首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fjord landscape of South America, stretching ~ 1500 km between Golfo Corcovado (~ 43°S) and Tierra del Fuego (~ 56°S), is the largest continuous fjord landscape on Earth. This paper presents the results of new structural geological and geomorphological mapping of this landscape using optical satellite images and digital elevation models. First-order geological structures are represented by strike-slip faults forming lineaments up to hundreds of kilometres long. The strike-slip faulting has been active since Late Cretaceous times and is responsible for the presence of a conspicuous structural cleavage visible as lineaments up to ~ 10 km long. A detailed analysis of these second-order lineaments from digital image data was carried out in three sectors. In Sector 1, located northwest of the North Patagonian Icefield, there are three distinct mean orientations, characterized by a main nearly orogen-parallel orientation (az. ~ 145°) and two orogen-oblique secondary orientations (az. ~ 20° and az. ~ 65°). In Sector 2, located west of the South Patagonian Icefield, there are also three separate mean orientations, with most of the lineaments concentrated between azimuths 0° and 80° (mean at ~ 36°); and two other orogen-oblique means at azimuth ~ 122° and ~ 163°. In Sector 3, around the Cordillera Darwin, there is a single main orogen-parallel mean at ~ 100–115°. In all three sectors, mapped fjord orientations bear a striking similarity to the structural data, with fjords orientated preferentially in the same direction as structural lineaments. We infer that successive glaciations followed the same ice-discharge routes, widening and deepening pre-existing geological structures at the expense of the surrounding terrain to create the fjord landscape. This study has broader implications for ice sheet reconstructions and landscape evolution beneath ice sheets because we demonstrate that the primary control on fjord development in glaciated areas is geological and not glaciological.  相似文献   

2.
Lake Lisan, the lake that filled the Jordan graben during the Last Glacial, left behind a well developed sequence of erosional and depositional shore terraces in the south east of the current Dead Sea. These terraces record a series of stillstands that were caused by small transgressions within an overall trend of falling lake levels. The terraces were observed in places where they had not been identified previously. The morphology of the terraces was investigated in six cross-sections using differential GPS altimetry. The levels of the terraces range between − 370 and − 148 m a.s.l. The high stand of Lake Lisan at − 148 m correlates well with the high level of − 150 m reported by Bowman and Gross [Bowman, D., Gross, T., 1992. The highest stand of Lake Lisan: ~ 150 meters below MSL. Israel Journal of Earth-Science 41, 233–237.] along the western coast of Lake Lisan. The lake terraces are horizontal, elongated and tectonically undisturbed, and have a sub-horizontal foreshore (tread) with an average slope of 8.2° and steep backshore cliff (riser) with an average slope of 17.7°. The six cross-sections show a good altitudinal correlation between their terraces. Moreover, the terraces appear in undisturbed continuity on the aerial photos. These morphological characteristics demonstrate that the retreat of the lake was a result of substantial climatic changes, not of tectonic subsidence.In-situ stromatolites were found on most of the terraces, reflecting a shallow water environment and emphasizing that these terraces are recessional. Well-developed desert varnish and Tafoni observed on blocks sitting on the terrace surfaces imply a long period of exposure and a low rate of post lacustrine erosion. The formation of Lisan terraces is constrained mainly by coastal slope, water depth and underlying lithology. The morphological analysis of these terraces allows identification of two kinds of pseudo-terraces, which were formed as a result of tread or riser destruction.U/Th and OSL dating allowed the dating of three events within the lake level curve more precisely. The high level of − 148 m occurred at 30.5 ± 0.22 ka BP, consistent with the Heinrich Event 3 and Dansgaard–Oeschger stadial 5, the coldest period in the NGRIP Greenland Ice Core record. The next lower terrace at − 154 m was formed at 22.9 ka BP ± 0.29 and corresponds to the stadial 2C, the final phase of the Last High Glacial. The correlation between the Lisan high stands and climatic stadials suggests that Northern-Hemispheric cold periods led to periods with a more positive water balance in the Near East. At ~ 10 ± 0.8 ka BP Lake Lisan experienced a sharp drop to − 200 m followed by a transgression between 9.5 to 7 ka BP.  相似文献   

