首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

2.
《水文科学杂志》2012,57(1):112-126
ABSTRACT

The Rational Formula (RF) is probably the most frequently applied equation in practical hydrology to compute the peak discharge, due to its simplicity and effective compromise between theory and data availability. Thus, after more than a century, the estimation of peak discharge through the RF is still an important and challenging issue in hydrology. The RF assumes response linearity and sometimes assumes that the return period does not depend on the runoff coefficient and neglects the time to ponding and the antecedent moisture condition. Moreover, the RF requires the critical duration of rainfall and the runoff coefficient to be estimated, both of which are highly controversial. This paper proposes an advanced RF that makes it possible to derive the peak discharge at the hillslope scale, where the above RF assumptions are mostly relaxed. Physically based runoff coefficient tables, which are not affected by subjectivity, are presented and application of the derived procedure is performed.  相似文献   

3.
In practice, rainfall–runoff relationships are achieved through a simply defined runoff coefficient concept that is widely used in many engineering hydrological designs in urban and rural areas. The simplicity of the method, with the sole requirement of runoff coefficient assessment, is the main attractiveness, in addition to its successful prediction of average runoff rates for a given rainfall record. Unfortunately, in the classical regression approach of the rainfall–runoff relationship, internal variabilities are not taken into consideration explicitly. The runoff coefficient is considered a constant value, and it is used without distinction of antecedent conditions for the calculation of runoff from the rainfall record. In this paper, various other uncertainty embedded versions of the runoff coefficient, and hence rainfall–runoff formulation, are presented in terms of statistics, probability, perturbation and, finally, fuzzy system modelling. It is concluded that the fuzzy logic approach yields the least relative error among the various alternative runoff calculation methods; therefore, it is recommended for use in future studies. The application of various alternatives is presented for two monthly rainfall‐runoff records around Istanbul, Turkey. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This study presents a Geographic Information System (GIS)‐based distributed rainfall‐runoff model for simulating surface flows in small to large watersheds during isolated storm events. The model takes into account the amount of interception storage to be filled using a modified Merriam ( 1960 ) approach before estimating infiltration by the Smith and Parlange ( 1978 ) method. The mechanics of overland and channel flow are modelled by the kinematic wave approximation of the Saint Venant equations which are then numerically solved by the weighted four‐point implicit finite difference method. In this modelling the watershed was discretized into overland planes and channels using the algorithms proposed by Garbrecht and Martz ( 1999 ). The model code was first validated by comparing the model output with an analytical solution for a hypothetical plane. Then the model was tested in a medium‐sized semi‐forested watershed of Pathri Rao located in the Shivalik ranges of the Garhwal Himalayas, India. Initially, a local sensitivity analysis was performed to identify the parameters to which the model outputs like runoff volume, peak flow and time to peak flow are sensitive. Before going for model validation, calibration was performed using the Ordered‐Physics‐based Parameter Adjustment (OPPA) method. The proposed Physically Based Distributed (PBD) model was then evaluated both at the watershed outlet as well as at the internal gauging station, making this study a first of its kind in Indian watersheds. The results of performance evaluation indicate that the model has simulated the runoff hydrographs reasonably well within the watershed as well as at the watershed outlet with the same set of calibrated parameters. The model also simulates, realistically, the temporal variation of the spatial distribution of runoff over the watershed and the same has been illustrated graphically. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

