首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A large number of radiocarbon dates from charcoal layers buried beneath stacked solifluction lobes at Pippokangas, in the northern boreal zone of Finnish Lapland, are used to reconstruct a Holocene history of solifluction. Although the site is surrounded by Scots pine forest, the solifluction lobes occur on the lower slopes of a kettle hole, the microclimate of which prevents the growth of trees. Samples from the upslope end of charcoal layers have enabled the recognition of four synchronous phases of solifluction lobe initiation: 7400–6700, 4200–3400, 2600–2100 and 1500–500 cal. yr BP. Rates of lobe advance are shown to be lobe‐dependent and age‐dependent: initially, average rates were commonly 0.14–0.19 cm yr?1, later falling to 0.02–0.07 cm yr?1 or less as the lobes approached the bottom of the slope. The absence of charcoal prior to 8000 cal. yr BP, together with single IRSL and TL dates, indicate a relatively stable early Holocene landscape. The onset of solifluction around 7400 cal. yr BP. appears to have followed the immigration of pine around the site, which increased the frequency of forest fires. Phases of solifluction activity seem to have been triggered by millennial‐scale variations in effective moisture (the climatic hypothesis), rather than episodic burning of the surface vegetation cover (the geoecological hypothesis), although climate may also have affected fire frequency and severity. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

2.
The Holocene fire regime is thought to have had a key role in deforestation and shrubland expansion in Galicia (NW Spain) but the contribution of past societies to vegetation burning remains poorly understood. This may be, in part, due to the fact that detailed fire records from areas in close proximity to archaeological sites are scarce. To fill this gap, we performed charcoal analysis in five colluvial soils from an archaeological area (Campo Lameiro) and compared the results to earlier studies from this area and palaeo-ecological literature from NW Spain. This analysis allowed for the reconstruction of the vegetation and fire dynamics in the area during the last ca 11 000 yrs. In the Early Holocene, Fabaceae and Betula sp. were dominant in the charcoal record. Quercus sp. started to replace these species around 10 000 cal BP, forming a deciduous forest that prevailed during the Holocene Thermal Maximum until ~5500 cal BP. Following that, several cycles of potentially fire-induced forest regression with subsequent incomplete recovery eventually led to the formation of an open landscape dominated by shrubs (Erica sp. and Fabaceae). Major episodes of forest regression were (1) ~5500–5000 cal BP, which marks the mid-Holocene cooling after the Holocene Thermal Maximum, but also the period during which agropastoral activities in NW Spain became widespread, and (2) ~2000–1500 cal BP, which corresponds roughly to the end of the Roman Warm Period and the transition from the Roman to the Germanic period. The low degree of chronological precision, which is inherent in fire history reconstructions from colluvial soils, made it impossible to distinguish climatic from human-induced fires. Nonetheless, the abundance of synanthropic pollen indicators (e.g. Plantago lanceolata and Urtica dioica) since at least ~6000 cal BP strongly suggests that humans used fire to generate and maintain pasture.  相似文献   

3.
Vincent, P. J., Lord, T. C., Telfer, M. W. & Wilson, P. 2010: Early Holocene loessic colluviation in northwest England: new evidence for the 8.2 ka event in the terrestrial record? Boreas, 10.1111/j.1502‐3885.2010.00172.x. ISSN 0300‐9483. Twelve new samples of loessic silts from widely spaced locations on the karst uplands of northwest England have yielded Optically Stimulated Luminescence (OSL) dates that fall within or overlap with (within uncertainties) the early to mid‐Holocene period (11.7–6.0 ka), and support three already‐published Holocene ages from similar sediment from this region. Nine of the 15 dates are coincident with the hypothesized climatic deterioration at 8.5–8.0 ka in the North Atlantic region and eight are coincident with the 8.2 ka event. These dates demonstrate that the silts are not primary air‐fall loesses of deglacial/Lateglacial age (c. 18.0–11.7 ka) but have been reworked and now consist of loess‐derived colluvial deposits; we consider the ages to be reliable as there is no compelling evidence to indicate that the samples are partially bleached. There is no substantive archaeological or palynological evidence for Late Mesolithic hunter‐gatherers having had a major impact on the landscape, and it is considered highly unlikely that these people triggered colluviation. We estimate that during the 8.2 ka event there was a reduction in mean annual air temperature at these upland locations of ~2.6–4.6 °C, and proxy evidence from other sites indicates a shift to wetter conditions. It is inferred that there was greater snow accumulation in winter, that the snowpack survived for longer periods, and that there was an increase in the magnitude and frequency of frost‐related processes and meltwater flooding. Together, these changes in climate and their associated (sub)surface processes were responsible for the reworking of the loess. The OSL dates indicate climatically induced landscape dynamism in Great Britain during the latter half of the ninth millennium.  相似文献   