3.
A next-generation drilling system, equipped with a thermal drilling device, is proposed for glacier ice. The system is designed to penetrate glacier ice via melting of the ice and continuously analyze melt-water in a contamination-free sonde. This new type of drilling system is expected to provide analysis data in less time and at less cost than existing systems. Because of the limited number of parameters that can be measured, the proposed system will not take the place of conventional drilling systems that are used to obtain ice cores; however, it will provide a useful method for quickly and simply investigating glacier ice.An electro-thermal drilling device is one of the most important elements needed to develop the proposed system. To estimate the thermal supply required to reach a target depth in a reasonable time, laboratory experiments were conducted using ice blocks and a small sonde equipped solely with heaters. Thermal calculations were then performed under a limited range of conditions. The experiments were undertaken to investigate the effects of the shape and material of the drill head and heater temperature on the rate of penetration into the ice. Additional thermal calculations were then performed based on the experimental results.According to the simple thermal calculations, if the thermal loss that occurs while heat is transferred from the heater to ice (in melting the ice) is assumed to be 50%, the total thermal supply required for heaters in the sonde and cable is as follows: (i) 4.8 kW (sonde) plus 0 W (cable) to penetrate to 300 m depth over 10 days into temperate glacier ice for which the temperature is 0 °C at all depths and to maintain a water layer along 300 m of cable; (ii) 10 kW (sonde) plus 19–32 kW (cable) to penetrate to 1000 m depth over 1 month into cold glacier ice for which the temperature is −25 °C at the surface and 0 °C at 1000 m depth and to maintain a water layer along 1000 m of cable; and (iii) 19 kW (sonde) plus 140–235 kW (cable) to penetrate to 3000 m depth over 2 months into an ice sheet for which the temperature is −55 °C at the surface and 0 °C at 3000 m depth and to maintain a water layer along 3000 m of cable. The thermal supply required for the cable is strongly affected by the thickness of the water layer, cable diameter, and the horizontal distance from the ice wall at which the ice temperature was maintained at its initial temperature. A large thermal supply is required to heat 3000 m of cable in an ice sheet (scenario (iii) above), but penetration into glacier ice (scenarios (i) and (ii) above) could be realistic with the use of a currently employed generator.  相似文献   

4.
Distinct rock fragment displacements occur on the ambas, or structurally determined stepped mountains of the Northern Ethiopian Highlands. This paper describes the rock fragment detachment from cliffs by rockfall, quantifies its annual rate, and identifies factors controlling rock fragment movement on the scree slopes. It further presents a conceptual model explaining rock fragment cover at the soil surface in these landscapes. In the May Zegzeg catchment (Dogu'a Tembien district, Tigray), rockfall from cliffs and rock fragment movement on debris slopes by runoff and livestock trampling were monitored over a 4-year period (1998–2001). Rockfall and rock fragment transport mainly induced by livestock trampling appear to be important geomorphic processes. Along a 1500-m long section of the Amba Aradam sandstone cliff, at least 80 t of rocks are detached yearly and fall over a mean vertical distance of 24 m resulting in a mean annual cliff retreat rate of 0.37 mm y− 1. Yearly unit rock fragment transport rates on scree slopes ranged between 23.1 and 37.9 kg m− 1 y− 1. This process is virtually stopped when exclosures are established. Corresponding mean rock fragment transport coefficients K are 32–69 kg m− 1 y− 1 on rangeland but only 3.9 kg m− 1 y− 1 in densely vegetated exclosures. A conceptual model indicates that besides rockfall from cliffs and argillipedoturbation, all factors and processes of rock fragment redistribution in the study area are of anthropogenic origin.  相似文献   

5.
Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma− 1. The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.  相似文献   