5.
Vahid Nourani  Akira Mano 《水文研究》2007,21(23):3173-3180
Rainfall–runoff modelling, as a surface hydrological process, on large‐scale data‐poor basins is currently a major topic of investigation that requires the model parameters be identified by using basin physical characteristics rather than calibration. This paper describes the application of the TOPMODEL framework accompanied by a kinematic wave model to the Karun River sub‐basins in southwestern Iran with just one conceptual parameter for calibration. ISLSCP1, HYDRO1K and Reynolds data sets are presented in a geographical information system and used as data sources for meteorological information, hydrological features and soil characteristics of the study area respectively. The results show that although the model developed can adequately predict flood runoff in the catchment with only one calibrated parameter, it is suggested that the effect of surface reservoirs be considered in the proposed model. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
A conceptual insytnataneous unit hydrograph (IUH) based on geomorphologival association of linear reservoirs (GR) previously developed by the authors has been compared with other IUH models: a distributed GR variation (GR(v)), the Nash IUH, the Chutha and Dooge IUH, and the Troutman and Karlinger IUH for the analysis of direct runoff hydrographs recorded in three experimental watershed of the north of Spain. The comparison was made through a calibration‐validation process in which a leave‐one‐out cross‐validation method was applied. The results indicate the satisfactory performance of all the models, with the advantage for the GR model of the dependence on only one parameter, which can be identified from the watershed and event characteristics. This property makes its use easier than that of other models. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
Models simulating stream flow and conservative tracers can provide a representation of flow paths, storage distributions and mixing processes that is advantageous for many predictive purposes. Compared with models that only simulate stream flow, tracer data can be used to investigate the internal consistency of model behaviour and to gain insight into model performance. Here, we examine the strengths and weaknesses of a data‐driven, spatially distributed tracer‐aided rainfall‐runoff model. The model structure allowed us to assess the influence of landscape characteristics on the routing and mixing of water and tracers. The model was applied to a site in the Scottish Highlands with a unique tracer data set; ~4 years of daily isotope ratios in stream water and precipitation were available, as well as 2 years of weekly soil and ground water isotopes. The model structure was based on an empirically based, lumped tracer‐aided model previously developed for the catchment. The best model runs were selected from Monte Carlo simulations based on dual calibration criteria using objective functions for both stream isotopes and discharge at the outlet. Model performance for these criteria was reasonable (Nash–Sutcliffe efficiencies for discharge and isotope ratios were ~0.4–0.6). The model could generally reproduce the variable isotope signals in the soils of the steeper hill slopes where storage was low, and damped isotope responses in valley bottom cells with high storage. The model also allowed us to estimate the age distributions of internal stores, water fluxes and stream flow. Average stream water age was ~1.6 years, integrating older groundwater in the valley bottom and dynamic younger soil waters. By tracking water ages and simulating isotopes, the model captured the changes in connectivity driven by distributed storage dynamics. This has substantially improved the representation of spatio‐temporal process dynamics and gives a more robust framework for projecting environmental change impacts. Copyright © 2016 The Authors Hydrological Processes Published by John Wiley & Sons Ltd.  相似文献   

8.
将雷达测雨数据与分布式水文模型相耦合进行径流过程模拟,分析雷达测雨误差及其径流过程模拟效果,研究雷达测雨误差对径流过程模拟的影响效应.在对淮河流域气象中心业务化的5种淮河流域雷达测雨数据进行误差分析的基础上,采用雷达测雨数据驱动HEC-HMS水文模型,模拟分析淮河息县水文站以上流域2007年7月1-10日强降雨集中期的径流过程.结果表明:利用雷达测雨数据的径流模拟结果与实测资料的模拟结果基本吻合,各种雷达测雨数据误差经过HEC-HMS水文模型传递后,误差明显减小.联合校准法对应的模拟效果最好,过程流量相对误差NBs'和洪峰流量相对误差Z'分别为-20.2%和-13.3%.  相似文献   