4.
Climate change is allowing fire to expand into previously unburnt ecosystems and regions. While management policies such as fire suppression have significantly altered their frequency and intensity. To prevent future biodiversity/ecosystem services loss, and the large financial burden of wildfires, management plans will be required to adapt to future climate and land use changes. Long-term ecological data offer a unique perspective to assess fire variability under different climate and land-use conditions. In this study, we focus on Killarney National Park, Ireland. An area which today is under threat from an increase in fire activity. Comparing palaeoecological and archaeological records, we reconstruct the past fire dynamic and its impact on the landscape, and evaluate the role of climate vs humans in influencing the natural fire regime over the millennial time-scale. Our results indicate that fire has been present in the landscape since the beginning of the Holocene, with fire in the early Holocene being largely controlled by climate and microsite conditions, and in the late Holocene being increasingly influenced by human activity. The knowledge of past fire regimes can help inform future management in order to protect the semi-natural native woodland. The park's present landscape mosaic, could be preserved by limiting forest encroachment through moderate grazing and burning, while also protecting any fragmented forest from excessive grazing and large/intense fires, via traditional fire management strategies such as fuel load management. However, a fire management strategy should only be implemented following careful consideration of all ecosystem factors and controls.  相似文献   

5.
Mixed‐wood boreal forests are characterized by a heterogeneous landscape dominated by coniferous or deciduous species depending on stand moisture and fire activity. Our study highlights the long‐term drivers of these differences between landscapes across mixed‐wood boreal forests to improve simulated vegetation dynamics under predicted climate changes. We investigate the effects of main climate trends and wildfire activities on the vegetation dynamics of two areas characterized by different stand moisture regimes during the last 9000 years. We performed paleofire and pollen analyses in the mixed‐wood boreal forest of north‐western Ontario, derived from lacustrine sediment deposits, to reconstruct historical vegetation dynamics, which encompassed both the Holocene climatic optimum (ca. 8000–4000 a bp ) and the Neoglacial period (ca. 4000 a bp ). The past warm and dry period (Holocene climatic optimum) promoted higher fire activity that resulted in an increase in coniferous species abundance in the xeric area. The predicted warmer climate and an increase in drought events should lead to a coniferization of the xeric areas affected by high fire activity while the mesic areas may retain a higher broadleaf abundance, as these areas are not prone to an increase in fire activity. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

6.
Excavations at the Wenas Creek Mammoth Site yielded mammoth, bison, and two possible artifacts in a single colluvial stratum, with radiocarbon bone dates ∼17 ka. Eight infrared‐stimulated luminescence (IRSL) samples were collected to establish general ages of site strata, returning multi‐grain estimates consistent with stratigraphic integrity and the radiocarbon dates. Four additional IRSL samples were collected to estimate the depositional age of one artifact found in place. These produced a pooled total of 94 single‐grain estimates from near the artifact, 80% averaging 16.8 ± 0.9 ka, and 20% averaging 5.1 ± 0.5 ka. These results could be interpreted to demonstrate pre‐Clovis age artifact deposition consistent with the bone dates, or a mid to late Holocene intrusion into older deposits, possibly by bioturbation. The single‐grain IRSL dates do not provide proof of pre‐Clovis presence beyond reasonable doubt at this site, but do show that this technique is valuable in assessing the stratigraphic integrity needed for any such claim.  相似文献   