6.
The sediment flux generated by postglacial channel incision has been calculated for the 2150 km2, non-glacial, Waipaoa catchment located on the tectonically active Hikurangi Margin, eastern North Island, New Zealand. Sediment production both at a sub-catchment scale and for the Waipaoa catchment as a whole was calculated by first using the tensioned spline method within ARC MAP to create an approximation of the aggradational Waipaoa-1 surface (contemporaneous with the Last Glacial Maximum), and second using grid calculator functions in the GIS to subtract the modern day surface from the Waipaoa-1 surface. The Waipaoa-1 surface was mapped using stereo aerial photography, and global positioning technology fixed the position of individual terrace remnants in the landscape. The recent discovery of Kawakawa Tephra within Waipaoa-1 aggradation gravels in this catchment demonstrates that aggradation was coincidental with or began before the deposition of this 22 600 14C-year-old tephra and, using the stratigraphic relationship of Rerewhakaaitu Tephra, the end of aggradation is dated at ca 15 000 14C years (ca 18 000 cal. years BP). The construction of the Waipaoa-1 terrace is considered to be synchronous and broadly correlated with aggradation elsewhere in the North Island and northern South Island, indicating that aggradation ended at the same time over a wide area. Subsequent downcutting, a manifestation of base-level lowering following a switch to postglacial incision at the end of glacial-age aggradation, points to a significant Southern Hemisphere climatic warming occurring soon after ca 15 000 14C years (ca 18 000 cal. years BP) during the Older Dryas interval. Elevation differences between the Waipaoa-1 (c.15 ka) terrace and the level of maximum channel incision (i.e. before aggradation since the turn of the 20th century) suggest about 50% of the topographic relief within headwater reaches of the Waipaoa catchment has been formed in postglacial times. The postglacial sediment flux generated by channel incision from Waipaoa catchment is of the order of 9.5 km3, of which ~ 6.6 km3 is stored within the confines of the Poverty Bay floodplain. Thus, although the postglacial period represented a time of high terrigenous sediment generation and delivery, only ~ 30% of the sediment generated by channel incision from Waipaoa catchment probably reached the marine shelf and slope of the Hikurangi Margin during this time. The smaller adjacent Waimata catchment probably contributed an additional 2.6 km3 to the same depocentre to give a total postglacial sediment contribution to the shelf and beyond of ~ 5.5 km3. Sediment generated by postglacial channel incision represents only ~ 25% of the total sediment yield from this landscape with ~ 75% of the estimated volume of the postglacial storage offshore probably derived from hillslope erosion processes following base-level fall at times when sediment yield from these catchments exceeded storage.  相似文献   

7.
The glacial buzzsaw hypothesis suggests that efficient erosion limits topographic elevations in extensively glaciated orogens. Studies to date have largely focussed on regions where large glaciers (tens of kilometres long) have been active. In light of recent studies emphasising the importance of lateral glacial erosion in lowering peaks and ridgelines, we examine the effectiveness of small glaciers in limiting topography under both relatively slow and rapid rock uplift conditions. Four ranges in the northern Basin and Range, Idaho, Montana, and Wyoming, USA, were chosen for this analysis. Estimates of maximum Pleistocene slip rates along normal faults bounding the Beaverhead–Bitterroot Mountains (~ 0.14 mm y− 1), Lemhi Range (~ 0.3 mm y− 1) and Lost River Range (~ 0.3 mm y− 1) are an order of magnitude lower than those on the Teton Fault (~ 2 mm y− 1). We compare the distribution of glacial erosion (estimated from cirque floor elevations and last glacial maximum (LGM) equilibrium line altitude (ELA) reconstructions) and fault slip rate with three metrics of topography in each range: the along-strike maximum elevation swath profile, hypsometry, and slope-elevation profiles. In the slowly uplifting Beaverhead–Bitterroot Mountains, and Lemhi and Lost River Ranges, trends in maximum elevation parallel ELAs, independent of variations in fault slip rate. Maximum elevations are offset ~ 500 m from LGM ELAs in the Lost River Range, Lemhi Range, and northern Beaverhead–Bitterroot Mountains, and by ~ 350 m in the southern Beaverhead–Bitterroot Mountains, where glacial extents were less. The offset between maximum topography and mean Quaternary ELAs, inferred from cirque floor elevations, is ~ 350 m in the Lost River and Lemhi Ranges, and 200–250 m in the Beaverhead–Bitterroot Mountains. Additionally, slope-elevation profiles are flattened and hypsometry profiles show a peak in surface areas close to the ELA in the Lemhi Range and Beaverhead–Bitterroot Mountains, suggesting that small glaciers efficiently limit topography. The situation in the Lost River Range is less clear as a glacial signature is not apparent in either slope-elevation profiles or the hypsometry. In the rapidly uplifting Teton Range, the distribution of ELAs appears superficially to correspond to maximum topography, hypsometry, and slope-elevations profiles, with regression lines on maximum elevations offset by ~ 700 and ~ 350 m from the LGM and mean Quaternary ELA respectively. However, Grand Teton and Mt. Moran represent high-elevation “Teflon Peaks” that appear impervious to glacial erosion, formed in the hard crystalline bedrock at the core of the range. Glacier size and drainage density, rock uplift rate, and bedrock lithology are all important considerations when assessing the ability of glaciers to limit mountain range topography. In the northern Basin and Range, it is only under exceptional circumstances in the Teton Range that small glaciers appear to be incapable of imposing a fully efficient glacial buzzsaw, emphasising that high peaks represent an important caveat to the glacial buzzsaw hypothesis.  相似文献   

