首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryolithological, ground ice and fossil bioindicator (pollen, diatoms, plant macrofossils, rhizopods, insects, mammal bones) records from Bol'shoy Lyakhovsky Island permafrost sequences (73°20′N, 141°30′E) document the environmental history in the region for the past c. 115 kyr. Vegetation similar to modern subarctic tundra communities prevailed during the Eemian/Early Weichselian transition with a climate warmer than the present. Sparse tundra‐like vegetation and harsher climate conditions were predominant during the Early Weichselian. The Middle Weichselian deposits contain peat and peaty soil horizons with bioindicators documenting climate amelioration. Although dwarf willows grew in more protected places, tundra and steppe vegetation prevailed. Climate conditions became colder and drier c. 30 kyr BP. No sediments dated between c. 28.5 and 12.05 14C kyr BP were found, which may reflect active erosion during that time. Herb and shrubby vegetation were predominant 11.6–11.3 14C kyr BP. Summer temperatures were c. 4 °C higher than today. Typical arctic environments prevailed around 10.5 14C kyr BP. Shrub alder and dwarf birch tundra were predominant between c. 9 and 7.6 kyr BP. Reconstructed summer temperatures were at least 4 °C higher than present. However, insect remains reflect that steppe‐like habitats existed until c. 8 kyr BP. After 7.6 kyr BP, shrubs gradually disappeared and the vegetation cover became similar to that of modern tundra. Pollen and beetles indicate a severe arctic environment c. 3.7 kyr BP. However, Betula nana, absent on the island today, was still present. Together with our previous study on Bol'shoy Lyakhovsky Island covering the period between about 200 and 115 kyr, a comprehensive terrestrial palaeoenvironmental data set from this area in western Beringia is now available for the past two glacial–interglacial cycles.  相似文献   

2.
Palaeoenvironmental records from permafrost sequences complemented by infrared stimulated luminescence (IRSL) and [Formula: See Text]Th/U dates from Bol'shoy Lyakhovsky Island (73°20'N, 141°30'E) document the environmental history in the region for at least the past 200 ka. Pollen spectra and insect fauna indicate that relatively wet grass-sedge tundra habitats dominated during an interstadial c. 200-170 ka BP. Summers were rather warm and wet, while stable isotopes reflect severe winter conditions. The pollen spectra reflect sparser grass-sedge vegetation during a Taz (Late Saalian) stage, c. 170-130 ka BP, with environmental conditions much more severe compared with the previous interstadial. Open Poaceae and Artemisia plant associations dominated vegetation at the beginning of the Kazantsevo (Eemian) c. 130 ka BP. Some shrubs (Alnus fruticosa, Salix, Betula nana) grew in more protected and wetter places as well. The climate was relatively warm during this time, resulting in the melting of Saalian ice wedges. Later, during the interglacial optimum, shrub tundra with Alnus fruticosa and Betula nana s.l. dominated vegetation. Climate was relatively wet and warm. Quantitative pollen-based climate reconstruction suggests that mean July temperatures were 4-5°C higher than the present during the optimum of the Eemian, while late Eemian records indicate significant climate deterioration.  相似文献   

3.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   

4.
Macroscopic charcoal records from a thermokarst lake deposit in central Yakutia, eastern Siberia, were used to reconstruct the history of forest fires and investigate its relationship to thermokarst initiation. High accumulation rates of charcoal and pollen were coincident in the basal deposits of the thermokarst lake, which suggests that both were initially deposited on the forest floor and subsequently reworked and accumulated in the thermokarst depression. High charcoal and pollen accumulation rates in the basal deposits, dating to 11,000-9000 cal yr BP, also indicate that the thermokarst topography developed during the early Holocene. A lower charcoal accumulation rate after ca. 9000 cal yr BP suggests that thermokarst development has been inhibited since this time. It also indicates that a surface-fire regime has been predominant at least since ca. 9000 cal yr BP in central Yakutia.  相似文献   