7.
Paleoenvironmental reconstructions are important for understanding the influence of long-term climate variability on ecosystems and landscape disturbance dynamics. In this paper we explore the linkages among past climate, vegetation, and fire regimes using a high-resolution pollen and charcoal reconstruction from Morris Pond located on the Markagunt Plateau in southwestern Utah, USA. A regime shift detection algorithm was applied to background charcoal accumulation to define where statistically significant shifts in fire regimes occurred. The early Holocene was characterized by greater amounts of summer precipitation and less winter precipitation than modern. Ample forest fuel and warm summer temperatures allowed for large fires to occur. The middle Holocene was a transitional period between vegetation conditions and fire disturbance. The late Holocene climate is characterized as cool and wet reflecting an increase in snow cover, which reduced opportunities for fire despite increased availability of fuels. Similarities between modern forest fuel availability and those of the early Holocene suggest that warmer summers projected for the 21st century may yield substantial increases in the recurrence and ecological impacts of fire when compared to the fire regime of the last millennium.  相似文献   

8.
Detailed mapping of dolerite slope deposits overlying sedimentary Triassic rocks on the northern slopes of the Nicholas Range in northeastern Tasmania has revealed an extensive mass movement complex. Landforms north of the summit plateau of the Nicholas Range include the following: (1) a cliff of dolerite columns with associated scree slopes at its base; (2) a topple landscape consisting of several topples that have fallen in a north-easterly direction; (3) a “ripple” landscape consisting of a series of long boulder ridges aligned approximately east-west. Exposure dates were obtained for three large boulders (collapsed dolerite columns) from a ridge within the ripple landscape. The two youngest dates gave a mean age of 52.1 ± 1.9 ka using 36Cl. This is the estimated age for collapse of the dated columns from the cliff face c. 750 m to the south. Boulder ages and landscape morphology indicate that the ripple landscape developed by physical and chemical degradation and concurrent northern displacement of topples over a slip plane formed at the contact between dolerite colluvium and underlying Triassic sedimentary rocks. There is no evidence of movement today, other than localised debris flows associated with knickpoints in streams, and it is deduced that movement on the slip plane occurred under a cooler climate than that prevailing today, possibly under the influence of melting of winter snow during the last glacial cycle. As there is no evidence of significant recent mass movement and forests in the area are likely to have experienced many stand-destroying forest fires in the Holocene, forest harvest is not considered to pose a risk to landscape stability.  相似文献   

9.
The late Pleistocene–Holocene ecological and limnological history of Lake Fúquene (2580 m a.s.l.), in the Colombian Andes, is reconstructed on the basis of diatom, pollen and sediment analyses of the upper 7 m of the core Fúquene‐7. Time control is provided by 11 accelerator mass spectrometry (AMS) 14C dates ranging from 19 670 ± 240 to 6040 ± 60 yr BP. In this paper we present the evolution of the lake and its surroundings. Glacial times were cold and dry, lake‐levels were low and the area was surrounded by paramo and subparamo vegetation. Late‐glacial conditions were warm and humid. The El Abra Stadial, a Younger Dryas equivalent, is reflected by a gap in the sedimentary record, a consequence of the cessation of deposition owing to a drop in lake‐level. The early Holocene was warm and humid; at this time the lake reached its maximum extension and was surrounded by Andean forest. The onset of the drier climate prevailing today took place in the middle Holocene, a process that is reflected earlier in the diatom and sediment records than in the pollen records. In the late Holocene human activity reduced the forest and transformed the landscape. Climate patterns from the Late‐glacial and throughout the Holocene, as represented in our record, are similar to other records from Colombia and northern South America (the Caribbean, Venezuela and Panama) and suggest that the changes in lake‐level were the result of precipitation variations driven by latitudinal shifts of the Intertropical Convergence Zone. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
The role of fire in shaping steep, forested landscapes depends on a suite of hydrologic, biologic, and geological characteristics, including the propensity for hydrophobic soil layers to promote runoff erosion during subsequent rainfall events. In the Oregon Coast Range, several studies postulate that fire primarily modulates sediment production via root reinforcement and shallow landslide susceptibility, although few studies have documented post-fire geomorphic response. Here, we describe field observations and topographic analyses for three sites in the central Oregon Coast Range that burned in 1999, 2002, and 2003. The fires generated strongly hydrophobic soil layers that did not promote runoff erosion because the continuity of the layers was interrupted by pervasive discontinuities that facilitated rapid infiltration. At each of our sites, fire generated significant colluvial transport via dry ravel, consistent with other field-based studies in the western United States. Fire-driven dry ravel accumulation in low-order valleys of our Sulphur Creek site equated to a slope-averaged landscape lowering of 2.5 mm. Given Holocene estimates of fire frequency, these results suggest that fire may contribute 10–20% of total denudation across steep, dissected portions of the Oregon Coast Range. In addition, we documented more rapid decline of root strength at our sites than has been observed after timber harvest, suggesting that root strength was compromised prior to fire or that intense heat damaged roots in the shallow subsurface. Given that fire frequencies in the Pacific Northwest are predicted to increase with continued climate change, our findings highlight the importance of fire-induced dry ravel and post-fire debris flow activity in controlling sediment delivery to channels.  相似文献   