8.
Previous studies of chemical weathering rates for soil developed on glacial moraines generally assumed little or no physical erosion of the soil surface. In this study, we investigate the influence of physical erosion on soil profile weathering rate calculations. The calculation of chemical weathering rates is based on the assumption that soil profiles represent the integrated amount of weathering since the time of moraine deposition. The weathering rate of a surface subjected to denudation is the sum of the weathering loss from the existing soil profile added to the weathering loss in the material removed by denudation, divided by the deposition age. In this study, the amount of weathered material removed since moraine deposition is calculated using the denudation rate estimated from cosmogenic nuclide data and the deposition age of the moraine. Weathering rates accounting for denudation since moraine deposition are compared to weathering rates based on the assumption of no physical erosion and on the assumption of steady-state denudation for the Type Pinedale moraine ( 21 ka) and the Bull Lake-age moraine ( 140 ka) in the Fremont Lake Area (Wind River Mountains, Wyoming, USA). The total weathering rates accounting for denudation are 8.15 ± 1.05 g(oxide) m 2 y 1 for the Type Pinedale moraine and 4.78 ± 0.89 g(oxide) m 2 y 1 for the Bull Lake-age moraine, which are  2 to 4 times higher, respectively, than weathering rates based on the assumption of no physical erosion. The weathering rates based on denudation since moraine deposition are comparable or smaller than weathering rates assuming steady-state denudation. We find the assumption of steady-state denudation is not valid in depositional landscapes with young deposition ages or slow denudation rates. The decrease in weathering rates over time between the Type Pinedale and Bull Lake-age soils that is observed in the case of no physical erosion is decreased when the influence of denudation on the total weathering rates is taken into account. Fresh unweathered material with high reactive mineral surface area is continuously provided to the surface layer by denudation diminishing the effect of decreasing weathering rate over time.  相似文献   

9.
Desert pavement surfaces of the eastern Libyan Plateau in central Egypt represent a stable landscape preserving Middle and Upper Paleolithic artifacts. Detailed measurements of pavement clasts indicate significant variability in clast size, density, lithology and orientation between pavements, but no spatial relationship among any of these pavement variables over the study area. Pavement characteristics are unrelated to local geomorphic features including slope gradient and aspect, suggesting a desert pavement surface that has developed without significant influence from transporting mechanisms such as overland flow and slope failure. Meridional vertical cracks in surface clasts implicate thermal stresses due to diurnal solar variation as a mechanical weathering process, whereas the presence of a clast-free silty layer within all soil profiles indicates that these are accretionary pavement surfaces that have grown upward over time. The desert pavement in this region has likely developed in situ through mechanical breakdown of surface clasts and desert pedogenesis, indicating long-term stability for this region and minimal taphonomic effects on artifacts > 2 cm in diameter deposited on this surface over the last ca. 100 ka.  相似文献   

