首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Observations of suspended sediment concentration and discharge at two sites on the proglacial river network draining from a predominantly cold-based, High-Arctic glacier (Austre Brøggerbreen) are described. Analysis of these observations illustrates: (i) the relatively low suspended sediment yield from this basin in comparison with many other glacier basins reported in the open literature; (ii) sustained and possibly increasing availability of suspended sediment to the fluvial system as the ablation season progresses; and (iii) the role of the proglacial sandur as both a sediment source and sink. Field observations coupled with the results of the data analysis are used to make inferences concerning the changing nature and relative importance of sediment sources within the basin. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time‐series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time‐scales. The recorded discharge time‐series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non‐seasonal, moving‐average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non‐seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid‐latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

3.
The anion compositions (SO24, HCO3 and Cl) of runoff from the Haut Glacier d'Arolla, Switzerland and Austre Brøggerbreen, Svalbard are compared to assess whether or not variations in water chemistry with discharge are consistent with current understanding of the subglacial drainage structure of warm- and polythermal-based glaciers. These glacial catchments have very different bedrocks and the subglacial drainage structures are also believed to be different, yet the range of anion concentrations show considerable overlap for SO2−4 and HCO3. Concentrations of Cl are higher at Austre Brøggerbreen because of the maritime location of the glacier. Correcting SO2−4 for the snowpack component reveals that the variation in non-snowpack SO2−4 with discharge and with HCO3 is similar to that observed at the Haut Glacier d'Arolla. Hence, if we assume that the provenance of the non-snowpack SO2−4 is the same in both glacial drainage systems, a distributed drainage system also contributes to runoff at Austre Brøggerbreen. We have no independent means of testing the assumption at present. The lower concentrations of non-snowpack SO2−4 at Austre Brøggerbreen may suggest that a smaller proportion of runoff originates from a distributed drainage system than at the Haut Glacier d'Arolla.  相似文献   

4.
The sediment yields of Alpine catchments are commonly determined from streamload measurements made some distance downstream from glaciers. However, this approach indiscriminately integrates erosion processes occurring in both the glacial and proglacial areas. A specific method is required to ascertain the respective inputs from (i) subglacial and supraglacial sediments, (ii) proglacial hillslopes and (iii) proglacial alluvial areas or sandurs. This issue is addressed here by combining high‐resolution monitoring (2 min) of suspended sediment concentrations at different locations within a catchment with discharge gauging and precipitation data. This methodological framework is applied to two proglacial streams draining the Bossons glacier (Mont Blanc massif, France): the Bossons and Crosette streams. For the Bossons stream, discharge and suspended load data were acquired from June to October 2013 at 1.15 and 1.5 km from the glacial terminus, respectively upstream and downstream from a small valley sandur. These hydro‐sedimentary data are compared with the Crosette stream dataset acquired at the outlet of the Bossons glacier subglacial drainage system. A fourfold analysis focusing on seasonal changes in streamload and discharge, multilinear regression modelling, evaluation of the sandur flux balance and probabilistic uncertainty assessment is used to determine the catchment sediment budget and to explain the proglacial sediment dynamics. The seasonal fluctuation of the sediment signal observed is related to the gradual closing of the subglacial drainage network and to the role of the proglacial area in the sediment cascade: the proglacial hillslopes appear to be disconnected from the main channel and the valley sandur acts as a hydrodynamic sediment buffer both daily and seasonally. Our findings show that an understanding of proglacial sediment dynamics can help in evaluating paraglacial adjustment and subglacial erosion processes. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
The stream hydrograph is an integration of spatial and temporal variations in water input, storage and transfer processes within a catchment. For glacier basins in particular, inferences concerning catchment‐scale processes have been developed from the varying form and magnitude of the diurnal hydrograph in the proglacial river. To date, however, such classifications of proglacial diurnal hydrographs have developed in a relatively subjective manner. This paper develops an objective approach to the classification of diurnal discharge hydrograph ‘shape’ and ‘magnitude’ using a combination of principal components analysis and cluster analysis applied to proglacial discharge time‐series and to diurnal bulk flow indices. The procedure is applied to discharge time‐series from two different glacier basins and four separate ablation seasons representing a gradient of increasing hydrological perturbation as a result of (i) variable water inputs generated by rainstorm activity and (ii) variable location and response of hydrological stores through a systematic decrease in catchment glacierized area. The potential of the technique for application in non‐glacial hydrological contexts is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