11.
One lake and three peat bogs from the Lourdes glacial basin (France) were used for macrocharcoal analyses and fire frequency reconstruction over the entire Holocene (11700 years). The chronology was based upon thirty-three 14C AMS dates. Comparison of the distribution of both CHarcoal Accumulation Rate (CHAR) and fire return intervals showed that charcoal accumulation significantly differs between the lake and the peat bogs, but that frequency calculation overcomes the disparity between these site types. A composite frequency was built from the four individual records to assess regional versus local variability and fire regime controls by comparisons with regional fire activity, Holocene climatic oscillations and vegetation history. The millennial variability can be depicted as follows: relatively high frequency between 8000 and 5000 cal a BP (up to 5 fires/500 yrs), relatively low frequency between 5000 and 3000 cal a BP (down to 0 fires/500 yrs), and an increase between 3000 and 500 cal a BP (up to 4 fires/500 yrs). From 8000 to 5000 cal a BP, fire frequency displays strong synchrony between sites and appears to be mostly driven by increased summer temperature characterizing the Holocene Thermal Maximum (HTM). On the contrary, during the last 3000 years fire frequency was heterogeneous between sites and most probably human-driven. However, higher frequency at the millennial scale during the mid-Holocene strongly suggests that the perception of human-driven fire regime depends on the strength of natural controls.  相似文献   

12.
Holocene fire disturbance and vegetation history were reconstructed using macroscopic charcoal and pollen accumulation rates from two lake sediment records (Holtjärnen and Klotjärnen) collected in the boreal forest of central Sweden. The records were used to examine the potential drivers associated with changes in fire regime. Climate, vegetation and human activity were all identified as factors variously influencing the fire regime. In the early Holocene, near bicentennial fire return intervals were regionally widespread, suggesting that fire disturbance was largely regulated by climate at that time. In the mid‐ and late Holocene, vegetation exerted an important control on the fire regime. During the mid‐Holocene, the expansion of thermophilous broadleaf vegetation offset the influence of warmer climate by altering the local microclimate and by changing the structure and flammability of the available fuels. During the transition to the late Holocene, thermophilous vegetation decreased in abundance and Pinus increased, resulting in a more flammable forest even though the climate was cooling and moistening. Fire disturbance correspondingly increased. The modern boreal forest was established in the late Holocene as Picea expanded regionally as the climate cooled, moistened, and became increasingly continental. Although no change in the frequency of fire was apparent at this time, increased stand densities likely facilitated greater fuel consumption in subsequent fires. Within the last millennium, human action markedly modified the forested landscape, altering the fire regime.  相似文献   

13.
Charcoal particles are widespread in terrestrial and lake environments of the northern temperate and boreal biomes where they are used to reconstruct past fire events and regimes. In this study, we used botanically identified and radiocarbon-dated charcoal macrofossils in mineral soils as a paleoecological tool to reconstruct past fire activity at the stand scale. Charcoal macrofossils buried in podzolic soils by tree uprooting were analyzed to reconstruct the long-term fire history of an old-growth deciduous forest in southern Québec. Charcoal fragments were sampled from the uppermost mineral soil horizons and identified based on anatomical characters. Spruce (Picea spp.) fragments dominated the charcoal assemblage, along with relatively abundant wood fragments of sugar maple (Acer saccharum) and birch (Betula spp.), and rare fragments of pine (Pinus cf. strobus) and white cedar (Thuja canadensis). AMS radiocarbon dates from 16 charcoal fragments indicated that forest fires were widespread during the early Holocene, whereas no fires were recorded from the mid-Holocene to present. The paucity of charcoal data during this period, however, does not preclude that a fire event of lower severity may have occurred. At least eight forest fires occurred at the study site between 10,400 and 6300 cal yr B.P., with a dominance of burned conifer trees between 10,400 and 9000 cal yr B.P. and burned conifer and deciduous trees between 9000 and 6300 cal yr B.P. Based on the charcoal record, the climate at the study site was relatively dry during the early Holocene, and more humid from 6300 cal yr B.P. to present. However, it is also possible that the predominance of conifer trees in the charcoal record between 10,400 and 6300 cal yr B.P. created propitious conditions for fire spreading. The charcoal record supports inferences based on pollen influx data (Labelle, C., Richard, P.J.H. 1981. Végétation tardiglaciaire et postglaciaire au sud-est du Parc des Laurentides, Québec. Géographie Physique et Quaternaire 35, 345-359) of the early arrival of spruce and sugar maple in the study area shortly after deglaciation. We conclude that macroscopic charcoal analysis of mineral soils subjected to disturbance by tree uprooting may be a useful paleoecological tool to reconstruct long-term forest fire history at the stand scale.  相似文献   