9.
Abstract

The impact of fire on daily discharges from two mountainous basins located in the permafrost region of Eastern Siberia, the Vitimkan (969 km2) and Vitim (18 200 km2) rivers, affected by fire over 78% and 49% of their areas, respectively, in 2003, was investigated. The results of hydrological and meteorological data analysis suggest that the Vitimkan River basin had a rapid and profound hydrological response to wildfire in 2003 expressed through a 41% (133 mm) increase of summer flow. Conversely, the larger Vitim River basin showed no significant changes in discharge after the fire. The parameters of the process-based hydrological model Hydrograph were estimated for pre-fire conditions. The results of runoff simulations conducted for the continuous pre-fire periods of 1966–2002 and 1970–2002 for the Vitimkan and Vitim river basins, respectively, on a daily time step, showed satisfactory agreement with the observed flow series of both basins. Significant underestimation of precipitation and its poor representativeness for mountainous watersheds was revealed as the main cause of observed and simulated flow discrepancies, especially for high flood events. The set of dynamic parameters was developed based on data analysis and post-fire landscape changes as derived from a literature review. The model was applied to investigate the processes in the soil column and their effect on runoff formation during the post-fire period. The new set of model parameters implied the intensification of soil thaw, reduction of infiltration rate and evapotranspiration, and increase of upper subsurface flow fraction in summer flood events following the fire. According to modelling results, the post-fire thaw depth exceeded the pre-fire thaw depth by 0.4–0.7 m. Total evapotranspiration reduced by 40% in summer months, while surface flow increased almost 2.5 times during maximum flood events.  相似文献   

10.
The stream hydrograph is an integration of spatial and temporal variations in water input, storage and transfer processes within a catchment. For glacier basins in particular, inferences concerning catchment‐scale processes have been developed from the varying form and magnitude of the diurnal hydrograph in the proglacial river. To date, however, such classifications of proglacial diurnal hydrographs have developed in a relatively subjective manner. This paper develops an objective approach to the classification of diurnal discharge hydrograph ‘shape’ and ‘magnitude’ using a combination of principal components analysis and cluster analysis applied to proglacial discharge time‐series and to diurnal bulk flow indices. The procedure is applied to discharge time‐series from two different glacier basins and four separate ablation seasons representing a gradient of increasing hydrological perturbation as a result of (i) variable water inputs generated by rainstorm activity and (ii) variable location and response of hydrological stores through a systematic decrease in catchment glacierized area. The potential of the technique for application in non‐glacial hydrological contexts is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