6.
The sedimentology of proglacial Silt Lake was assessed by lake sediment coring and monitoring of lacustrine processes during a late‐summer period of high glacier melt to characterize sediment delivery from the heavily glacierized catchment and investigate the sediment trapping dynamics of this upland lake. A complete varve chronology was established for a distal basin of the lake which was exposed by Lillooet Glacier retreat between 1947 and 1962. The varve record showed decreasing sedimentation rates in the basin while the glacier retreated, and as the lake became free of ice contact in the early 1970s. Although recession has continued over recent decades, and glacier proximity to the lake has, therefore, continued decreasing, lacustrine sedimentation rates are now accelerating due to changing basin morphometry caused by delta progradation. Over shorter time scales, lake sedimentation patterns respond to changing runoff conditions, including late‐summer glacier melt intensity, intra‐annual flooding events, diumal runoff fluctuations, and within‐lake turbidity currents. Turbidity currents included quasi‐regular flows during high diurnal discharges and an episodic flushing of temporarily stored sediment from the sandur or delta at a time of low stage. Suspended sediment yield to Silt Lake is estimated to exceed 103 Mg km?2 a?1, a magnitude that surpasses previous local and regional yield estimates for the glacierized headwaters of the Lillooet River valley. Since Silt Lake currently traps a significant prooportion of that upland sediment supply, and the trapping efficiency of the basin has been variable at decadal time scales, the formation and continued development of Lilt Lake has likely had a significant influence on downstream sediment delivery. Lacustrine sediment‐based proxies of long‐term hydroclimatic variability being developed in glacially distal settings should include provisions for dynamic sediment trapping effects in upstream water bodies that often form in the active proglacial environment. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
8.
An analysis of temporal variability in proglacial suspended sediment concentration is undertaken using time series data collected from three Svalbard basins which include one largely cold-based glacier (Austre Brøggerbreen), one largely warm-based glacier (Finsterwalderbreen) and one intermediate polythermal glacier (Erdmannbreen). The temporal variability in proglacial suspended sediment concentration is analysed using multiple regression techniques in which discharge is supplemented by other predictors acting as surrogates for variability in sediment supply at diurnal, medium-term and seasonal timescales. These multiple regression models improve upon the statistical explanation of suspended sediment concentration produced by simple sediment rating curves but need to account for additional stochastic elements within the time series before they may be considered successful. An interpretation of the physical processes which are responsible for the regression model characteristics is offered as a basis for comparing the different arctic glaciofluvial suspended sediment transport systems with that of their better known temperate glaciofluvial counterparts. It is inferred that the largely warm-based glacier is dominated by sediment supply from subglacial reservoirs which evolve in a similar manner to temperate glaciers and which cause a pronounced seasonal exhaustion of suspended sediment supply. The largely cold-based glacier, however, is dominated by sediment supply from marginal sources which generate a responsive system at short time scales but no significant seasonal pattern. The intermediate polythermal glacier basin, which was anticipated to be similar to the warm-based glacier, instead shows a highly significant seasonal increase in suspended sediment supply from an unusual subglacial reservoir emerging under pressure in the glacier foreland. The temperate model of glaciofluvial suspended sediment transport is therefore found to be of limited use in an arctic context. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

9.
Observations are reported of the dynamics of suspended sediment transport in the meltstream of Storbreen in the Jotunheimen. Fine sediment is transferred from the subglacial to the proglacial environment during low flow (meltdominated) periods, and then removed from the catchment during high flow (rainfall-controlled) events. Both diurnal and storm period sediment load-discharge relationships involve clockwise hysteresis, but separate multivariate rating curves define variations of load with streamflow according to (1) the relative importance of meltwater and rainfall runoff, and (2) changes in the sediment source areas contributing to the stream at different times. Particle size variations in the suspended sediment also reflect varying source area influences.  相似文献   