14.
Tasmania's montane temperate rainforests contain some of Australia's most ancient and endemic flora. Recent landscape‐scale fires have impacted a significant portion of these rainforest ecosystems. The complex and rugged topography of Tasmania results in a highly variable influence of fire across the landscape, rendering predictions of ecosystem response to fire difficult. We assess the role of topographic variation in buffering the influence of fire in these endemic rainforest communities. We developed a new 14 000‐year (14‐ka) palaeoecological dataset from Lake Perry, southern Tasmania, and compared it to neighbouring Lake Osborne (<250 m distant) to examine how topographic variations influence fire and vegetation dynamics through time. Repeated fire events during the Holocene cause a decline in montane rainforest taxa at both sites; however, in the absence of fire, rainforest taxa are able to recover. Montane temperate rainforest taxa persisted at Lake Perry until European settlement, whilst these taxa were driven locally extinct and replaced by Eucalyptus species at Lake Osborne after 2.5 ka. Contiguous topographic fire refugia within the Lake Perry catchment probably provided areas of favourable microclimates that discouraged fire spread and supported the recovery of these montane temperate rainforests. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

15.
The charcoal discovery in the soils and sediments of the relic forest of Pinus nigra ssp Salzmanni near Saint-Guilhem-le-Désert allows us to establish a chronology of Holocene fires. Their origin dates from the Middle Holocene, but they are especially significant after the construction of the medieval abbey during the 9th century. The original pine plantation was heterogeneous, with another pine, Pinus sylvestris, which has now been eradicated. Changes in the fire modes have been observed, recent human fires being generalized, which resulted in a significant regression of the forest cover, which was replaced by box-tree formations. To cite this article: J.-L. Vernet et al., C. R. Geoscience 337 (2005).  相似文献   

16.
Floodplain deposition is an essential part of the Holocene sediment dynamics of many catchments and a thorough dating control of these floodplain deposits is therefore essential to understand the driving forces of these sediment dynamics. In this paper we date floodplain and colluvial deposition in the Belgian Dijle catchment using accelerator mass spectrometric radiocarbon and optical stimulated luminescence dating. Relative mass accumulation curves for the Holocene were constructed for three colluvial sites and 12 alluvial sites. A database was constructed of all available radiocarbon ages of the catchment and this database was analysed using relative sediment mass accumulation rates and cumulative probability functions of ages and site‐specific sedimentation curves. Cumulative probability functions of ages were split into different depositional environments representing stable phases and phases of accelerated clastic deposition. The results indicate that there is an important variation between the different dated sites. After an initial stable early and middle Holocene phase with mainly peat growth in the floodplains, clastic sedimentation rates increased from 4000 BC on. This first phase was more pronounced and started somewhat earlier for colluvial deposits then for alluvial deposits. The main part of the Holocene deposits, both in colluvial and alluvial valleys, was deposited during the last 1 ka. The sedimentation pattern of the individual dated sites and the catchment‐wide pattern indicate that land use changes are responsible for the main variations in the Holocene sediment dynamics of this catchment, while the field data do not provide indications for a climatological influence on the sediment dynamics. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
The chronostratigraphy of mostly Holocene sediments in the Northern Negev desert of Israel was studied through amino acid epimerization analysis (alloisoleucine/isoleucine ratio, A/I) of individual land snail shells and 14C analysis of bulk samples of land snail shells contained within the sediments. Analysis of 31 deposits shows a very strong correlation between A/I and 14C age. A/I analyses indicate that age mixtures occur within all colluvial and in some fluvial deposits. Consequently, radiocarbon dates of bulk samples, which give an average age, overestimate the time of deposition. Sedimentation rates were generally rapid in both fluvial and colluvial deposits. Colluviation shows a maximum in the early Holocene and decreases progressively thereafter, in accordance with the change in average rainfall. Accumulation of fluvial sediments shows a distinct mid-Holocene maximum and apparently relates to the interaction between variation in rainfall, extent of bedrock exposure, and vegetation density. Late Holocene fluvial deposition may relate to agricultural activity. The understanding of the chronology of sedimentation is dependent on an integrated approach employing amino acid epimerization analysis to study age variation within a layer and 14C analyses for establishment of an absolute chronology.  相似文献   