11.
The study of runoff is a crucial issue because it is closely related to flooding, water quality and erosion. In cultivated catchments, agricultural ditch drainage networks are known to influence runoff. As anthropogenic elements, agricultural ditch drainage networks can therefore be altered to better manage surface runoff in cultivated catchments. However, the relationship between the spatial configuration, i.e. the density and the topology, of agricultural ditch drainage networks and surface runoff in cultivated catchments is not understood. We studied this relationship by using a random network simulator that was coupled to a distributed hydrological model. The simulations explored a large variety of spatial configurations corresponding to a thousand stochastic agricultural ditch drainage networks on a 6.4 km² Mediterranean cultivated catchment. Next, several distributed hydrological functions were used to compute water flow paths and runoff for each simulation. The results showed that (i) denser networks increased the drained volume and the peak discharge and decreased hillslopes runoff, (ii) greater network density did not affect the surface runoff any further above a given network density, (iii) the correlation between network density and runoff was weaker for small subcatchments (< 2 km²) where the variability in the drained area that resulted from changes in agricultural ditch drainage networks increased the variability of runoff and (iv) the actual agricultural ditch drainage network appeared to be well optimized for managing runoff as compared with the simulated networks. Finally, our results highlighted the role of agricultural ditch drainage networks in intercepting and decreasing overland flow on hillslopes and increasing runoff in drainage networks. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
A basic hypothesis is proposed: given that wavelet‐based analysis has been used to interpret runoff time‐series, it may be extended to evaluation of rainfall‐runoff model results. Conventional objective functions make certain assumptions about the data series to which they are applied (e.g. uncorrelated error, homoscedasticity). The difficulty that objective functions have in distinguishing between different realizations of the same model, or different models of the same system, is that they may have contributed in part to the occurrence of model equifinality. Of particular concern is the fact that the error present in a rainfall‐runoff model may be time dependent, requiring some form of time localization in both identification of error and derivation of global objective functions. We explore the use of a complex Gaussian (order 2) wavelet to describe: (1) a measured hydrograph; (2) the same hydrograph with different simulated errors introduced; and (3) model predictions of the same hydrograph based upon a modified form of TOPMODEL. The analysis of results was based upon: (a) differences in wavelet power (the wavelet power error) between the measured hydrograph and both the simulated error and modelled hydrographs; and (b) the wavelet phase. Power difference and wavelet phase were used to develop two objective functions, RMSE(power) and RMS(phase), which were shown to distinguish between simulated errors and model predictions with similar values of the commonly adopted Nash‐Sutcliffe efficiency index. These objective functions suffer because they do not retain time, frequency or time‐frequency localization. Consideration of wavelet power spectra and time‐ and frequency‐integrated power spectra shows that the impacts of different types of simulated error can be seen through retention of some localization, especially in relation to when and the scale over which error was manifest. Theoretical objections to the use of wavelet analysis for this type of application are noted, especially in relation to the dependence of findings upon the wavelet chosen. However, it is argued that the benefits of localization and the qualitatively low sensitivity of wavelet power and phase to wavelet choice are sufficient to warrant further exploration of wavelet‐based approaches to rainfall‐runoff model evaluation. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Lihua Xiong  Shenglian Guo 《水文研究》2004,18(10):1823-1836
Effects of the catchment runoff coefficient on the performance of TOPMODEL in simulating catchment rainfall–runoff relationships are investigated in this paper, with an aim to improve TOPMODEL's simulation efficiency in catchments with a low runoff coefficient. Application of TOPMODEL in the semi‐arid Yihe catchment, with an area of 2623 km2 in the Yellow River basin of China, produced a Nash–Sutcliffe model efficiency of about 80%. To investigate how the catchment runoff coefficient affects the performance of TOPMODEL, the whole observed discharge series of the Yihe catchment is multiplied with a larger‐than‐unity scale factor to obtain an amplified discharge series. Then TOPMODEL is used to simulate the amplified discharge series given the original rainfall and evaporation data. For a set of different scale factors, TOPMODEL efficiency is plotted against the corresponding catchment runoff coefficient and it is found that the efficiency of TOPMODEL increases with the increasing catchment runoff coefficient before reaching a peak (e.g. about 90%); after the peak, however, the efficiency of TOPMODEL decreases with the increasing catchment runoff coefficient. Based on this finding, an approach called the discharge amplification method is proposed to enhance the simulation efficiency of TOPMODEL in rainfall–runoff modelling in catchments with a low runoff coefficient. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

14.
C. H. TAYLOR Methodological issues associated with isotopic hydrograph separations (IHSs) in built-up environments are explored using results from the 1990 spring melt in a suburban basin in Peterborough, Ontario, Canada. The hetrogeneous nature of suburban environments complicates the selection of appropriate isotopic signatures for event and pre-event waters. Near-stream groundwater δ18O sampled from wells was poorly mixed, such that the pre-event water signature was best characterized by δ18O in pre-melt baseflow or discharge from a headwater spring. The event water signature during snowmelt can be characterized using δ18O in the pre-melt snowpack, surface runoff samples or meltwater from lysimeters. However, the use of snowpack δ18O may be inappropriate in suburban basins where meltwater from thin snowcover may exhibit pronounced responses to δ18O in rainfall contributions. Intensive sampling of the spatial variability of runoff or meltwater δ18O may be required to characterize the average event water signature adequately. Rainfall δ18O provided an appropriate event water signal during a large rain on snow event, and differences between this IHS and one generated using an event water signature that included meltwater contributions from snow-covered surfaces were within the uncertainty attributable to the analytical error in δ18O values. Event water supplied 55-63% of the peak discharge and 48-58% of total runoff from the basin during the melt, which is consistent with the fraction of the basin that has been developed. These results contrast with IHSs conducted in forested basins that suggest that stormflow is dominated by pre-event water contributions.  相似文献   