5.
基于移动网格技术的热融湖动态演化过程数值模拟   总被引:2,自引:1,他引:2  
基于移动网格技术建立了热融湖动态演化有限元数值模型, 研究了青藏高原多年冻土区典型热融湖动态演化过程, 分析了热融湖半径、深度的变化过程及其对湖底及周围多年冻土温度状况的影响. 结果表明:在移动边界热融湖模型中, 热融湖半径以0.7 m·a-1的速度近线性地增大; 随着下伏高含冰量冻土的融化, 热融湖深度增加先慢后快, 最后逐渐减小趋于稳定. 热融湖深度和半径从5月末至翌年1月末增加显著, 在2-5月间基本保持稳定. 伴随着热融湖的扩展, 地表边界逐渐演变为湖底边界, 热融湖的热影响范围逐渐增大. 在固定边界热融湖模型中, 其热影响会逐渐趋于稳定, 由于初始尺寸大, 其湖底多年冻土退化速率大于移动边界模型, 而远离湖边的多年冻土退化速率要小于移动边界模型. 如果不考虑热融湖边界随时间的变化, 可能会高估热融湖对湖底多年冻土的热影响, 而低估其对附近多年冻土的热影响.  相似文献   

6.
Permafrost degradation influences the morphology, biogeochemical cycling and hydrology of Arctic landscapes over a range of time scales. To reconstruct temporal patterns of early to late Holocene permafrost and thermokarst dynamics, site‐specific palaeo‐records are needed. Here we present a multi‐proxy study of a 350‐cm‐long permafrost core from a drained lake basin on the northern Seward Peninsula, Alaska, revealing Lateglacial to Holocene thermokarst lake dynamics in a central location of Beringia. Use of radiocarbon dating, micropalaeontology (ostracods and testaceans), sedimentology (grain‐size analyses, magnetic susceptibility, tephra analyses), geochemistry (total nitrogen and carbon, total organic carbon, δ13Corg) and stable water isotopes (δ18O, δD, d excess) of ground ice allowed the reconstruction of several distinct thermokarst lake phases. These include a pre‐lacustrine environment at the base of the core characterized by the Devil Mountain Maar tephra (22 800±280 cal. a BP, Unit A), which has vertically subsided in places due to subsequent development of a deep thermokarst lake that initiated around 11 800 cal. a BP (Unit B). At about 9000 cal. a BP this lake transitioned from a stable depositional environment to a very dynamic lake system (Unit C) characterized by fluctuating lake levels, potentially intermediate wetland development, and expansion and erosion of shore deposits. Complete drainage of this lake occurred at 1060 cal. a BP, including post‐drainage sediment freezing from the top down to 154 cm and gradual accumulation of terrestrial peat (Unit D), as well as uniform upward talik refreezing. This core‐based reconstruction of multiple thermokarst lake generations since 11 800 cal. a BP improves our understanding of the temporal scales of thermokarst lake development from initiation to drainage, demonstrates complex landscape evolution in the ice‐rich permafrost regions of Central Beringia during the Lateglacial and Holocene, and enhances our understanding of biogeochemical cycles in thermokarst‐affected regions of the Arctic.  相似文献   

7.
A major late Paleozoic depocentre, the Sverdrup Basin, Canadian High Arctic, has been largely left out of the latest Permian extinction debate, as early workers presumed Middle to Late Permian strata were absent. Basin-scale sequence-stratigraphic and chemostratigraphic correlations indicate Late Permian strata are only missing on the basin margins, where they were removed by sub-Triassic erosion, whereas continuous deposition is recorded in the basin centre. The varying degree of sub-Triassic erosion has significant impact on the carbon-isotope record across the Latest Permian Extinction event, where both the apparent rate and magnitude of carbon-isotope shift vary as a function of basin position. The intrabasin variability in apparent δ13Corg shift across the event is equivalent to that observed globally. In contrast to the abrupt isotope shifts recorded on the basin margin, similar to many records reported globally, the basin centre section shows a systematic shift associated with the Latest Permian Extinction. The Earth likely underwent a prolonged period of increasing environmental stress leading up to the event.  相似文献   

8.
青藏高原热喀斯特湖分布广泛,近年来在气候变暖背景下快速发展。热喀斯特湖的形成和发展与地下冰含量及气候变化有着密切关系,强烈影响多年冻土的热稳定性。为了更深入理解在气候变暖背景下热喀斯特湖的发展及其对下伏多年冻土的影响,以青藏高原北麓河地区一个典型热喀斯特湖的长期监测数据为资料,发展了耦合大气—湖塘—冻土三个过程要素的一维热传导模型,模拟了四种不同深度热喀斯特湖在气候变暖背景下的发展规律及其对多年冻土的热影响。结果表明:浅湖(<1.0m)在目前稳定气候背景下处于较稳定状态,湖冰能够回冻至湖底,对下伏多年冻土影响较小;较深湖塘(≥1.0m)冬季不能回冻至湖底,湖深不断增加,且底部在50年内将会形成不同深度的融区。随着气候变暖,热喀斯特湖的热效应显著,深度快速增加,较深湖塘的最大湖冰厚度减小,底部多年冻土快速融化形成开放融区。研究将有助于理解气候变化对青藏高原多年冻土区地貌演化及水文过程的影响。  相似文献   

