共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Sarah A. Woodroffe 《第四纪科学杂志》2009,24(3):215-223
Microfossil‐based transfer function models are increasingly used to provide decimeter‐scale sea‐level change reconstructions. In this paper I demonstrate that in the tropical location of northern Australia problems arise in selecting the appropriate elevation range for the modern training set used to calibrate fossil calcareous foraminiferal assemblages. Most calcareous foraminiferal species found in cores occur in both modern intertidal and shallow subtidal environments. A lack of independent measures to indicate whether fossil assemblages come from intertidal environments forces use of a training set that includes intertidal and subtidal environments. This results in decreased precision compared to using a training set solely from intertidal environments. The widely used method of assessing model fit to fossil assemblages (modern analogue technique) often fails to discriminate between acceptable and unacceptable reconstructions. It is important to investigate a number of different measures including modern analogue technique, canonical correspondence analysis and changing bootstrapped sample specific transfer function errors to fully understand the level of similarity between modern and fossil foraminiferal samples, to judge the reliability of transfer function‐predicted sea‐level reconstructions. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
3.
Lasse Sander Mikkel U. Hede Mikkel Fruergaard Lars Nielsen Lars B. Clemmensen Aart Kroon Peter N. Johannessen Lars H. Nielsen Morten Pejrup 《地学学报》2016,28(1):43-49
Coastal lagoons and beach ridges are genetically independent, though non‐continuous, sedimentary archives. We here combine the results from two recently published studies in order to produce an 8000‐year‐long record of Holocene relative sea‐level changes on the island of Samsø, southern Kattegat, Denmark. The reconstruction of the initial mid‐Holocene sea‐level rise is based on the sedimentary infill from topography‐confined coastal lagoons (Sander et al., Boreas, 2015b). Sea‐level index points over the mid‐ to late Holocene period of sea‐level stability and fall are retrieved from the internal structures of a wide beach‐ridge system (Hede et al., The Holocene, 2015). Data from sediment coring, georadar and absolute dating are thus combined in an inter‐disciplinary approach that is highly reproducible in micro‐tidal environments characterised by high sediment supply. We show here that the commonly proximate occurrence of coastal lagoons and beach ridges allows us to produce seamless time series of relative sea‐level changes from field sites in SW Scandinavia and in similar coastal environments. 相似文献
4.
Evidence for relative sea‐level changes during the middle and late Holocene is examined from two locations on the Atlantic coast of Harris, Outer Hebrides, Scotland, using morphological mapping and survey, stratigraphical, grain size and diatom analysis, and radiocarbon dating. The earliest event identified is a marine flood, which occurred after 7982–8348 cal. a (7370 ± 80 14C a) BP, when the sea crossed a threshold lying at ?0.08 m Ordnance Datum Newlyn (OD) (?2.17 m mean high water springs (MHWS)) before withdrawing. This could have been due to a storm or to the Holocene Storegga Slide tsunami. By 6407–6122 cal. a (5500 ± 60 14C a) BP, relative sea levels had begun to fall from a sandflat surface with an indicated MHWS level of between 0.08 and ?1.96 m (?2.01 to ?4.05 m). This fall reached between ?0.30 and ?2.35 m (?2.39 to ?4.44 m) after 5841–5050 cal. a (4760 ± 130 14C a) BP, but was succeeded by a relative sea‐level rise which reached between 0.54 and ?1.57 m (?1.55 to ?3.66 m) by 5450–4861 cal. a (4500 ± 100 14C a) BP. This rise continued, possibly with an interruption, until a second sandflat surface was reached between 2.34 and ?0.26 m (0.25 to ?2.35 m) between 2952–3375 cal. a (3000 ± 80 14C a) and 1948–2325 cal. a (2130 ± 70 14C a) BP, before present levels were reached. The regressive episode from the earliest sandflat is correlated with the abandonment of the Main Postglacial Shoreline. It is maintained that the fluctuations in relative sea level recorded can be correlated with similar events elsewhere on the periphery of the glacio‐isostatic centre and may therefore reflect secular changes in nearshore sea surface levels. Despite published evidence from trim lines of differential ice sheet loading across the area, no evidence of variations in uplift between the locations concerned could be found. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
6.
7.
Vertical land motion caused by continuing glacial isostatic adjustment is one of several important components of sea‐level change and is not limited just to previously glaciated regions. A national‐scale analysis for the British Isles shows an ellipse of present‐day relative uplift (relative sea‐level fall), ~1.2 mm a?1, broadly centred on the deglaciated mountains of Scotland. The pattern of three foci of relative subsidence, ~1 mm a?1, results from the additional interactions of the deglacial meltwater load on the Atlantic basin and the continental shelf, and the signal due to far‐field ice sheets. At a local scale, sediment compaction can more than double the rate of relative land subsidence. Relative land‐level change (the negative of relative sea‐level change) is not the same as vertical land motion. There is a spatial pattern in the difference between relative land‐level change and vertical land motion, with differences at present of approximately ?0.1 to ?0.3 mm a?1 around the British Isles and +2.5 to ?1.5 mm a?1 globally. For the wider scientific and user community, whether or not the differences are considered significant will depend upon the location, time frame and spatial scale of the study that uses such information. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
8.