10.
Continuous wavelet analyses of hourly time series of air temperature, stream discharge, and precipitation are used to compare the seasonal and inter‐annual variability in hydrological regimes of the two principal streams feeding Bow Lake, Banff National Park, Alberta: the glacial stream draining the Wapta Icefields, and the snowmelt‐fed Bow River. The goal is to understand how water sources and flow routing differ between the two catchments. Wavelet spectra and cross‐wavelet spectra were determined for air temperature and discharge from the two streams for summers (June–September) 1997–2000, and for rainfall and discharge for the summers of 1999 and 2000. The diurnal signal of the glacial runoff was orders of magnitude higher in 1998 than in other years, indicating that significant ice exposure and the development of channelized glacial drainage occurred as a result of the 1997–98 El Niño conditions. Early retreat of the snowpack in 1997 and 1998 led to a significant summer‐long input of melt runoff from a small area of ice cover in the Bow River catchment; but such inputs were not apparent in 1999 and 2000, when snow cover was more extensive. Rainfall had a stronger influence on runoff and followed quicker flow paths in the Bow River catchment than in the glacial catchment. Snowpack thickness and catchment size were the primary controls on the phase relationship between temperature and discharge at diurnal time scales. Wavelet analysis is a fast and effective means to characterize runoff, temperature, and precipitation regimes and their interrelationships and inter‐annual variability. The technique is effective at identifying inter‐annual and seasonal changes in the relative contributions of different water sources to runoff, and changes in the time required for routing of diurnal meltwater pulses through a catchment. However, it is less effective at identifying changes/differences in the type of the flow routing (e.g. overland flow versus through flow) between or within catchments. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

11.
Alpine glacial basins are a significant source and storage area for sediment exposed by glacial retreat. Recent research has indicated that short‐term storage and release of sediment in proglacial channels may control the pattern of suspended sediment transfer from these basins. Custom‐built continuously recording turbidimeters installed on a network of nine gauging sites were used to characterize spatial and temporal variability in suspended sediment transfer patterns for the entire proglacial area at Small River Glacier, British Columbia, Canada. Discharge and suspended sediment concentration were measured at 5 min intervals over the ablation season of 2000. Differences in suspended sediment transfer patterns were then extracted using multivariate statistics (principal component and cluster analysis). Results showed that each gauging station was dominated c. 80% of days by diurnal sediment transfer patterns and ‘low’ suspended sediment concentrations. ‘Irregular’ transfer patterns were generally associated with ‘high’ sediment concentrations during snowmelt and rainfall events, resulting in the transfer of up to 70% of the total seasonal suspended sediment load at some gauging stations. Suspended sediment enrichment of up to 600% from channel storage release and extrachannel inputs occurred between the glacial front and distal proglacial boundary. However, these patterns differed significantly between gauging stations as determined by the location of the gauging station within the catchment and meteorological conditions. Overall, the proglacial area was the source for up to 80% of the total suspended sediment yield transferred from the Small River Glacier basin. These results confirmed that sediment stored and released in the proglacial area, in particular from proglacial channels, was controlling suspended sediment transfer patterns. To characterize this control accurately requires multiple gauging stations with high frequency monitoring of suspended sediment concentration. Accurate characterization of this proglacial control on suspended sediment transfer may therefore aid interpretation of suspended sediment yield patterns from glacierized basins. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Snow cover ablation in the Great Lakes basin is a common and hydrologically important process during the cold season, contributing to a majority of the basin's runoff, and less frequent, extreme ablation events are highly impactful due to an increased flooding risk and warrant specific investigation. A brief climatology of extreme ablation events is presented, where extreme is considered within the top 5% of the distribution. Using synoptic classification techniques, individual weather patterns associated with extreme snow ablation in the Great Lakes basin are isolated. A single pattern deemed the most influential in generating extreme ablation events, southerly flow-1, is examined in detail, and three case studies are presented to determine the meteorological conditions and surface energy fluxes responsible for ablation. Over 75% of extreme events are associated with southerly flow patterns that predominantly ablate snow with sensible heat fluxes, while rain-on-snow patterns induce the remaining extreme events from 1980–2009. Type southerly flow-1 is responsible for 45% of the extreme events and is characterized by strong southerly advection of warm air into the basin, where sensible heat fluxes of 45–125 Wm−2 are responsible for the majority of energy transfer into the snowpack. When compared with an average ablation event, an extreme ablation event for southerly flow-1 exhibits air temperatures, dew point temperatures, and wind speeds that are 3.8°C, 3.0°C, and 1.2 ms−1 warmer and faster than an average event, indicating a greater potential for larger ablation.  相似文献   