9.
Late Quaternary sediments in a permafrost environment recovered from the Elgygytgyn Impact Crater were studied to determine regional palaeoenvironmental variability and infer past water-level changes of the crater lake. Stratigraphic analysis of a 5 m long permafrost core is based on various lithological (grain size, total organic carbon, magnetic susceptibility) and hydrochemical (oxygen isotope composition, major cation content) properties and pore ice content. The results show that alluvial sediments accumulated on top of cryogenically weathered volcanic rock. Changes in the hydrochemical properties reflect different stages of cryogenic weathering. The lithological characteristics mark the transition from an erosive site to a site with accumulation. This environmental change is linked to a relative lake level highstand at >13 000 yr BP, when a shoreline bar was formed leading to slope sedimentation. Lake level dropped by 4 m during the Holocene.  相似文献   

10.
为深入理解热喀斯特湖与多年冻土间的相互作用,本文以青藏高原北麓河盆地典型热喀斯特湖区域为例,构建考虑热传导和热对流过程的水-冰-热耦合模型,对热喀斯特湖作用下的多年冻土退化特征及热喀斯特湖的水均衡进行模拟,计算地质环境和气候变暖对热喀斯特湖水均衡和冻土的影响。研究结果表明:热喀斯特湖周围冻土逐步退化并形成贯穿融区,导致地下水循环模式发生改变;在地表温度作用下,形成的活动层厚度为3.35 m;热喀斯特湖在整个模拟时段内表现为负均衡,其排泄量在285~388 a间显著增加;地层渗透性能决定了热喀斯特湖和生态环境的发展方向;气候变暖加速多年冻土向季节冻土转变。研究结果可为进一步认识寒旱区生态水文过程提供科学依据。  相似文献   

11.
Central Asia witnessed progressive aridification during the Miocene, commonly related to mountain uplift, the Paratethys retreat and global climate cooling. However, the formation of Miocene lakes in Central Asia seems to oppose drier conditions, suggesting that the precise timing, extent and forcing of the aridification is still not well constrained. This study presents a facies model for the alluvial–lacustrine part of the Middle to Late Miocene of the Ili Basin, obtained from two successions. The model enables the semi‐quantitative assessment of regional water level and salinity, and characterizes the control of water level on evaporite formation and diagenesis. Both the proximal Kendyrlisai and the distal Aktau successions show an overall increase in water availability from dry mudflat deposits to lacustrine sedimentation with a transitional playa phase. Increasing evaporation rates outpaced the water supply and caused groundwater salinization. Subsequent lake expansion coincided with a basin‐wide desalinization and required a shift to a positive water budget. A climatic control of the hydrological evolution is inferred due to abrupt salinization and a minor tectonic influence. The long‐term water accumulation is probably related to the hydrological closure of the basin in the early Middle Miocene (15·3 Ma). Starting at 14·3 Ma, the step‐wise salinization occurred simultaneously with the global cooling of the Miocene Climate Transition. The Miocene Climate Transition led to extreme aridity in the Ili Basin, highlighted by the early diagenetic formation of displacive anhydrite in the basin centre. The expansion of the freshwater lake (12·7 to 11·5 Ma) was possibly promoted by lower evaporation rates due to decreasing air temperatures in the Ili Basin after the Miocene Climate Transition. The extreme aridity in the Ili Basin is interpreted as a continental counterpart to the Badenian Salinity Crisis in the Central Paratethys. This emphasizes the role of atmospheric forcing on evaporite sedimentation across Eurasia during the Middle Miocene.  相似文献   

12.
Doklady Earth Sciences - The seismic structure of the complex underlying the stratified sedimentary cover in the Amundsen Basin in Siberia indicates that the formation of a large-scale rift-related...  相似文献   