10.
Many Vertisols in Tigray, Ethiopia, typically carry a discontinuous rock fragment (RF, size 0.5–> 40 · 10− 2 m) cover with 10 to 100 RFs m− 2. Such RF mulches are of agricultural and environmental significance because they influence the water balance in the underlying soils and the crop yield. Natural RF concentrations are mostly considered as eolian or hydraulic lag deposits, or as the result of lateral transport over the soil surface from a rock outcrop, upslope. In cultivated areas RF mulches can develop by tillage.This paper presents the case of a natural RF mulch whose lithology indicates that the RFs are up-squeezed by the local Vertisol. The study site is located in the pass of Enda Maryam, Tigray, Northern Ethiopia (39°8′ E and 13°36′ N). A circular area of 10 m diameter, about 200 m away from the water divide in the valley has been cleared annually between 01/1999 and 05/2003. During this period, 625 RFs, 17 being > 7.5 · 10− 2 m in size, totalling a mass of nearly 62 kg, have been collected. After correction for measurement procedures, the rate of RF up-warping by the Vertisol at Enda Maryam is assessed at 5 RFs m− 2 in 3 years. At this rate of appearance, the formation of current RF concentrations on top of active valley Vertisols is only a matter of 101–2 years, provided the availability of RFs below the soil surface.Although important underground displacements were measured in the Vertisol between 01/1999 and 05/2002, the supposed link between up-squeezing of RFs and plastic deformations of ‘chimney’, ‘diapir’ or ‘intrusion’-like type in the Vertisol could not be evidenced. Instead, RFs are clearly concentrated on the soil surface as well as in depth, along the existing vertical desiccation cracks, often > 1 m deep which display polygonal configurations at the soil surface. Further, bundles of slickensides containing some RFs, have been mapped at the base of the Vertisol. The slickenside configuration suggests that the RF-bearing substrate is being scraped off.While the underground displacement of RFs along active slickensides seems normal, the process of RFs ascending in ‘upright’ position in the edge of desiccation cracks needs explanation. The closure of a desiccation crack is a peristaltic-like movement, following ascent or descent of the capillary fringe. It is hypothesized that this movement gradually pushes the RF to the surface or to another place or level in the soil profile where the crack closes in last instance.The apparent young age of the valley Vertisol mulches in Ethiopia might indicate the very recent formation of yearly recurrent desiccation cracks of Vertisols in the area. Available information confirms that most valleys in the study area used to be perennially marshy. Under these conditions no movements of RFs in the soil profile are expected to occur. Gullying, leading to pronounced seasonal desiccation of the Vertisols, started in several cases not more than 50 years ago.  相似文献   

11.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

12.
A new and simple method is developed to efficiently quantify erosion and deposition rates based on stock unearthing measurements. This is applicable to spatial scales ranging from plot to hillslopes, and to time scales ranging from single hydrologic events to centennial scales. The method is applied to a plot area on vineyard hillslopes in Burgundy (Monthélie, France), with measurement of 4328 vine plants. A sediment budget established at the plot scale shows a mean soil lowering of 3.44 ± 1 cm over 20 years, involving a minimal erosion rate of 1.7 ± 0.5 mm yr− 1. Locally, erosion rates can reach up to 8.2 ± 0.5 mm yr− 1.This approach allows the sediment redistribution to be mapped and analyzed at 1-m resolution. It provides novel insights into the characterization of erosion patterns on pluri-decennial scales and into the analysis of spatial distribution of erosion processes on cultivated hillslopes.  相似文献   

13.
Over the past decades, > 50,000 dams and reforestation on the Yangtze River (Changjiang) have had little impact on water discharge but have drastically altered annual and particularly seasonal sediment discharge. Before impoundment of the Three Gorges Dam (TGD) in June 2003, annual sediment discharge had decreased by 60%, and the hysteresis of seasonal rating curves in the upper reaches at Yichang station had shifted from clockwise to counterclockwise. In addition, the river channel in middle-lower reaches had changed from depositional to erosional in 2002.During the four years (2003–2006) after TGD impoundment, ~ 60% of sediment entering the Three Gorges Reservoir was trapped, primarily during the high-discharge months (June–September). Although periodic sediment deposition continues downstream of the TGD, during most months substantial erosion has occurred, supplying ~ 70 million tons per year (Mt/y) of channel-derived sediment to the lower reaches of the river. If sand extraction (~ 40 Mt/y) is taken into consideration, the river channel loses a total of 110 Mt/y. During the extreme drought year 2006, sediment discharge in the upper reaches drastically decreased to 9 Mt (only 2% of its 1950–1960s level) because of decreased water discharge and TGD trapping. In addition, Dongting Lake in the middle reaches, for the first time, changed from trapping net sediment from the mainstem to supplying 14 Mt net sediment to the mainstem. Severe channel erosion and drastic sediment decline have put considerable pressure on the Yangtze coastal areas and East China Sea.  相似文献   

