首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soil surface crusting, a common phenomenon on cultivated soils, has major implications for agriculture and the environment because of its effects on soil hydrological properties, erosion and crop establishment. The objectives of this study were to evaluate land use controls on crust formation and the hydraulic response of soils to crust development for a Patancheru series soil (clayey skeletal, mixed, isohyperthermic Udic Rhodustalf) in south‐central India. Soil aggregates, obtained from cultivated (PL) and naturally vegetated fallow (NV) land, were packed into sample trays and subjected to laboratory rain simulation to form crusts. Thin sections and visual observation indicated that crust development reached a more advanced stage in the PL case compared with NV following 90 min of rain at 40–80 mm h−1 intensity. This was reflected in a thicker crust layer with fewer voids in the former and a less smooth surface with partially disintegrated aggregates in the latter. The hydraulic response of the soil surface with the progression of crust development indicated a more permeable and less dense crust formed on NV than on PL soil. The results suggested that NV soil aggregates were more stable and that crust formation is more gradual for stable aggregates compared with the less stable PL aggregates. A structural crust‐type formed on the Patancheru soil by means of parallel subprocesses involving translocation and illuviation of aggregate disruption by products, and raindrop compaction and particle rearrangement. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
Flume experiments simulating concentrated runoff were carried out on remolded silt loam soil samples (0·36 × 0·09 × 0·09 m3) to measure the effect of rainfall‐induced soil consolidation and soil surface sealing on soil erosion by concentrated flow for loess‐derived soils and to establish a relationship between soil erodibility and soil bulk density. Soil consolidation and sealing were simulated by successive simulated rainfall events (0–600 mm of cumulative rainfall) alternated by periods of drying. Soil detachment measurements were repeated for four different soil moisture contents (0·04, 0·14, 0·20 and 0·31 g g?1). Whereas no effect of soil consolidation and sealing is observed for critical flow shear stress (τcr), soil erodibility (Kc) decreases exponentially with increasing cumulative rainfall depth. The erosion‐reducing effect of soil consolidation and sealing decreases with a decreasing soil moisture content prior to erosion due to slaking effects occurring during rapid wetting of the dry topsoil. After about 100 mm of rainfall, Kc attains its minimum value for all moisture conditions, corresponding to a reduction of about 70% compared with the initial Kc value for the moist soil samples and only a 10% reduction for the driest soil samples. The relationship estimating relative Kc values from soil moisture content and cumulative rainfall depth predicts Kc values measured on a gradually consolidating cropland field in the Belgian Loess Belt reasonably well (MEF = 0·54). Kc is also shown to decrease linearly with increasing soil bulk density for all moisture treatments, suggesting that the compaction of thalwegs where concentrated flow erosion often occurs might be an alternative soil erosion control measure in addition to grassed waterways and double drilling. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This paper describes laboratory testing of 148 samples collected from Southern Alberta for erosion by wash and splash. Rainfall intensity was held constant during these tests. Soil aggregation was the most significant variable explaining soil loss. The significance of other soil properties, such as organic carbon and clay content is variable, depending on the interrelationships among aggregate stability, organic content, and clay content of particular soils. Variations in erodibility of the major soils examined are explained by the resistance of aggregates to compaction and dispersion. Splash detachment and wash transport are the dominant erosion mechanisms in inter-rill areas.  相似文献   

4.
This paper describes the methods used and some preliminary results of simulated erosion studies on soils with cryptogamic crusts from a semiarid rangeland environment. Two 0·3 m2 shallow monoliths were collected from the upper 20 cm of a Typic Haplargid from the semiarid Australian rangelands and subjected to a range of rainfall intensities and durations representing potentially erosive summer and winter rainfall events. One of the monoliths was cleared of vegetation by a simulated low intensity bushfire. Macro- and micromorphological properties of the surface, as well as runoff and erosion losses, were measured during the experiment. Runoff and erosion losses were, as expected, greater for all conditions on the burned than on the unburned monolith. Intensive rainfall damaged the cryptogamic crust unprotected by vegetation by widening and deepening desiccation cracks around the cryptogams, and breaking away and dispersing larger soil fragments from the crack margins. The burned and eroded surfaces provided a much poorer environment for seed entrapment, germination, and growth than did the unburned surface.  相似文献   

5.