M. J. Roberts J. D. Scourse J. D. Bennell D. G. Huws C. F. Jago B. T. Long 《第四纪科学杂志》2011,26(2):141-155
Deglacial sea‐level index points defining relative sea‐level (RSL) change are critical for testing glacial isostatic adjustment (GIA) model output. Only a few observations are available from North Wales and until recently these provided a poor fit to GIA model output for the British‐Irish Ice Sheet. We present results of an integrated offshore geophysical (seismic reflection), coring (drilling rig), sedimentological, micropalaeontological (foraminifera), biostratigraphical (palynology) and geochronological (AMS 14C) investigation into a sequence of multiple peat/organic sediment horizons interbedded within a thick estuarine–marine sequence of minerogenic clay‐silts to silty sands from the NE Menai Strait, North Wales. Ten new sea‐level index points and nine new limiting dates from the Devensian Late‐glacial and early Holocene are integrated with twelve pre‐existing Holocene sea‐level index points and one limiting point from North Wales to generate a regional RSL record. This record is similar to the most recent GIA predictions for North Wales RSL change, supporting either greater ice load and later deglaciation than in the GIA predictions generated before 2004, or a modified eustatic function. There is no evidence for a mid‐Holocene highstand. Tidally corrected RSL data indicate initial breaching of the Menai Strait between 8.8 and 8.4 ka BP to form a tidal causeway, with final submergence between 5.8 and 4.6 ka BP. Final breaching converted the NE Menai Strait from a flood‐dominated estuary into a high energy ebb tidal delta with extensive tidal scouring of pre‐existing Late‐glacial and Holocene sequences. The study confirms the value of utilising offshore drilling/coring technology to recover sea‐level records which relate to intervals when rates of both eustatic and isostatic change were at their greatest, and therefore of most value for constraining GIA models. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
9.
Lateglacial and Holocene relative sea‐level changes and first evidence for the Storegga tsunami in Sutherland,Scotland 下载免费PDF全文
Antony J. Long Natasha L. M. Barlow Sue Dawson Jon Hill James B. Innes Catherine Kelham Fraser D. Milne Alastair Dawson 《第四纪科学杂志》2016,31(3):239-255
10.
Detailed litho‐ and biostratigraphical analyses from three coastal sites in contrasting coastal settings on the Isle of Skye, Scotland, UK, reveal evidence for several changes in relative sea level during the Late Devensian and Holocene. At the start of the record, relative sea level in the area was high at ca. 12 500 14C (ca. 14 800 cal.) yr BP but then fell, reaching a low point during the Younger Dryas, at ca. 11 000–10 000 14C (ca. 13 000–11 600 cal.) yr BP, when a rock platform, correlated with the Main Rock Platform, was formed. In the early–middle Holocene, relative sea level was rising by ca. 8000 14C (ca. 8800 cal.) yr BP and in northeast Skye a lagoonal surface, correlated with the Main Postglacial Shoreline, was formed at ca. 6600 14C (ca. 7500 cal.) yr BP. By the late Holocene, relative sea level was again falling, but a rise, registered at at least two sites, began probably before ca. 4000 14C (ca. 4500 cal.) yr BP, and a second lagoonal surface in northeast Skye, correlated with the Blairdrummond Shoreline, was formed, although by ca. 3000 14C (ca. 3200 cal.) yr BP relative sea level in the area had resumed its downward trend. The pattern of relative sea‐level changes disclosed is compared with evidence elsewhere in Scotland. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
11.
12.
Robin J. Edwards 《第四纪科学杂志》2001,16(3):221-235
A foraminiferal transfer function for mean tide level (MTL) is used in combination with AMS radiocarbon dated material to construct a record of relative sea‐level (RSL) change from Poole Harbour, southern Britain. These new data, based on multiple cores from duplicate sites, indicate four phases of change during the last 5000 cal. (calendar) yr: (i) rising RSL between ca. 4700 cal. yr BP and ca. 2400 cal. yr BP; (ii) stable to falling RSL from ca. 2400 cal. yr BP until ca. 1200 cal. yr BP; (iii) a brief rise in RSL from ca. 1200 cal. yr BP to ca. 900 cal. yr BP, followed by a period of stability; (iv) a recent increase in the rate of RSL rise from ca. 400–200 cal. yr BP until the present day. In addition, they suggest that the region has experienced long‐term crustal subsidence at a rate of 0.5 mm C14 yr?1. Although this can account for the overall rise in MTL observed during the past 2500 yr, it fails to explain the changes in the rate of rise during this period. This implies that the phases of RSL change recorded in the marshes of Poole Harbour reflect tidal range variations or ‘eustatic’ fluctuations in sea‐level. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
13.
14.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献
15.