13.
Comprehensive fog field observations were conducted during the winters of 2006–2009 at the Nanjing University of Information Science and Technology to study the macro and micro-physical structures and the physical–chemical processes of dense fogs in the area. The observations included features of the fog boundary layer, characteristics of fog water, the particle spectrum, the chemical composition of atmospheric aerosols, radiation and heat components, turbulence, meteorological elements (air temperature, pressure, wind speed, wind direction), and environmental monitoring. The fogs observed were divided into four types: radiation fog, advection–radiation fog, advection fog, and precipitation fog, according to the mechanisms and primary factors of the fog processes. Fog boundary-layer structures of different types and their corresponding characteristics were then studied. Fog boundary-layer features, temperature structures, wind fields, and fog maintenance are discussed. The results show that radiation fog had remarkable diurnal variation and formed mostly at sunset or midnight, and lifted after sunrise or at noon, and that advection–radiation fog and advection fog were of very long duration. Extremely dense fogs occurred only in radiation-related cases. Inversion in radiation fog was short-lived, disappearing 1 or 2 hours after sunrise or at noon, faster than that in advection–radiation fog. When wind direction reversed from easterly to westerly or from southerly to northerly, the fog became an extremely dense fog. Low-level jet at times impeded fog development, whereas at other times it encouraged fog continuance. The deep inversion was merely an essential condition for a thick fog layer; sufficient vapor supply was advantageous to the formation and maintenance of a deep fog layer.  相似文献   

14.
The impact of surface melt patterns and the Indian summer monsoon (ISM) is examined on the varying contributions of end member (snow, glacier ice, and rain) to proglacial streamflow during the ablation period (June–October) in the Chhota Shigri glaciated basin, Western Himalaya. Isotopic seasonality observed in the catchment precipitation was generally reflected in surface runoff (supraglacial melt and proglacial stream) and shows a shift in major water source during the melt season. Isotopically correlated (δ18O–δD) high deuterium intercept in the surface runoff suggests that westerly precipitation acts as the dominant source, augmenting the other snow- and ice-melt sources in the region. The endmember contributions to the proglacial stream were quantified using a three-component mixing. Overall, glacier ice melt is the major source of proglacial discharge. Snowmelt is the predominant source during the early ablation season (June) and the peak ISM period (August and September), whereas ice melt reaches a maximum in the peak melt period (July). The monthly contribution of rain is on the lower side and shows a steady rise and decline with onset and retreat of the monsoon. These results are persistent with the surface melt pattern observed in Chhota Shigri glacier, Upper Chandra basin. Moreover, the role of the ISM in Chhota Shigri glacier is unvarying to that observed in other glacierized catchments of Upper Ganga basin. Thus, this study augments the significant role of the ISM in glacier mass balance up to the boundary of the central-western Himalayan glaciated region.  相似文献   