Experiments to test relationships between slope length, percolation, and runoff were carried out in a laboratory flume under simulated rainfall at intensities from 24·2-26 mm h?1. A composite soil subject to sealing was mixed from a clay and a sand and tested on 2·39 m, 7·18 m, and 17 m slopes for a minimum of 200 min. Runoff discharge is not a simple function of rainfall excess and slope length but shows a complex pattern dominated by surface sealing, rill development and headcut incision. Rill development by concentrated surface wash conformed to established threshold hydraulic conditions, but subsequent headcut incision was necessary to breach the seal and significantly affect percolation/runoff ratios. Headcut evolution is complex, apparently reflecting hydraulic instability and possibly different stages in seal development. Headcut and rill incision shows a cyclic pattern interspersed with broad areas of sheetwash and colluvial deposition where percolation rates are very low.  相似文献   

6.
Field‐ and laboratory‐scale rainfall simulation experiments were carried out in an investigation of the temporal variability of erosion processes on interrill areas, and the effects of such variation upon sediment size characteristics. Poorly aggregated sandy soils from the semi‐arid environment of Senegal, West Africa, were used on both a 40 m2 field plot and a 0·25 m2 laboratory plot; rainfall intensity for all experiments was 70 mm h?1 with a duration of 1 to 2 hours. Time‐series measurements were made of the quantity and the size distribution of eroded material: these permitted an estimate of the changing temporal balance between the main erosion processes (splash and wash). Results from both spatial scales showed a similar temporal pattern of runoff generation and sediment concentration. For both spatial scales, the dominant erosional process was detachment by raindrops; this resulted in a dynamic evolution of the soil surface under raindrop impact, with the rapid formation of a sieving crust followed by an erosion crust. However, a clear difference was observed between the two scales regarding the size of particles detached by both splash and wash. While all measured values were lower than the mean weight diameter (MWD) value of the original soil (mean 0·32 mm), demonstrating the size‐selective nature of wash and splash processes, the MWD values of washed and splashed particles at the field scale ranged from 0·08 to 0·16 mm and from 0·12 to 0·30 mm respectively, whereas the MWD values of washed and splashed particles at the laboratory scale ranged from 0·13 to 0·29 mm and from 0·21 to 0·32 mm respectively. Thus only at the field scale were the soil particles detached by splash notably coarser than those transported by wash. This suggests a transport‐limited erosion process at the field scale. Differences were also observed between the dynamics of the soil loss by wash at the two scales, since results showed wider scatter in the field compared to the laboratory experiments. This scatter is probably related to the change in soil surface characteristics due to the size‐selectivity of the erosion processes at this spatial scale. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

7.
Soil erosion is a severe problem hindering sustainable agriculture on the Loess Plateau of China. Plot experiments were conducted under the natural rainfall condition during 1995–1997 at Wangdongguo and Aobao catchments in this region to evaluate the effects of various land use, cropping systems, land slopes and rainfall on runoff and sediment losses, as well as the differences in catchment responses. The experiments included various surface conditions ranging from bare soil to vegetated surfaces (maize, wheat residue, Robinia pseudoacacia L., Amorpha fruticosa L., Stipa capillata L., buckwheat and Astragarus adsurgens L.). The measurements were carried out on hill slopes with different gradients (i.e. 0 ° to 36 °). These plots varied from 20 to 60 m in length. Results indicated that runoff and erosion in this region occurred mainly during summer storms. Summer runoff and sediment losses under cropping and other vegetation were significantly less than those from ploughed bare soil (i.e. without crop/plant or crop residue). There were fewer runoff and sediment losses with increasing canopy cover. Land slope had a major effect on runoff and sediment losses and this effect was markedly larger in the tillage plots than that in the natural grass and forest plots, although this effect was very small when the maximum rainfall intensity was larger than 58·8 mm/h or smaller than 2·4 mm/h. Sediment losses per unit area rose with increasing slope length for the same land slope and same land use. The effect of slope length on sediment losses was stronger on a bare soil plot than on a crop/plant plot. The runoff volume and sediment losses were both closely related to rainfall volume and maximum intensity, while runoff coefficient was mainly controlled by maximum rainfall intensity. Hortonian overland flow is the dominant runoff process in the region. The differences in runoff volume, runoff coefficient and sediment losses between the catchments are mainly controlled by the maximum rainfall intensity and infiltration characteristics. The Aobao catchment yielded much larger runoff volume, runoff coefficient and sediment than the Wangdongguo catchment. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

8.
