首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
2.
The inversion of high-resolution geoid anomaly maps derived from satellite altimetry should allow one to retrieve the lithospheric elastic thickness, T e , and crustal density, c . Indeed, the bending of a lithospheric plate under the load of a seamount depends on both parameters, and the associated geoid anomaly is correspondingly dependent on the two parameters. The difference between the observed and modelled geoid signatures is estimated by a cost function, J , of the two variables, T e and c . We show that this cost function forms a valley structure along which many local minima appear, the global minimum of J corresponding to the true values of the lithospheric parameters. Classical gradient methods fail to find this global minimum because they converge to the first local minimum of J encountered, so that the final parameter estimate strongly depends on the starting pair of values ( T e ,   c ). We here implement a non-linear optimization algorithm to recover these two parameters from altimetry data. We demonstrate from the inversion of synthetic data that this approach ensures robust estimates of T e and c by activating two search phases alternately: a gradient phase to find a local minimum of J , and a tunnelling phase through high values of the cost function. The accuracy of the solution can be improved by a search in an iteratively restricted parameter subspace. Applying our non-linear inversion to the Great Meteor Seamount geoid data, we further show that the inverse problem is intrinsically ill-posed. As a consequence, minute geoid (or gravity) data errors can induce large changes in any recovery of lithospheric elastic thickness and crustal density.  相似文献   

3.
4.
Numerical modelling of rise and fall of a dense layer in salt diapirs   总被引:4,自引:0,他引:4  
Numerical models are used to study the entrainment of a dense anhydrite layer by a diapir. The anhydrite layer is initially horizontally embedded within a viscous salt layer. The diapir is down-built by aggradation of non-Newtonian sediments ( n = 4, constant temperature) placed on the top of the salt layer. Several parameters (sedimentation rate, salt viscosity, perturbation width and stratigraphic position of the anhydrite layer) are studied systematically to understand their role in governing the entrainment of the anhydrite layer. High sedimentation rates during the early stages of the diapir evolution bury the initial perturbation and, thus, no diapir forms. The anhydrite layer sinks within the buried salt layer. For the same sedimentation rate, increasing viscosity of the salt layer decreases the rise rate of the diapir and reduces the amount (volume) of the anhydrite layer transported into the diapir. Model results show that viscous salt is capable of carrying separate blocks of the anhydrite layer to relatively higher stratigraphic levels. Varying the width of the initial perturbation (in our calculations 400–800 m), from which a diapir triggers, shows that wider diapirs can more easily entrain an embedded anhydrite layer than the narrower diapirs. The anhydrite layer is entrained as long as rise rate of the diapir exceeds the descent rate of the denser anhydrite layer. We conclude that the four parameters mentioned above govern the ability of a salt diapir to entrain an embedded dense layer. However, the model results show that the entrained blocks inevitably sink back if the rise rate of the diapir is less than the rate of descent of the anhydrite layer or the diapir is permanently covered by a stiff overburden in case of high sedimentation rates.  相似文献   

5.
6.
The interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical finite element (FE) modelling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper, we develop a general tool to perform inversions of geodetic data by means of 3-D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is a weighted combination of the six stress components applied to a single element-source. The pre-computed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993–1997 inflation phase at Mt Etna, documented by GPS and EDM measurements. We consider four different forward libraries, computed in models characterized by homogeneous/heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect.  相似文献   

7.
8.
The dynamic coalescence of two mode II cracks on a planar fault is simulated here using the elastodynamic boundary integral equation method. We focus on the complexity of the resultant slip rate and seismic radiation in the crack coalescence model (CCM) and on the reconstruction of a single crack model (SCM) that can reproduce the CCM waveforms from heterogeneous source parameters rather than coalescence. Simulation results reveal that localized higher slip rates are generated by coalescence as a result of stress interaction between the approaching crack tips. The synthesized seismic radiation exhibits a distinct coalescence phase that has striking similarities to stopping phases in the radiation and propagation properties. The corresponding SCM yields a singular increase in the stress drop distribution, which is accompanied by a sudden decrease in it across the point of coalescence in the CCM. This implies that the generation of high-frequency radiation is more efficient from coalescence than from stopping, although both phenomena exhibit the same strong  ω−2  -type displacement spectra.  相似文献   

9.
We study the effects of structural inhomogeneity on the quasi-static growth of strike-slip faults. A layered medium is considered, made up of an upper layer bounded by a free surface and welded to a lower half-space with different elastic property. Mode III crack is employed as a mathematical model of strike-slip fault, which is nucleated in the lower half-space and then propagates towards the interface. We adopt FEM-β, newly proposed analysis method for failure, to simulate the quasi-statistic crack growth governed by the stress distribution in layered media. Our results show that along planar traces across interfaces a compliant upper layer has significant effects on promoting/suppressing crack growth before/after its extension into the layer and vice versa for a rigid one. This proposes a possibility that surface breaks due to strike-slip faulting could be arrested by deposit layers at the topmost part of the Earth's crust.  相似文献   

10.
11.
12.
Vehicle trajectory modelling is an essential foundation for urban intelligent services. In this paper, a novel method, Distant Neighbouring Dependencies (DND) model, has been proposed to transform vehicle trajectories into fixed-length vectors which are then applied to predict the final destination. This paper defines the problem of neighbouring and distant dependencies for the first time, and then puts forward a way to learn and memorize these two kinds of dependencies. Next, a destination prediction model is given based on the DND model. Finally, the proposed method is tested on real taxi trajectory datasets. Results show that our method can capture neighbouring and distant dependencies, and achieves a mean error of 1.08 km, which outperforms other existing models in destination prediction significantly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号