14.
Varnish microlamination (VML) dating is a correlative age determination technique that can be used to date and correlate various geomorphic features in deserts. In this study, we establish a generalized late Quaternary (i.e., 0–300 ka) varnish layering sequence for the drylands of western USA and tentatively correlate it with the SPECMAP oxygen isotope record. We then use this climatically correlated varnish layering sequence as a correlative dating tool to determine surface exposure ages for late Quaternary geomorphic features in the study region. VML dating of alluvial fan deposits in Death Valley of eastern California indicates that, during the mid to late Pleistocene, 5–15 ky long aggradation events occurred during either wet or dry climatic periods and that major climate shifts between glacial and interglacial conditions may be the pacemaker for alteration of major episodes of fan aggradation. During the Holocene interglacial time, however, 0.5–1 ky long brief episodes of fan deposition may be linked to short periods of relatively wet climate. VML dating of alluvial desert pavements in Death Valley and the Mojave Desert reveals that pavements can be developed rapidly (< 10 ky) during the Holocene (and probably late Pleistocene) in the arid lowlands (< 800 m msl) of these regions; but once formed, they may survive for 74–85 ky or even longer without being significantly disturbed by geomorphic processes operative at the pavement surface. Data from this study also support the currently accepted, “being born at the surface” model of desert pavement formation. VML dating of colluvial boulder deposits on the west slope of Yucca Mountain, southern Nevada, yields a minimum age of 46 ka for the emplacement of these deposits on the slope, suggesting that they were probably formed during the early phase of the last glaciation or before. These results, combined with those from our previous studies, demonstrate that VML dating has great potential to yield numerical age estimates for various late Quaternary geomorphic features in the western USA drylands.  相似文献   

15.
Low-temperature apatite (U–Th)/He (AHe) thermochronology on vertical transects of leucogranite stocks and 10Be terrestrial cosmogenic nuclide (TCN) surface exposure dating on strath terraces in the Lahul Himalaya provide a first approximation of long-term (104–106 years) exhumation rates for the High Himalayan Crystalline Series (HHCS) for northern India. The AHe ages show that exhumation of the HHCS in Lahul from shallow crustal levels to the surface was ~ 1–2 mm/a and occurred during the past ~ 2.5 Ma. Bedrock exhumation in Lahul fits into a regional pattern in the HHCS of low-temperature thermochronometers yielding Plio-Pleistocene ages. Surface exposure ages of strath terraces along the Chandra River range from ~ 3.5 to 0.2 ka. Two sites along the Chandra River show a correlation between TCN age and height above the river level yielding maximum incision rates of 12 and 5.5 mm/a. Comparison of our AHe and surface exposure ages from Lahul with thermochronometry data from the fastest uplifting region at the western end of the Himalaya, the Nanga Parbat syntaxis, illustrates that there are contrasting regions in the High Himalaya where longer term (105–107 years) erosion and exhumation of bedrock substantially differ even though Holocene rates of fluvial incision are comparable. These data imply that the orogen's indenting corners are regions where focused denudation has been stable since the mid-Pliocene. However, away from these localized areas where there is a potent coupling of tectonic and surface processes that produce rapid uplift and denudation, Plio-Pleistocene erosion and exhumation can be characterized by disequilibrium, where longer term rates are relatively slower and shorter term fluvial erosion is highly variable over time and distance. The surface exposure age data reflect differential incision along the length of the Chandra River over millennial time frames, illustrate the variances that are possible in Himalayan river incision, and highlight the complexity of Himalayan environments.  相似文献   