Muddy floods due to agricultural runoff are a widespread and frequent phenomenon in the European loess belt, and particularly in central Belgium. These floods are triggered when high quantities of runoff are generated on cropland and cause severe erosion. Three soil surface characteristics are relevant to determine the runoff potential of cultivated soils: soil cover by crops and residues, soil surface crusting and roughness. These characteristics have been observed on 65 cultivated fields throughout 2005. A heavy rainfall event representative for events triggering muddy floods in the region (60 mm h?1 during 30 minutes) has been simulated using a 0·5 m2 simulator on fields with the 17 most observed combinations of soil surface characteristics in central Belgium. Runoff is not observed in the case of (ploughed) bare uncrusted soils, nor in the case of soils covered by crops showing a transitional crust and a moderate roughness (1–2 cm). In the cases where runoff has been observed, mean runoff coefficients ranged from 13% (wheat in July) to 58% (sugar beet or maize in May and June). Grassed buffer strips (GBSs) and grassed waterways (GWWs) show a higher runoff coefficient (62% for GBSs and 73% for GWWs) than most cultivated soils (13–58%). Furthermore, it is demonstrated that small plot measurements can be used to estimate runoff generation at the field scale. A classification of runoff generation risk based on the surveys of soil surface characteristics has been applied to common crops of central Belgium. February as well as the period between May and September are the most critical for runoff at the field scale. However, it appears from monitoring of a 16 ha catchment that the highest runoff volumes and peak discharges are recorded between May and August after heavy rainfall, explaining why 85% of muddy floods are recorded during this period in central Belgium. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Ten representative research sites were selected in eastern Spain to assess soil erosion rates and processes in new citrus orchards on sloping soils. The experimental plots were located at representatives sites on limestone, in areas with 498 to 715 mm year?1 mean annual rainfall, north‐facing slopes, herbicide treated, and new (less than 3 years old) plantations. Ten rainfall simulation experiments (1 h at 55 mm h?1 on 0·25 m2 plots) were carried out at each of the 10 selected study sites to determine the interill soil erosion and runoff rates. The 100 rainfall simulation tests (10 × 10 m) showed that ponding and runoff occurred in all the plots, and quickly: 121 and 195 s, respectively, following rainfall initiation. Runoff discharge was one third of the rainfall, and sediment concentration reached 10·4 g L?1. The soil erosion rates were 2·4 Mg ha?1 h?1 under 5‐year return period rainfall thunderstorms. These are among the highest soil erosion rates measured in the western Mediterranean basin, similar to badland, mine spoil and road embankment land surfaces. The positive relationship between runoff discharge and sediment concentration (r2 = 0·83) shows that the sediment availability is very high. Soil erosion rates on new citrus orchards growing on sloped soils are neither tolerable nor sustainable. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Changing fire regimes and prescribed‐fire use in invasive species management on rangelands require improved understanding of fire effects on runoff and erosion from steeply sloping sagebrush‐steppe. Small (0·5 m2) and large (32·5 m2) plot rainfall simulations (85 mm h–1, 1 h) and concentrated flow methodologies were employed immediately following burning and 1 and 2 years post‐fire to investigate infiltration, runoff and erosion from interrill (rainsplash, sheetwash) and rill (concentrated flow) processes on unburned and burned areas of a steeply sloped sagebrush site on coarse‐textured soils. Soil water repellency and vegetation were assessed to infer relationships in soil and vegetation factors that influence runoff and erosion. Runoff and erosion from rainfall simulations and concentrated flow experiments increased immediately following burning. Runoff returned to near pre‐burn levels and sediment yield was greatly reduced with ground cover recovery to 40 per cent 1 year post‐fire. Erosion remained above pre‐burn levels on large rainfall simulation and concentrated flow plots until ground cover reached 60 per cent two growing seasons post‐fire. The