15.
Runoff from a small glacierized catchment in the Canadian high Arctic was monitored throughout one melt season. The stream discharge record is one aspect of a larger project involving glacier mass balance, superimposed ice formation and local climate on a glacier in the Sawtooth Range, Ellesmere Island, Northwest Territories, Canada. To better understand the main factors influencing the production of runoff on the glacier during the period of main summer melt, regression analyses were performed relating daily air temperature, shortwave incoming and net radiation, absorptivity and wind speed to daily glacier discharge. Air temperature at the glacier meteorological station on rain-free days is the element with the greatest correlation with runoff (r2 = 0.57; n = 34). A multiple regression of discharge with air temperature, shortwave incoming radiation, net radiation hours and wind speed achieved the best fit (r2 = 0.84; n = 34). Rain events (> 10mmd?1) can dominate daily discharge when they occur during the period of ice melt, creating more runoff per unit area than can be produced by melt alone, and significantly reduce the accuracy of runoff predictions.  相似文献   

16.
Water levels in cryoconite holes were monitored at high resolution over a 3‐week period on Austre Brøggerbreen (Svalbard). These data were combined with melt and energy balance modelling, providing insights into the evolution of the glacier's near‐surface hydrology and confirming that the hydrology of the near‐surface, porous ice known as the ‘weathering crust’ is dynamic and analogous to a shallow‐perched aquifer. A positive correlation between radiative forcing of melt and drainage efficiency was found within the weathering crust. This likely resulted from diurnal contraction and dilation of interstitial pore spaces driven by variations in radiative and turbulent fluxes in the surface energy balance, occasionally causing ‘sudden drainage events’. A linear decrease in water levels in cryoconite holes was also observed and attributed to cumulative increases in near‐surface ice porosity over the measurement period. The transport of particulate matter and microbes between cryoconite holes through the porous weathering crust is shown to be dependent upon weathering crust hydraulics and particle size. Cryoconite holes therefore yield an indication of the hydrological dynamics of the weathering crust and provide long‐term storage loci for cryoconite at the glacier surface. This study highlights the importance of the weathering crust as a crucial component of the hydrology, ecology and biogeochemistry of the glacier ecosystem and glacierized regions and demonstrates the utility of cryoconite holes as natural piezometers on glacier surfaces. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
The Basque coastal area, in the southeastern Bay of Biscay, can be characterised as being more influenced by land climate and inputs, than other typically ‘open sea’ areas. The influence of coastal processes, together with the presence of irregular and steep topography, complicate greatly the water circulation patterns. Water movement along the Basque coastal area is not well understood; observations are scarce and long-term current records are lacking. The knowledge available is confined to the surface currents: the surface water circulation is controlled mainly by wind forcing, with tidal and density currents being weak. However, there is a lack of knowledge available on currents within the lower levels of the water column; likewise, on the main time-scales involved in the water circulation. This study quantifies the contribution of the tidal and wind-induced currents, to the overall water circulation; it identifies the main time-scales involved within the tidal and wind-induced flows, investigating difference in such currents, throughout the water column, within Pasaia Bay (Basque coast). Within this context, extensive oceanographic and meteorological data have been obtained, in order to describe the circulation. The present investigation reveals that the circulation, within the surface and the sub-surface waters, is controlled mainly by wind forcing fluctuations, over a wide range of meteorological frequencies: third-diurnal, semidiurnal and diurnal land–sea breezes; synoptic variability; frequencies, near fortnightly periods; and seasonal. At the lower levels of the water column, the main contribution to the water circulation arises from residual currents, followed by wind-induced currents on synoptic time-scales. In contrast, tidal currents contribute minimally to the overall circulation throughout the water column.  相似文献   