16.
Late Quaternary slip across the Cañada David detachment has produced an extensive array of Quaternary scarps cutting alluvial-fans along nearly the entire length (~ 60 km) of the range-bounding detachment. Eight regional alluvial-fan surfaces (Q1 [youngest] to Q8 [oldest]) are defined and mapped along the entire Sierra el Mayor range-front. Terrestrial cosmogenic nuclide 10Be concentrations from individual boulders on alluvial-fan surfaces Q4 and Q7 yield surface exposure ages of 15.5 ± 2.2 ka and 204 ± 11 ka, respectively. Formation of the fans is probably tectonic, but their evolution is strongly moderated by climate, with surfaces developing as the hydrological conditions have changed in response to climate change on Milankovitch timescales. Systematic mapping reveals that the fault scarp array along active range-bounding faults in Sierras Cucapa and El Mayor can be divided into individual rupture zones, based on cross-cutting relationships with alluvial-fans. Quantitative morphological ages of the Laguna Salada fault-scarps, derived from linear diffusive degradation modeling, are consistent with the age of the scarps based on cross-cutting relationships. The weighted means of the maximum mass diffusivity constant for all scarps with offsets < 4 m is 0.051 and 0.066 m2/ka for the infinite and finite-slope solutions of the diffusion equation, respectively. This estimate is approximately an order of magnitude smaller than the lowest diffusivity constants documented in other regions and it probably reflects the extreme aridity and other microclimatic conditions that characterize the eastern margin of Laguna Salada.  相似文献   

17.
Transient landscape disequilibrium is a common response to climatic fluctuations between glacial and interglacial conditions. Such landscapes are best suited to the investigation of catchment-wide response to changes in incision. The geomorphology of the Trub and Grosse Fontanne, adjacent stream systems in the Napf region of the Swiss Molasse, was analyzed using a 2-m LIDAR DEM. The two catchments were impacted by the Last Glacial Maximum, LGM, even though the glaciers never overrode this region. They did, however, cause base levels to drop by as much as 80 m. Despite their similar tectonic, lithologic and climatic settings, these two basins show very different responses to the changing boundary conditions. Stream profiles in the Trub tend to be smooth, while in the Fontanne, numerous knickzones are visible. Similarly, cut-and-fill terraces are abundant in the Trub watershed, but absent in the Fontanne, where deep valleys have been incised. The Trub appears to be a coupled hillslope–channel system because the morphometrics throughout the basin are uniform. The morphology of hillslopes upstream of the knickzones in the Fontanne is identical to that of the Trub basin, but different downstream of the knickzones, suggesting that the lower reaches of the Fontanne have been decoupled from the hillslopes. However, the rapid incision of the Fontanne is having little effect on the adjacent upper hillslopes.We tested this interpretation using cosmogenic 10Be-derived basin-averaged denudation rates and terrace dating. The coupled nature of the Trub basin is supported by the similarity of denudation rates, 350 ± 50 mm ky− 1, at a variety of spatial scales. Upstream of the knickzones, rates in the Fontanne, 380 ± 50 mm ky− 1, match those of the Trub. Downstream of the knickzones, denudation rates increase to 540 ± 100 mm ky− 1. The elevated rates in the downstream areas of the Fontanne are due to rapid incision causing a decoupling of the hillslope from the channel. Basin response time and the magnitude of base level drop exert the principal control over the difference in geomorphic response between the two basins. The timing of the filling of the Trub valley, 17 ± 2 ka, and the initial incision of the Fontanne, 16 ± 3 ka, were calculated, verifying that these are responses to late glacial perturbations. Unique lithologic controls allow for one of the fastest regolith production rates yet to be reported,  380 mm ky− 1.  相似文献   