greatest impact of the fire was the threefold reduction of ground cover. Removal of vegetation and ground cover and the influence of pre‐existing strong soil‐water repellency increased the spatial continuity of overland flow, reduced runoff and sediment filtering effects of vegetation and ground cover, and facilitated increased velocity and transport capacity of overland flow. Small plot rainfall simulations suggest ground cover recovery to 40 per cent probably protected the site from low‐return‐interval storms, large plot rainfall and concentrated flow experiments indicate the site remained susceptible to elevated erosion rates during high‐intensity or long duration events until ground cover levels reached 60 per cent. The data demonstrate that the persistence of fire effects on steeply‐sloped, sandy sagebrush sites depends on the time period required for ground cover to recover to near 60 per cent and on the strength and persistence of ‘background’ or fire‐induced soil water repellency. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

11.
Abstract

Runoff and soil erosion are known to cause a degradation in soil and water quality. Six natural runoff plots (three 10 m long and three 30 m long) were established on 6% uniform slope area for the study of P and N losses associated with runoff and soil erosion in northern Iraq. The soil at the site belongs to the Calciorthid suborder which dominates in the low rainfall zone of northern Iraq. Runoff, erosion, and associated P and N losses, were recorded from these plots for three rainfall seasons. Results illustrated that eroded sediment is always rich in available P and inorganic N compared to the original soil. Concentrations of soluble P and soluble N in runoff illustrated significant variability both between storms and between seasons. Both sediment-bound P and soluble P were significantly correlated with the ratio of runoff to rainfall.  相似文献   

12.
The response of runoff and erosion to soil crusts has been extensively investigated in recent decades. However, there have been few attempts to look at the effects of spatial configuration of different soil crusts on erosion processes. Here we investigated the effects of different spatial distributions of physical soil crusts on runoff and erosion in the semi‐arid Loess Plateau region. Soil boxes (1.5 m long × 0.2 m wide) were set to a slope of 17.6% (10°) and simulated rainfall of 120 mm h?1 (60 minutes). The runoff generation and erosion rates were determined for three crust area ratios (depositional crust for 20%, 33%, and 50% of the total slope) and five spatial distribution patterns (depositional crust on the lower, lower‐middle, middle, mid‐upper, and upper slope) of soil crusts. The reduction in sediment loss (‘sediment reduction’) was calculated to evaluate the effects of different spatial distributions of soil crusts on erosion. Sediment yield was influenced by the area ratio and spatial position of different soil crusts. The runoff rate reached a steady state after an initial trend of unsteadily increasing with increasing rainfall duration. Sediment yield was controlled by detachment limitation and then transport limitation under rainfall. The shifting time of erosion from a transport to detachment‐limiting regime decreased with increasing area of depositional crust. No significant differences were observed in the total runoff among treatments, while the total sediment yield varied under different spatial distributions. At the same area ratio, total sediment yield was the largest when the depositional crust was on the upper slope, and it was smallest when the crust was deposited on the lower slope. The sediment reduction of structural crust (42.5–66.5%) was greater than that of depositional crust (16.7–34.3%). These results provide a mechanistic understanding of how different spatial distributions of soil crusts affect runoff and sediment production. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
1 INTRODUCTION Soil crusting, or soil sealing, is one of the common phenomena in agricultural lands or semi-arid and arid soils. Due to the breakdown of soil aggregates by raindrops, soil surface develops a very thin, often less than a few millimeters, dense layer. Many studies indicated that such a thin layer significantly reduces infiltration capacity and increases surface runoff (i.e. McIntyre, 1958; Edward and Larson, 1969; Agassi et al., 1985; Bradford et al., 1986; Romkens et al.,…  相似文献   

14.
