaciation. This ice also flowed into the previously deglaciated, lower reaches of mountain valleys adjacent to the Fraser Lowland and into Washington state. The first of these advances occurred before about 11900 BP and ended with glacier retreat and the establishment of lodgepole pine forest on newly deglaciated terrain. Parts of this forest were overridden by ice during a second advance, shortly after 11300 BP. The younger advance is most likely older than the Younger Dryas Chronozone (11000–10000 BP) and may correlate with an intra-Allerad cooling event (the Killarney-Gerzensee oscillation). The older advance may have occurred during the Oldest Dryas or Older Dryas cold period. Non-climatic factors could also be involved, as emergence of the Fraser Lowland before the older advance greatly reduced or eliminated calving at the glacier margin and thus altered the mass balance of the ice lobe.  相似文献   

15.
Observations of relative sea‐level change and local deglaciation in western Scotland provide critical constraints for modelling glacio‐isostatic rebound in northern Britain over the last 18 000 years. The longest records come from Skye, Arisaig and Knapdale with a shorter, Holocene, record from Kintail. Biostratigraphic (diatom, pollen, dinoflagellate, foraminifera and thecamoebian), lithological and radiocarbon analyses provide age and elevation parameters for each sea‐level index point. All four sites reveal relative sea‐level change that is highly non‐monotonic in time as the local vertical component of glacio‐isostatic rebound and eustasy (or global meltwater influx) dominate at different periods. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Relative sea level at Vancouver, British Columbia rose from below the present datum about 30,000 cal yr B.P. to at least 18 m above sea level 28,000 cal yr B.P. In contrast, eustatic sea level in this interval was at least 85 m lower than at present. The difference in the local and eustatic sea-level positions is attributed to glacio-isostatic depression of the crust in the expanding forefield of the Cordilleran ice sheet during the initial phase of the Fraser Glaciation. Our findings suggest that about 1 km of ice was present in the northern Strait of Georgia 28,000 cal yr B.P., early during the Fraser Glaciation.  相似文献   

17.
A pollen‐based study from Tiny Lake in the Seymour‐Belize Inlet Complex of central coastal British Columbia, Canada, permits an evaluation of the dynamic response of coastal temperate rainforests to postglacial climate change. Open Pinus parklands grew at the site during the early Lateglacial when the climate was cool and dry, but more humid conditions in the later phases of the Lateglacial permitted mesophytic conifers to colonise the region. Early Holocene conditions were warmer than present and a successional mosaic of Tsuga heterophylla and Alnus occurred at Tiny Lake. Climate cooling and moistening at 8740 ± 70 14C a BP initiated the development of closed, late successional T. heterophylla–Cupressaceae forests, which achieved modern character after 6860 ± 50 14C a BP, when a temperate and very wet climate became established. The onset of early Holocene climate cooling and moistening at Tiny Lake may have preceded change at more southern locations, including within the Seymour‐Belize Inlet Complex, on a meso‐ to synoptic scale. This would suggest that an early Holocene intensification of the Aleutian Low pressure system was an important influence on forest dynamics in the Seymour‐Belize Inlet Complex and that the study region was located near the southern extent of immediate influence of this semi‐permanent air mass. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
A multi‐channel, high‐resolution seismic reflection survey using a Micro‐GI airgun was carried out in the framework of the Russian‐German project PLOT (Paleolimnological Transect) on Lake Levinson‐Lessing, Taymyr Peninsula, in 2016. In total, ~70 km of seismic reflection profiles revealed in unprecedented detail the glacial and postglacial sedimentary infill of the lake basin. Five main seismic units have been recognized and interpreted as glacial (Unit V), subglacial and proglacial (Unit IV), marine (Unit III), fluvial‐lacustrine (Unit II) and lacustrine (Unit I) sediments. Of particular significance are imbricated, south‐orientated structures present in the southernmost part of the lake basin within Unit V and a large topographic ridge recognized in front of those structures. We interpret these structures as push moraines and an end moraine, respectively, left by the glacier after its retreat. The depositional pattern of the units above the moraines documents past lake‐level fluctuations. We interpret Unit IV, Unit III and Unit I as highstand deposits, and Unit II as lowstand deposits. Gas‐charged sediments dominate the northern part of the lake basin, whilst they occur only sporadically and in limited spatial extent in the central and southern parts of the lake. In the latter areas, the seismic and echo‐sounder data suggest recent tectonic activity. Our study contributes to the reconstruction of environmental conditions in the Taymyr Peninsula directly following the Early Weichselian deglaciation and shows that deep tectonic lake basins affected by several glaciations can preserve important palaeoenvironmental records, which contributes significantly to our understanding of palaeoenvironmental changes in the Taymyr Peninsula and the central Russian Arctic.  相似文献   

19.
The Late Weichselian ice sheet of western Svalbard was characterized by ice streams and inter‐ice‐stream areas. To reconstruct its geometry and dynamics we investigated the glacial geology of two areas on the island of Prins Karls Forland and the Mitrahalvøya peninsula. Cosmogenic 10Be surface exposure dating of glacial erratics and bedrock was used to constrain past ice thickness, providing minimum estimates in both areas. Contrary to previous studies, we found that Prins Karls Forland experienced a westward ice flux from Spitsbergen. Ice thickness reached >470 m a.s.l., and warm‐based conditions occurred periodically. Local deglaciation took place between 16 and 13 ka. At Mitrahalvøya, glacier ice draining the Krossfjorden basin reached >300 m a.s.l., and local deglaciation occurred at c. 13 ka. We propose the following succession of events for the last deglaciation. After the maximum glacier extent, ice streams in the cross‐shelf troughs and fjords retreated, tributary ice streams formed in Forlandsundet and Krossfjorden, and, finally, local ice caps were isolated over both Prins Karls Forland and Mitrahalvøya and their adjacent shelves.  相似文献   

20.
Up to four nested Neoglacial moraines occur in front of glaciers on Lyngshalvöya. Lichenometric measurements at 21 glaciers demonstrate that these represent five episodes of glacier expansion, one of which predated the Little Ice Age. Lichenometric, dendrochronological and historical evidence indicates that the oldest Little Ice Age moraines date to the mid-18th century, and the youngest to A.D. 1910-30. At nine small glaciers the A.D. 1910-30 moraine represents the Neoglacial maximum; only larger glaciers were more extensive in the 18th century. It is inferred that conditions for glacier growth were less favourable in the 18th century than in A.D. 1880–1910 because of low winter snowfall. Comparison of the relative magnitude of 18th- and 20th-century advances on Lyngshalvöya with those of southern Norway suggests that the diminished winter precipitation was due to the southerly location of the North Atlantic oceanic polar front in the 18th century, which resulted in a reduction in winter cyclonic activity in northern Scandinavia but in an increase in snowfall farther south.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号