15.
Study on snowmelt runoff simulation in the Kaidu River basin   总被引:8,自引:0,他引:8  
Alpine snowmelt is an important generation mode for runoff in the source region of the Tarim River basin, which covers four subbasins characterized by large area, sparse gauge stations, mixed runoff supplied by snowmelt and rainfall, and remarkably spatially heterogeneous precipitation. Taking the Kaidu River basin as a research area, this study analyzes the influence of these characteristics on the variables and parameters of the Snow Runoff Model and discusses the corresponding determination strategy to improve the accuracy of snowmelt simulation and forecast. The results show that: (i) The temperature controls the overall tendency of simulated runoff and is dominant to simulation accuracy, as the measured daily mean temperature cannot represent the average level of the same elevation in the basin and that directly inputting it to model leads to inaccurate simulations. Based on the analysis of remote sensing snow maps and simulation results, it is reasonable to approximate the mean temperature with 0.5 time daily maximum temperature. (ii) For the conflict between the limited gauge sta-tion and remarkably spatial heterogeneity of rainfall, it is not realistic to compute rainfall for each elevation zone. After the measured rainfall is multiplied by a proper coefficient and adjusted with runoff coefficient for rainfall, the measured rainfall data can satisfy the model demands. (iii) Adjusting time lag according to the variation of snowmelt and rainfall position can improve the simulation precision of the flood peak process. (iv) Along with temperature, the rainfall increases but cannot be completely monitored by limited gauge stations, which results in precision deterioration.  相似文献   

16.
Conceptual rainfall–runoff models are a valuable tool for predictions in ungauged catchments. However, most of them rely on calibration to determine parameter values. Improving the representation of runoff processes in models is an attractive alternative to calibration. Such an approach requires a straightforward, a priori parameter allocation procedure applicable on a wide range of spatial scales. However, such a procedure has not been developed yet. In this paper, we introduce a process‐based runoff generation module (RGM‐PRO) as a spin‐off of the traditional runoff generation module of the PREVAH hydrological modelling system. RGM‐PRO is able to exploit information from maps of runoff types, which are developed on the basis of field investigations and expert knowledge. It is grid based, and within each grid cell, the process heterogeneity is considered to avoid information loss due to grid resolution. The new module is event based, and initial conditions are assimilated and downscaled from continuous simulations of PREVAH, which are also available for real‐time applications. Four parameter allocation strategies were developed, on the basis of the results of sprinkling experiments on 60‐m2 hillslope plots at several grassland locations in Switzerland, and were tested on five catchments on the Swiss Plateau and Prealps. For the same catchments, simulation results obtained with the best parameter allocation strategy were compared with those obtained with different configurations of the traditional runoff generation module of PREVAH, which was also applied as an event‐based module here. These configurations include a version that avoids calibration, one that transfers calibrated parameters, and one that uses regionalised parameter values. RGM‐PRO simulated heavy events in a more realistic way than the uncalibrated traditional runoff generation module of PREVAH, and, in some instances, it even exceeded the performance of the calibrated traditional one. The use of information on the spatial distribution of runoff types additionally proved to be valuable as a regionalisation technique and showed advantages over the other regionalisation approaches, also in terms of robustness and transferability.  相似文献   

17.
Predicting the behavior of overland flow with analytical solutions to the kinematic wave equation is appealing due to its relative ease of implementation. Such simple solutions, however, have largely been constrained to applications on simple planar hillslopes. This study presents analytical solutions to the kinematic wave equation for hillslopes with modest topographic curvature that causes divergence or convergence of runoff flowpaths. The solution averages flow depths along changing hillslope contours whose lengths vary according hillslope width function, and results in a one-dimensional approximation to the two-dimensional flow field. The solutions are tested against both two-dimensional numerical solutions to the kinematic wave equation (in ParFlow) and against experiments that use rainfall simulation on machined hillslopes with defined curvature properties. Excellent agreement between numerical, experimental and analytical solutions is found for hillslopes with mild to moderate curvature. The solutions show that curvature drives large changes in maximum flow rate qpeak and time of concentration tc , predictions frequently used in engineering hydrologic design and analysis.  相似文献   