13.
In Arctic alpine regions, glacio‐lacustrine environments respond sensitively to variations in climate conditions, impacting, for example,glacier extent and rendering former ice‐contact lakes into ice distal lakes and vice versa. Lakefloors may hold morphological records of past glacier extent, but remoteness and long periods of ice cover on such lakes make acquisition of high‐resolution bathymetric datasets challenging. Lake Tarfala and Kebnepakte Glacier, located in the Kebnekaise mountains, northern Sweden, comprise a small, dynamic glacio‐lacustrine system holding a climate archive that is not well studied. Using an autonomous surface vessel, a high‐resolution bathymetric dataset for Lake Tarfala was acquired in 2016, from which previously undiscovered end moraines and a potential grounding line feature were identified. For Kebnepakte Glacier, structure‐from‐motion photogrammetry was used to reconstruct its shape from photographs taken in 1910 and 1945. Combining these methods connects the glacial landform record identified at the lakefloor with the centennial‐scale dynamic behaviour of Kebnepakte Glacier. During its maximum 20th century extent, attained c. 1910, Kebnepakte Glacier reached far into Lake Tarfala, but had retreated onto land by 1945, at an average of 7.9 m year–1. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

14.
15.
全面认识热喀斯特湖水文过程的季节变化特征是准确评估其生态环境效应的关键。以青藏高原典型热喀斯特湖为例, 基于2018—2020年水文气象要素的野外观测及计算, 分析热喀斯特湖的水文特征及产生的环境效应。研究结果表明: ①春季降水补给热喀斯特湖, 迅速升高湖塘水位, 其中湖塘的储水量与湖塘水位之间存在较好的幂函数关系; ②湖面年均蒸发量和湖冰年均升华量分别可达738 mm和198 mm, 受温度升高的影响, 未来有增多的可能; ③热喀斯特湖水中离子质量浓度在暖季初期和后期较高, 冷季湖冰形成过程中自净作用和地球化学过程的影响使各离子表现出不同的迁移机制。受局地因素的影响, 热喀斯特湖的水文要素呈明显的季节变化特征, 水文循环过程会引起多年冻土退化、湖岸坍塌后退、水环境恶化、温室气体释放、土壤盐渍化、植被退化等, 未来研究需对整个高原地区热喀斯特湖的环境效应进行全面评估。  相似文献   

16.
《International Geology Review》2012,54(11):1331-1343
We consider spatial relationships of complexes of the folded basement, the intermediate structural storey, and the koilogenic structural storey. A Hyperboreal Platform with a core of pre-Baykalian consolidation is surrounded on the south and east by Baykalian, Caledonian, and Cimmerian fold systems, and the region we discuss is limited to its southern slopes, in the koilogenic structural storey, we recognize the Laptev and East Siberian sedimentary basins and their constituent complexes, and establish their relationship with the underlying structural storeys. —Author.  相似文献   

17.
Blocked‐valley lakes are formed when tributaries are impounded by the relatively rapid aggradation of a large river and its floodplain. These features are common in the landscape, and have been identified in the floodplains of the Solimões‐Amazon (Brazil) and Fly‐Strickland Rivers (Papua New Guinea), for example, but their inaccessibility has resulted in studies being limited to remotely sensed image analysis. This paper documents the sedimentology and geomorphic evolution of a blocked‐valley lake, Lake Futululu on the Mfolozi River floodplain margin, in South Africa, while also offering a context for the formation of lakes and wetlands at tributary junctions. The study combines aerial photography, elevation data from orthophotographs and field survey, and longitudinal sedimentology determined from a series of cores, which were sub‐sampled for organic content and particle size analysis. Radiocarbon dating was used to gauge the rate and timing of peat accumulation. Results indicate that following the last glacial maximum, rising sea‐levels caused aggradation of the Mfolozi River floodplain. By 3980 years bp , aggradation on the floodplain had impounded the Futululu drainage line, creating conditions suitable for peat formation, which has since occurred at a constant average rate of 0·13 cm year?1. Continued aggradation on the Mfolozi River floodplain has raised the base level of the Futululu drainage line, resulting in a series of back‐stepping sedimentary facies with fluvially derived sand and silt episodically prograding over lacustrine peat deposits. Blocked‐valley lakes form where the trunk river has a much larger sediment load and catchment than the tributary stream. Similarly, when the relative difference in sediment loads is less, palustrine wetlands, rather than lakes, may be the result. In contrast, where tributaries drain a steep, well‐connected catchment, they may impound much larger trunk rivers, creating lakes or wetlands upstream.  相似文献   