The loss of P in overland flow from most cultivated soils is controlled by erosion, and in‐turn soil moisture. We evaluated the effect of soil moisture on erosion and P transport in overland flow by applying rainfall (7 cm h?1) to packed soil boxes (1 m long and 0·15 m wide) and field plots (1 and 10 m long by 1 m wide) of silt loams in a central Pennsylvania (USA) catchment. Flow from packed soil boxes took longer to initiate as antecedent soil moisture decreased from field capacity (2 min) to air dried (8 to 9 min). Even in the more complex field plots (i.e. soil heterogeneity and topography), the wetter site (1 by 10 m plot; 70% field capacity) produced flow more quickly (3 min) and in greater volume (439 L) than the drier site (1 by 10 m plot; 40% field capacity, 15 min, and 214 L, respectively). However, less suspended sediment was transported from wetter soil boxes (1·6 to 2·5 g L?1) and field plots (0·9 g L?1) than drier boxes (2·9 to 4·2 g L?1) and plots (1·2 g L?1). Differences are attributed to their potential for soil aggregate breakdown, slaking and dispersion, which contribute to surface soil sealing and crusting, as dry soils are subject to rapid wetting (by rainfall). During flow, selective erosion and antecedent moisture conditions affected P transport. At field capacity, DRP and PP transport varied little during overland flow. Whereas P transport from previously dry soil decreased rapidly after the initiation of flow (6 to 1·5 mg TP L?1), owing to the greater slaking and dispersion of P‐rich particles into flow at the beginning than end of the flow event. These results indicate that soil moisture fluctuations greatly effect erosion and P transport potential and that management to decrease the potential for loss should consider practices such as conservation tillage and cover crops, particularly on areas where high soil P and erosion coincide. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Knowledge of seasonal variation in soil structural and related properties is important for the determination of critical periods during which soil is susceptible to accelerated erosion and other degradative processes. The purpose of this research was to evaluate the magnitude of seasonal variations in selected soil and deposited sediment properties in relation to soil erodibility for a Miamian silt-loam soil (Typic Hapludalf) in central Ohio. Erosion plots (USLE-type) were established on a 4·5% slope and maintained under bare, ploughed conditions from 1988 to 1991. Particle size distribution, bulk density(ρb), percentage water stable aggregates (WSA), soil organic carbon (SOC), and total soil nitrogen (TSN) of both soil and sediment samples were monitored between Autumn 1989 and Spring 1991. The soil and sediment particle size distributions followed no clear seasonal trends. Soil ρb increased following tillage (1·20 Mg m−3) and was highest (1·45 Mg m−3) during the autumn owing to soil slumping and consolidation upon drying. Low winter and spring values of ρb and %WSA (20–50% lower than in autumn) were attributed to excessive wetness and freeze–thaw effects. Both SOC and soil TSN contents progressively declined (from 2·18 to 1·79% and 1·97 to 1·75 g kg−1, respectively) after ploughing owing to maintenance of plots under bare, fallow conditions. Spring highs and autumn lows of sediment SOC (3·12 vs. 2·44%) and TSN (2·70 vs. 1·96 g kg−1) contents were a result of the combined effects of soil microbial activity and rainfall erosivity. Soil properties such as bulk density, SOC and WSA, which vary seasonally, can potentially serve as predictors of seasonal soil erodibility, which, in turn, could improve the predictive capacity of soil erosion prediction models. © 1998 John Wiley & Sons, Ltd.  相似文献   

16.