18.
Very little is known about the temporal pattern and the palaeoenvironmental implications of Holocene colluvial processes (debris‐flow and water‐flow processes) in eastern Norway. In this study, well‐dated sedimentary successions from 19 deep excavations are used to reconstruct Holocene colluvial activity in upper Gudbrandsdalen, eastern Norway. Following deglaciation, debris‐flow and water‐flow events have been common in upper Gudbrandsdalen throughout the Holocene, with 62% of the recognised debris‐flow and water‐flow units deposited prior to 5000 cal. yr BP. Relatively high colluvial activity is recorded at ca. 8600–7400, 2400–1900 and 800–400 cal. yr BP, with a conspicuous peak at ca. 8500–8100. Periods of relatively low colluvial activity are recorded at ca. 7100–6500, 5900–5300 and 3500–2500 cal. yr BP. Two different weather situations, unusually heavy rains and warm periods during the snowmelt season, are responsible for triggering colluvial processes in this area. These different weather situations may in turn be related to different climatic conditions. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
The Deccan Trap region exhibits an erosional landscape over a relatively ancient and stable Deccan shield. The Quaternary history of the area has been reconstructed on the basis of evidence from alluvial deposits occurring along the major rivers. However, recent investigations have revealed that evidence for geo-environmental change during the Quaternary Period is also contained in the colluvial deposits that occur in the foothill zones. The colluvial deposits, ranging in thickness from 1 to 10 m, invariably occupy gently inclined pediment slopes. The sediments are presently deeply dissected by gullies, and the process of colluviation has almost ceased. These deposits are best preserved in the semi-arid parts of the region. Detailed textural, geochemical and stratigraphical studies at four different sites reveal similar input processes, the slight variations being attributed to local environmental factors. Scanning electron microscopy studies of some grains indicate marginal contribution of aeolian processes at the time of deposition. Mesolithic artefacts and a few U/Th dates indicate that the colluviation took place during the Late Quaternary. The properties of the deposits suggest relatively high energy conditions as well as a remarkable variability in the intensity of hillslope processes. These properties are indicative of semi-arid conditions during which the regolith was stripped from devegetated hillslopes and was deposited on the pediments. A variety of evidence indicates that the period of colluviation coincided with arid conditions during the Last Glacial Maximum. The geomorphological and archaeological evidence also indicates that incision by gully systems was initiated during the early Holocene humid phase. The environmental conditions deduced for the study area are similar to those reported for other parts of the intertropical zone. © 1997 John Wiley & Sons, Ltd.  相似文献   

20.
In boreal forest ecosystems, wildfire severity (i.e. the extent of fire‐related tree mortality) is affected by environmental conditions and fire intensity. A burned area usually includes tree patches that partially or entirely escaped fire, called ‘residual patches’. Although the occurrence of residual patches has been extensively documented, their persistence through time, and thus their capacity to escape several consecutive fires, has not yet been investigated. Macroscopic charcoal particles embedded in organic soils were used to reconstruct the fire history of 13 residual patches of the eastern Canadian boreal mixedwood forest. Our results display the existence of two types of residual patches: (i) patches that only escaped fire by chance, maybe because of local site or meteorological conditions unsuitable for fire spread (random patches), and (ii) patches with lower fire susceptibility, also called ‘fire refuges’ that escaped at least two consecutive fires, probably because of particular site characteristics. Fire refuges can escape fire for more than 500 years, up to several thousand years, and probably burn only during exceptionally severe fire events. Special conservation efforts could target fire refuges owing to their old age, long ecological continuity and potential specific biological diversity associated to different microhabitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号