A re‐analysis of sea‐level data from eastern Australia based on 115 calibrated C‐14 ages is used to constrain the origin, timing and magnitude of sea‐level change over the last 7000 years. We demonstrate that the Holocene sea‐level highstand of +1.0–1.5 m was reached ~7000 cal yr bp and fell to its present position after 2000 yr bp . These findings are in contrast to most previous studies that relied on smaller datasets and did not include the now common conversion of conventional C‐14 ages to calendar years. During this ~5000 year period of high sea level, growth hiatuses in oyster beds and tubeworms and lower elevations of coral microatolls are interpreted to represent short‐lived oscillations in sea‐level of up to 1 m during two intervals, beginning c. 4800 and 3000 cal yr bp . The rates of sea‐level rise and fall (1–2 mm yr?1) during these centennial‐scale oscillations are comparable with current rates of sea‐level rise. The origin of the oscillations is enigmatic but most likely the result of oceanographic and climatic changes, including wind strengths, ice ablation, and melt‐water contributions of both Greenland and Antarctic ice sheets. 相似文献
16.
This research analyses the diatom asssemblages recorded from six UK coastal sites and relates these diatom assemblages to tidal levels. The relationship between diatom assemblages and tidal levels is examined statistically in order to develop a diatom‐based tidal‐level transfer function. The results suggest that there is highly significant correlation between the diatom assemblages and water levels from mean high water of neap tides to highest astronomical tide (p = 0.01, 99 random permutations). A weighted average (WA) transfer function is thus established, and the predictive ability of this transfer function is highly satisfactory. Finally, this transfer function is applied successfully to estimate palaeotidal‐levels from fossil diatom data recorded in late Holocene coastal sequences. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
17.
Lateglacial to Holocene relative sea‐level changes in the Stykkishólmur area,northern Snæfellsnes,Iceland 下载免费PDF全文
Comparatively little research has been undertaken on relative sea‐level (RSL) change in western Iceland. This paper presents the results of diatom, tephrochronological and radiocarbon analyses on six isolation basins and two coastal lowland sediment cores from the Stykkishólmur area, northern Snæfellsnes, western Iceland. The analyses provide a reconstruction of Lateglacial to mid‐Holocene RSL changes in the region. The marine limit is measured to 65–69 m above sea level (asl), with formation being estimated at 13.5 cal ka BP. RSL fall initially occurred rapidly following marine limit formation, until ca. 12.6 cal ka BP, when the rate of RSL fall decreased. RSL fell below present in the Stykkishólmur area during the early Holocene (by ca. 10 cal ka BP). The rates of RSL change noted in the Stykkishólmur area demonstrate lesser ice thicknesses in Snæfellsnes than Vestfirðir during the Younger Dryas, when viewed in the regional context. Consequently, the data provide an insight into patterns of glacio‐isostatic adjustment surrounding Breiðafjörður, a hypothesized major ice stream at the Last Glacial Maximum. 相似文献
18.
Sedimentary indications and absolute chronology of Holocene relative sea‐level changes retrieved from coastal lagoon deposits on Samsø, Denmark 下载免费PDF全文
Lasse Sander Mikkel Fruergaard Julian Koch Peter N. Johannessen Morten Pejrup 《Boreas: An International Journal of Quaternary Research》2015,44(4):706-720
Coastal lagoons are a typical feature of the landscape in central Denmark. The lagoons formed when basins within the inherited glacial topography were flooded by the mid‐Holocene sea‐level rise. The transgression initiated coastal geomorphological processes and prompted marine sedimentation in the inundated areas. Despite their common occurrence and wide distribution in the area, coastal lagoons and their deposits have rarely been studied as sedimentary archives. The absolute chronology established for the basal marine deposits in sediment cores retrieved from coastal lagoons on the island of Samsø, southern Kattegat Sea, central Denmark, is evidence of a nearly synchronous onset of marine sedimentation at different elevations. This is interpreted as a new indication of a period of very rapid relative sea‐level (RSL) rise between 7.6 and 7.2 ka BP. Following a period of RSL highstand, a marked facies change in the deposits from an inactive lagoon yields consistent ages of around 4.1 ka BP and may be an indication of a marked RSL fall. This study illustrates the potential of coastal lagoons as sedimentary archives for the reconstruction of RSL in SW Scandinavia and in similar coastal environments elsewhere. 相似文献
19.
Relative sea‐level (RSL) change is reconstructed for central Cumbria, UK, based on litho‐ and biostratigraphical analysis from the Lateglacial to the late Holocene. The RSL curve is constrained using ten new radiocarbon‐dated sea‐level index points in addition to published data. The sea‐level curve identifies a clear Lateglacial sea‐level highstand approximately 2.3 m OD at c. 15–17 k cal a BP followed by rapid RSL fall to below ?5 m OD. RSL then rose rapidly during the early Holocene culminating in a mid‐Holocene highstand of approximately 1 m OD at c. 6 k cal a BP followed by gradual fall to the present level. These new data provide an important test for the RSL predictions from glacial isostatic adjustment models, particularly for the Lateglacial where there are very little data from the UK. The new RSL curve shows similar broad‐scale trends in RSL movement predicted by the models. However, the more recent models fail to predict the Lateglacial sea level highstand above present reconstructed by the new data presented here. Future updates to the models are needed to reduce this mismatch. This study highlights the importance for further RSL data to constrain Lateglacial sea level from sites in northern Britain. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献