The impacts of climate change on storm runoff and erosion in Mediterranean watersheds are difficult to assess due to the expected increase in storm frequency coupled with a decrease in total rainfall and soil moisture, added to positive or negative changes to different types of vegetation cover. This report, the second part of a two‐part article, addresses this issue by analysing the sensitivity of runoff and erosion to incremental degrees of change (from ? 20 to + 20%) to storm rainfall, pre‐storm soil moisture, and vegetation cover, in two Mediterranean watersheds, using the MEFIDIS model. The main results point to the high sensitivity of storm runoff and peak runoff rates to changes in storm rainfall (2·2% per 1% change) and, to a lesser degree, to soil water content (?1·2% per 1% change). Catchment sediment yield shows a greater sensitivity than within‐watershed erosion rates to both parameters: 7·8 versus 4·0% per 1% change for storm rainfall, and ? 4·9 versus ? 2·3% per 1% change for soil water content, indicating an increase in sensitivity with spatial scale due to changes to sediment connectivity within the catchment. Runoff and erosion showed a relatively low sensitivity to changes in vegetation cover. Finally, the shallow soils in one of the catchments led to a greater sensitivity to changes in storm rainfall and soil moisture. Overall, the results indicate that decreasing soil moisture levels caused by climate change could be sufficient to offset the impact of greater storm intensity in Mediterranean watersheds. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
A better knowledge of soil erosion by water is essential for planning effective soil and water conservation practices in semi‐arid Mediterranean environments. The special climatic and hydrological characteristics of these areas, however, make accurate soil loss predictions difficult, particularly in the absence of minimal data. Two zero‐order experimental microcatchments (328–759 m2), representative of an extensive semi‐arid watershed with a high potential erosion risk in the south‐east of Spain, were selected and monitored for 3 years (1991–93) in order to provide information on the hydrological and erosional response. A pluviogram and hydrograph recorded data at 1‐min intervals during each storm, after which the soil loss was collected and the particle size of the sediment was analysed. Runoff coefficients of about 9% and soil losses of between 84·83 and 298·9 g m?2 year?1 were observed in the area. Rapid response times (geometric mean values lower than 2 h) and low runoff thresholds (mean values between 3·5 to 5·9 mm) were the norm in the experimental areas. A rain intensity of over 15 mm h?1 was considered as ‘erosive rainfall’ in these areas because of the total soil loss and the transport capacity of the overland flow. Differences in pore‐size distribution explained the different hydrological responses observed between areas. The erosional response was more complex and basically seemed to be determined by soil aggregate stability and topographical properties. A greater proportion of finer particles in the eroded material than in the soil matrix indicated selective erosion and the transport of finer material. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Although the impact of sheet erosion on the evolution of soils, soil properties and associated ecosystem services across landscapes is undisputed, there are still large uncertainties in the estimation of sheet erosion, as the results obtained are highly scale dependent. Consequently, there is a need to develop a scale‐explicit understanding of sediment erosion yields, from microplot to hillslope through to plot, to surmount actual erosion modelling flaws and to improve guidance for erosion mitigation. The main objective of this study was to compare sediment yields from small and large plots installed under different environmental conditions and to interpret these results in terms of the main mechanisms and controlling factors of sheet erosion. Fifteen 1 × 1 m² and ten 2 × 5 m² plots were installed on a hillslope in the foothills of the Drakensberg, South Africa. Data of runoff, sediment concentration (SC), soil loss (SL) and rainfall characteristics obtained during the 2009–2010 rainy season at the two spatial scales and from different soils, vegetation cover, geology and topographic conditions were used to identify the main controlling factors of sheet erosion. Scale ratios for SC and SL were subsequently calculated to assess the level of contribution of rain‐impacted flow (RIF) to overall sheet erosion. The average runoff rate (n = 17 events) ranged between 4.9 ± 0.4 L m‐2 on 1 m2 and 5.4 ± 0.6 L m2 on 10 m2, which did not correspond to significant differences at P < 0.05 level. Sediment losses were significantly higher on the 10 m2 plots, compared with the 1 m2 plots (2.2 ± 0.4 vs 1.5 ± 0.2 g L‐1 for SC; 9.8 ± 1.8 vs 3.2 ± 0.3 g m‐2 for SL), which illustrated a greater efficiency of sheet erosion on longer slopes. Results from a principal component analysis, whose two first axes explained 60% of the data variance, suggested that sheet erosion is mainly controlled by rainfall characteristics (rainfall intensity and amount) and soil surface features (crusting and vegetation coverage). The contribution of RIF to sheet erosion was the lowest at high soil clay content (r = 0.26) and the highest at high crusting and bulk density (r = 0.22), cumulative rainfall amount in the season and associated rise in soil water table (r = 0.29). Such an explicit consideration of the role of scale on sediment yields and process domination by either in situ (soil and soil surface conditions) or ex situ (rainfall characteristics and antecedent rainfall) factors, is expected to contribute to process‐based modelling and erosion mitigation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Physical soil crusts likely have significant effects on infiltration and soil erosion, however, little is known on whether the effects of the crusts change during a rainfall event. Further, there is a lack of discussions on the differences among the crusting effects of different soil types. The objectives of this study are as follows: (i) to study the effects of soil crusts on infiltration, runoff, and splash erosion using three typical soils in China, (ii) to distinguish the different effects on hydrology and erosion of the three soils and discuss the primary reasons for these differences, and (iii) to understand the variations in real soil shear strength of the three soils during rainfall events and mathematically model the effects of the crusts on soil erosion. This study showed that the soil crusts delayed the onset of infiltration by 5 to 15 min and reduced the total amount of infiltration by 42.9 to 53.4% during rainfall events. For a purple soil and a loess soil, the initial crust increased the runoff by 2.8% and 3.4%, respectively, and reduced the splash erosion by 3.1% and 8.9%, respectively. For a black soil, the soil crust increased the runoff by 42.9% and unexpectedly increased the splash erosion by 95.2%. In general, the effects of crusts on the purple and loess soils were similar and negligible, but the effects were significant for the black soil. The soil shear strength decreased dynamically and gradually during the rainfall events, and the values of crusted soils were higher than those of incrusted soils, especially during the early stage of the rainfall. Mathematical models were developed to describe the effects of soil crusts on the splash erosion for the three soils as follows: purple soil, Fc= 0.002t- 0.384 ; black soil, Fc. =-0.022t + 3.060 ; and loess soil, Fc = 0.233 In t- 1.239 . Combined with the equation Rc= Fc (Ruc - 1), the splash erosion of the crusted soil can be predicted over time.  相似文献   

20.
Plant litter can either cover on soil surface or be incorporated into top-soil layer in natural ecosystems. Their effects on infiltration and soil erosion are likely quite different. This study was performed to compare the effects of litter covering on soil surface and being incorporated into top-soil layer on infiltration and soil erosion under simulated rainfall. Four litter types (needle-leaf, broad-leaf, brush, and herb) were collected from fields and applied to cover on soil surface or to be incorporated into top-soil layer (5 cm) at the same rate (0.2 kg/m2). The simulated rainfalls (40 and 80 mm/hr) were run at two slope angles (10° and 20°). The results showed that the mean infiltration rate of litter covering treatment was 1.4 times as great as that of litter incorporated. Litter covering enhanced infiltration via protecting surface from soil sealing. Whereas, litter incorporation affected infiltration by its water repellency. Soil erosion of litter incorporated treatment was 5.4 times as large as that of litter covered treatment, which was attributed to the changes in surface litter coverage and soil erosion resistance. Litter type affected soil erosion through the variations in litter coverage and litter morphology. For litter covering treatment, litter coverage can explain the major variance of soil loss on the slopes. Whereas, for litter incorporated treatment, both the influences of litter coverage and litter length on soil erosion resistance were considered necessary to well explain the variance of soil loss. The results also showed that the benefits of litter to control soil erosion declined with rainfall intensity and slope gradient for both covering and incorporated treatments. The results of this study are helpful to understand the mechanisms of litter influencing hydrological and erosion processes on hillslopes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号