18.
Terraces are a common feature of Mediterranean landscapes. In many places they are no longer maintained so that the number of intact terraces is in prolonged decline. The aim of this paper is to examine the effect of terrace removal and failure on hydrological connectivity and peak discharge in an agricultural catchment (475 ha) in south‐east Spain. The situation of 2006 is compared to that in 1956 and to a scenario without terraces (S2). The spatial distribution of concentrated flow was mapped after four storms in 2006. The degree of connectivity was quantified by means of connectivity functions and related to storm characteristics, land use and topography. For 1956, 2006 and scenario S2, connectivity functions and peak discharge to the river were determined for a storm with a return period of 8·2 years. The results show that the decrease in intact terraces has led to a strong increase in connectivity and discharge. The contributing area to the river system has increased by a factor 3·2 between 1956 and 2006. If all terraces were to be removed (scenario S2), the contributing area may further increase by a factor 6·0 compared to 2006. The spatial extent of concentrated flow and the degree of connectivity are related to storm magnitude as expressed by the erosivity index (EI30). Although a large part of the concentrated flow (25–50%) occurs on dirt roads, it appears that croplands become a major source of runoff with increasing rainfall. The results suggest that connectivity theory can be used to improve rainfall–runoff models in semi‐arid areas. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

The glaciers in the Nepalese Himalayas are retreating due to rising temperatures. Lack of data and information on Nepal’s cryosphere has impeded scientific studies and field investigations in the Nepalese Himalayas. Therefore, IRD France and Ev-K2 CNR Italy have conducted the PAPRIKA (CryosPheric responses to Anthropogenic PRessures in the HIndu Kush-Himalaya regions: impacts on water resources and society adaptation in Nepal) project in Nepal with the financial support of the French and Italian scientific agencies. This project aims to address the current and future evolution of the cryosphere in response to overall environmental changes in South Asia, and its consequences for water resources in Nepal. Thus, two hydrological models, the GR4J lumped precipitation–runoff model and the snowmelt runoff model (SRM), were used in the Dudh Koshi basin. The GR4J model has been successfully applied in different parts of Europe. To obtain better results in such a harsh and rugged topography, modifications needed to be made, particularly in the snow module. The runoff pattern is analysed herein both for past years and, in a sensitivity analysis, for possible future climatic conditions (i.e. precipitation and temperature) using the SRM and GR4J modelling approaches. The results reveal a significant contribution of snow- and glacier-melt to runoff, and the SRM model shows better performance in Nepalese catchments than the GR4J model.
Editor D. Koutsoyiannis; Associate editor D. Gerten  相似文献   

20.
The delicate balance between human utilization and sustaining its pristine biodiversity in the Mara River basin (MRB) is being threatened because of the expansion of agriculture, deforestation, human settlement, erosion and sedimentation and extreme flow events. This study assessed the applicability of the Soil and Water Assessment Tool (SWAT) model for long‐term rainfall–runoff simulation in MRB. The possibilities of combining/extending gage rainfall data with satellite rainfall estimates were investigated. Monthly satellite rainfall estimates not only overestimated but also lacked the variability of observed rainfall to substitute gage rainfall in model simulation. Uncertainties related to the quality and availability of input data were addressed. Sensitivity and uncertainty analysis was reported for alternative model components and hydrologic parameters used in SWAT. Mean sensitivity indices of SWAT parameters in MRB varied with and without observed discharge data. The manual assessment of individual parameters indicated heterogeneous response among sub‐basins of MRB. SWAT was calibrated and validated with 10 years of discharge data at Bomet (Nyangores River), Mulot (Amala River) and Mara Mines (Mara River) stations. Model performance varied from satisfactory at Mara Mines to fair at Bomet and weak at Mulot. The (Nash–Sutcliff efficiency, coefficient of determination) results of calibration and validation at Mara Mines were (0.68, 0.69) and (0.43, 0.44), respectively. Two years of moving time window and flow frequency analysis showed that SWAT performance in MRB heavily relied on quality and abundance of discharge data. Given the 5.5% area contribution of Amala sub‐basin as well as uncertainty and scarcity of input data, SWAT has the potential to simulate the rainfall runoff process in the MRB. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号