18.
The runoff in Songhuajiang River catchment has experienced a decreasing trend during the second half of the 20th century. Serially complete daily rainfall data of 42 rainfall stations from 1959 to 2002 and daily runoff data of five meteorological stations from 1953 to 2005 were obtained. The Mann–Kendall trend test and the sequential version of Mann–Kendall test were employed in this study to test the monthly and annual trends for both rainfall and runoff, to determine the start point of abrupt runoff declining, and to identify the main driving factors of runoff decline. The results showed an insignificant increasing trend in rainfall but a significant decreasing trend in runoff in the catchment. For the five meteorological stations, abrupt runoff decline occurred during 1957–1963 and the middle 1990s. Through Mann–Kendall comparisons for the area‐rainfall and runoff for the two decreasing periods, human activity, rather than climatic change, is identified as the main driving factor of runoff decline. Analysis of land use/cover shows that farmland is most related with runoff decline among all the land use/cover change in Nenjiang catchment. From 1986 to 1995, the area of farmland increased rapidly from 6.99 to 7.61 million hm2. Hydraulic engineering has a significant influence on the runoff decline in the second Songhuajiang catchment. Many large‐scale reservoirs and hydropower stations have been built in the upstream of the Second Songhuajiang and lead to the runoff decline. Nenjiang and the Second Songhuajiang are the two sources of mainstream of Songhuajiang. Decreased runoff in these two sub‐catchments then results in runoff decrease in mainstream of Songhuajiang catchment. It is, therefore, concluded that high percent agricultural land and hydraulic engineering are the most probable driving factors of runoff decline in Songhuajiang River catchment, China.  相似文献   

19.
Nearshore currents of the southern Namaqua shelf were investigated using data from a mooring situated three and a half kilometres offshore of Lambert's Bay, downstream of the Cape Columbine upwelling cell, on the west coast of South Africa. This area is susceptible to harmful algal blooms (HABs) and wind-forced variations in currents and water column structure are critical in determining the development, transport and dissipation of blooms. Time series of local wind data, and current and temperature profile data are described for three periods, considered to be representative of the latter part of the upwelling season (27 January–22 February), winter conditions (5–29 May) and the early part of the upwelling season (10 November–12 December) in 2005. Differences observed in mean wind strength and direction between data sets are indicative of seasonal changes in synoptic meteorological conditions. These quasi-seasonal variations in wind forcing affect nearshore current flow, leading to mean northward flow in surface waters early in the upwelling season when equatorward, upwelling-favourable winds are persistent. Mean near-surface currents are southward during the latter part of the upwelling season, consistent with more prolonged periods of relaxation from equatorward winds, and under winter conditions when winds were predominantly poleward. Within these seasonal variations in mean near-surface current direction, two scales of current variability were evident within all data sets: strong inertial oscillations were driven by diurnal winds and introduced vertical shear into the water column enhancing mixing across the thermocline, while sub-inertial current variability was driven by north–south wind reversals at periods of 2–5 days. Sub-inertial currents were found to lag wind reversals by approximately 12 h, with a tendency for near-surface currents to flow poleward in the absence of wind forcing. Consistent with similar sites along the Californian and Iberian coasts, the headland at Cape Columbine is considered to influence currents and circulation patterns during periods of relaxation from upwelling-favourable winds, favouring the development of a nearshore poleward current, leading to poleward advection of warm water, the development of stratification, and the creation of potentially favourable conditions for HAB development.  相似文献   

20.
Jason A. Leach  Dan Moore 《水文研究》2017,31(18):3160-3177
Stream temperature controls a number of biological, chemical, and physical processes occurring in aquatic environments. Transient snow cover and advection associated with lateral throughflow inputs can have a dominant influence on stream thermal regimes for headwater catchments in the rain‐on‐snow zone. Most existing stream temperature models lack the ability to properly simulate these processes. We developed and evaluated a conceptual‐parametric catchment‐scale stream temperature model that includes the role of transient snow cover and lateral advection associated with throughflow. The model consists of routines for simulating canopy interception, snow accumulation and melt, hillslope throughflow runoff and temperature, and stream channel energy exchange processes. The model was used to predict discharge and stream temperature for a small forested headwater catchment near Vancouver, Canada, using long‐term (1963–2013) weather data to compute model forcing variables. The model was evaluated against 4 years of observed stream temperature. The model generally predicted daily mean stream temperature accurately (annual RMSE between 0.57 and 1.24 °C) although it overpredicted daily summer stream temperatures by up to 3 °C during extended low streamflow conditions. Model development and testing provided insights on the roles of advection associated with lateral throughflow, channel interception of snow, and surface–subsurface water interactions on stream thermal regimes. This study shows that a relatively simple but process‐based model can provide reasonable stream temperature predictions for forested headwater catchments located in the rain‐on‐snow zone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号