18.
A provenance analysis of late Quaternary deposits from tributaries of the Aldan and Lena rivers in Central Yakutia (eastern Siberia) was carried out using analysis of heavy minerals and clay mineralogy. Cluster analysis revealed one assemblage that is characterized by relatively high proportions of amphibole, orthopyroxene and garnet as well as pedogenic clay minerals, reflecting a sediment provenance from the wide catchment area of the Lena and Aldan rivers. In contrast, the three other clusters are dominated by stable heavy minerals with varying amounts of clinopyroxene, apatite and garnet, as well as high percentages of illite and chlorite that are indicative of source rocks of the Verkhoyansk Mountains. Glacial moraines reveal the local mountain source signal that is overprinted by the Lena‐Aldan signal in the oldest moraines by reworking processes. Alluvial sediments in the Verkhoyansk Foreland show a clear Lena source signal through intervals of the middle and late Pleistocene, related to a stream course closer to the mountains at that time. Loess‐like cover sediments are characterized by the dominant Lena provenance with increasing proportions of local mountain sources towards the mountain valleys. Aeolian sands in an alluvial terrace section at the mountain margin covering the time between 30 ka and 10 ka BP reflect temporarily dominant inputs of aeolian materials from the Lena Plains. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This study presents a synthesis of the geomorphology, facies variability and depositional architecture of ice‐marginal deltas affected by rapid lake‐level change. The integration of digital elevation models, outcrop, borehole, ground‐penetrating radar and high‐resolution shear‐wave seismic data allows for a comprehensive analysis of these delta systems and provides information about the distinct types of deltaic facies and geometries generated under different lake‐level trends. The exposed delta sediments record mainly the phase of maximum lake level and subsequent lake drainage. The stair‐stepped profiles of the delta systems reflect the progressive basinward lobe deposition during forced regression when the lakes successively drained. Depending on the rate and magnitude of lake‐level fall, fan‐shaped, lobate or more digitate tongue‐like delta morphologies developed. Deposits of the stair‐stepped transgressive delta bodies are buried, downlapped and onlapped by the younger forced regressive deposits. The delta styles comprise both Gilbert‐type deltas and shoal‐water deltas. The sedimentary facies of the steep Gilbert‐type delta foresets include a wide range of gravity‐flow deposits. Delta deposits of the forced‐regressive phase are commonly dominated by coarse‐grained debrisflow deposits, indicating strong upslope erosion and cannibalization of older delta deposits. Deposits of supercritical turbidity currents are particularly common in sand‐rich Gilbert‐type deltas that formed during slow rises in lake level and during highstands. Foreset beds consist typically of laterally and vertically stacked deposits of antidunes and cyclic steps. The trigger mechanisms for these supercritical turbidity currents were both hyperpycnal meltwater flows and slope‐failure events. Shoal‐water deltas formed at low water depths during both low rates of lake‐level rise and forced regression. Deposition occurred from tractional flows. Transgressive mouthbars form laterally extensive sand‐rich delta bodies with a digitate, multi‐tongue morphology. In contrast, forced regressive gravelly shoal‐water deltas show a high dispersion of flow directions and form laterally overlapping delta lobes. Deformation structures in the forced‐regressive ice‐marginal deltas are mainly extensional features, including normal faults, small graben or half‐graben structures and shear‐deformation bands, which are related to gravitational delta tectonics, postglacial faulting during glacial‐isostatic adjustment, and crestal collapse above salt domes. A neotectonic component cannot be ruled out in some cases.  相似文献   

20.
The biotic turnover in the Pliensbachian-Toarcian transition and changes in assemblages of bivalves, ostracodes, foraminifers, dinocysts, spores, and pollen are described. Only five of 24 bivalve genera and two of four ostracode genera cross the Pliensbachian-Toarcian boundary so that composition of genera and families to be entirely renewed at the base of the Harpoceras falciferum Zone. In the interval of three ammonite zones, diversity of foraminifers is reducing from 27 genera in the Amaltheus margaritatus Zone (upper Pliensbachian) to 17 and then to 15 genera in the Tiltoniceras antiquum (lower Toarcian) and Harpoceras falciferum zones, respectively. Single dinocysts of the Pliensbachian are replaced by their abundant specimens at the base of the Toarcian, and substantial changes in composition of palynological assemblages are simultaneously established. Factors responsible for “mass extinctions” of marine invertebrates are suggested to be the paleogeographic reorganization, anoxic events, eustatic sea-level changes, and climatic fluctuations. The biotic turnover in the Arctic region is interrelated mainly with thermal changes, which caused the southward displacements of taxa distribution areas during a rapid cooling and their gradual return to former habitat areas in the period of warming, rather than with extinction events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号