18.
Monthly samples of riverine water were collected and analyzed for the concentrations of major ions (Ca2+, Mg2+, K+, Na+, HCO3, SO42−, Cl, NO3), dissolved silicon, and total dissolved solids (TDS) at Wuzhou hydrological station located between the middle and lower reaches of the Xijiang River (XJR) from March 2005 to April 2006. More frequent sampling and analysis were carried out during the catastrophic flooding in June 2005. Stoichiometric analysis was applied for tracing sources of major ions and estimating CO2 consumption from the chemical weathering of rocks. The results demonstrate that the chemical weathering of carbonate and silicate rocks within the drainage basin is the main source of the dissolved chemical substances in the XJR. Some 81.20% of the riverine cations originated from the chemical weathering processes induced by carbonic acid, 11.32% by sulfuric acid, and the other 7.48% from the dissolution of gypsum and precipitates of sea salts within the drainage basin. The CO2 flux consumed by the rock chemical weathering within the XJR basin is 2.37 × 1011 mol y− 1, of which 0.64 × 1011 mol y− 1 results from silicate rock chemical weathering, and 1.73 × 1011 mol y− 1 results from carbonate rock chemical weathering. The CO2 consumption comprises 0.38 × 1011 mol during the 9-d catastrophic flooding. The CO2 consumption from rock chemical weathering in humid subtropical zones regulates atmospheric CO2 level and constitutes a significant part of the global carbon budget. The carbon sink potential of rock chemical weathering processes in the humid subtropical zones deserves extra attention.  相似文献   

19.
We investigated the size fraction and pigment-derived class compositions of phytoplankton within the euphotic zone of the Antarctic marginal ice zone between 63.3°S and 66.5°S along the 140°E meridian on two consecutive cruises in the late austral summer and early austral autumn of 2003. We observed significant temporal and spatial variations in phytoplankton size and taxonomic composition, although chlorophyll a concentrations were generally below 1 μg l−1 during both periods. Microphytoplankton (>20 μm), mainly diatoms, were prominent in the euphotic zone in the southernmost area around 66.5°S during late summer. In the rest of the study area during both cruises, the phytoplankton community was dominated by pico- and nano-sized populations (<20 μm) throughout the euphotic zone. The small-size populations mostly consisted of diatoms and haptophytes, although chlorophytes were dominant in extremely cold water (−1.5°C) below the overlying warm water around 65.5°S during late summer. From late summer to early autumn, chlorophytes declined in abundance, probably due to increasing temperature within the euphotic zone (−1 to 0°C). These pico- and nano-phytoplankton-dominated populations were often accompanied by relatively high concentrations of ammonium, suggesting the active regeneration of nutrients within the small-size plankton community.  相似文献   

20.
Dawn T. Nicholson   《Geomorphology》2008,101(4):655-665
Microweathering of ice-smoothed bedrock surfaces was investigated in the Røldal area of Hardanger Plateau (60°), southern Norway. Postglacial rates of weathering were determined from surface lowering using quartz veins as reference surfaces. Weathering processes are inferred from assessment of weathering rind formation, surface hardness, and the preservation of small-scale glacial erosional features.Surface lowering rates for a range of metamorphic rocks vary from 0.05 to 2.20 mm ka− 1 and are broadly comparable with those obtained from crystalline rocks in other periglacial environments. The mean rate of surface lowering at 0.55 mm ka− 1 is low and demonstrates the relatively small impact of microweathering on postglacial landscape evolution. Variations in bedrock microweathering can be explained by lithological variation. Amphibolite and mica-rich bedrock surfaces experience greater denudation and weakening, least weathering rind formation, and abundant preservation of glacial striae, despite greater surface lowering. Conversely, quartz-rich bedrock surfaces are most resistant to denudation and weakening, but have greater weathering rind formation and fewer preserved striae. Postglacial microweathering is achieved primarily through granular disintegration involving detachment and removal of mineral grains and weakening from increased porosity. Granular decomposition is manifest in the formation of weathering rinds. Analysis of interactions between weathering indices indicates that rind accumulation is limited by microerosion.A conceptual model is proposed that illustrates the temporal interrelationships between in situ and erosional facets of microweathering in two contrasting mineral assemblages. The model proposes that cyclic processes of in situ disintegration, decomposition, and erosion are at work. The relative balance between these processes varies with lithology so that in more resistant quartz-rich rocks the net effect is minimal surface lowering and accumulation of weathering rind. In weaker, amphibolitic and micaceous rocks, the net effect is greater surface lowering and minimal accumulation of weathering rind. The results of the research demonstrate the important influence of rock properties, notably mineral composition, in postglacial microweathering of crystalline bedrock in a periglacial environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号