首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
This study presents a Geographic Information System (GIS)‐based distributed rainfall‐runoff model for simulating surface flows in small to large watersheds during isolated storm events. The model takes into account the amount of interception storage to be filled using a modified Merriam ( 1960 ) approach before estimating infiltration by the Smith and Parlange ( 1978 ) method. The mechanics of overland and channel flow are modelled by the kinematic wave approximation of the Saint Venant equations which are then numerically solved by the weighted four‐point implicit finite difference method. In this modelling the watershed was discretized into overland planes and channels using the algorithms proposed by Garbrecht and Martz ( 1999 ). The model code was first validated by comparing the model output with an analytical solution for a hypothetical plane. Then the model was tested in a medium‐sized semi‐forested watershed of Pathri Rao located in the Shivalik ranges of the Garhwal Himalayas, India. Initially, a local sensitivity analysis was performed to identify the parameters to which the model outputs like runoff volume, peak flow and time to peak flow are sensitive. Before going for model validation, calibration was performed using the Ordered‐Physics‐based Parameter Adjustment (OPPA) method. The proposed Physically Based Distributed (PBD) model was then evaluated both at the watershed outlet as well as at the internal gauging station, making this study a first of its kind in Indian watersheds. The results of performance evaluation indicate that the model has simulated the runoff hydrographs reasonably well within the watershed as well as at the watershed outlet with the same set of calibrated parameters. The model also simulates, realistically, the temporal variation of the spatial distribution of runoff over the watershed and the same has been illustrated graphically. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
For the appropriate management of water resources in a watershed, it is essential to calculate the time distribution of runoff for the given rainfall event. In this paper, a kinematic‐wave‐based distributed watershed model using finite element method (FEM), geographical information systems (GIS) and remote‐sensing‐based approach is presented for the runoff simulation of small watersheds. The kinematic wave equations are solved using FEM for overland and channel flow to generate runoff at the outlet of the watershed concerned. The interception loss is calculated by an empirical model based on leaf area index (LAI). The Green‐Ampt Mein Larson (GAML) model is used for the estimation of infiltration. Remotely sensed data has been used to extract land use (LU)/land cover (LC). GIS have been used to prepare finite element grid and input files such as Manning's roughness and slope. The developed overland flow model has been checked with an analytical solution for a hypothetical watershed. The model has been applied to a gauged watershed and an ungauged watershed. From the results, it is seen that the model is able to simulate the hydrographs reasonably well. A sensitivity analysis of the model is carried out with the calibrated infiltration parameters, overland flow Manning's roughness, channel flow Manning's roughness, time step and grid size. The present model is useful in predicting the hydrograph in small, ungauged watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
This study investigates divering overland flow utilizing kinematic wave theory, which does not appear to have been dealt with previously. Explicit analytical solutions are derived in dimensionless form for space-time invariant rainfall. Analytical solutions do not seem to be tractable for time-varying rainfall. Depending upon the duration of rainfall, equilibrium and partial equilibrium cases are distinguished explicitly. The effect of divergence parameter on the hydrograph shape is shown. The adequacy of kinematic approximation for characterization of diverging overland flow is tested against laboratory watershed results. The diverging overland flow model is found to yield results which compare well with observations and with those of a plane model.  相似文献   

4.
Two distributed parameter models, a one‐dimensional (1D) model and a two‐dimensional (2D) model, are developed to simulate overland flow in two small semiarid shrubland watersheds in the Jornada basin, southern New Mexico. The models are event‐based and represent each watershed by an array of 1‐m2 cells, in which the cell size is approximately equal to the average area of the shrubs. Each model uses only six parameters, for which values are obtained from field surveys and rainfall simulation experiments. In the 1D model, flow volumes through a fixed network are computed by a simple finite‐difference solution to the 1D kinematic wave equation. In the 2D model, flow directions and volumes are computed by a second‐order predictor–corrector finite‐difference solution to the 2D kinematic wave equation, in which flow routing is implicit and may vary in response to flow conditions. The models are compared in terms of the runoff hydrograph and the spatial distribution of runoff. The simulation results suggest that both the 1D and the 2D models have much to offer as tools for the large‐scale study of overland flow. Because it is based on a fixed flow network, the 1D model is better suited to the study of runoff due to individual rainfall events, whereas the 2D model may, with further development, be used to study both runoff and erosion during multiple rainfall events in which the dynamic nature of the terrain becomes an important consideration. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
We propose an improvement of the overland‐flow parameterization in a distributed hydrological model, which uses a constant horizontal grid resolution and employs the kinematic wave approximation for both hillslope and river channel flow. The standard parameterization lacks any channel flow characteristics for rivers, which results in reduced river flow velocities for streams narrower than the horizontal grid resolution. Moreover, the surface areas, through which these wider model rivers may exchange water with the subsurface, are larger than the real river channels potentially leading to unrealistic vertical flows. We propose an approximation of the subscale channel flow by scaling Manning's roughness in the kinematic wave formulation via a relationship between river width and grid cell size, following a simplified version of the Barré de Saint‐Venant equations (Manning–Strickler equations). The too large exchange areas between model rivers and the subsurface are compensated by a grid resolution‐dependent scaling of the infiltration/exfiltration rate across river beds. We test both scaling approaches in the integrated hydrological model ParFlow. An empirical relation is used for estimating the true river width from the mean annual discharge. Our simulations show that the scaling of the roughness coefficient and the hydraulic conductivity effectively corrects overland flow velocities calculated on the coarse grid leading to a better representation of flood waves in the river channels.  相似文献   

6.
《Advances in water resources》2003,26(11):1189-1198
A two-dimensional finite element based overland flow model was developed and used to study the accuracy and stability of three numerical schemes and watershed parameter aggregation error. The conventional consistent finite element scheme results in oscillations for certain time step ranges. The lumped and the upwind finite element schemes are tested as alternatives to the consistent scheme. The upwind scheme did not improve on the stability or the accuracy of the solution, while the lumped scheme provided stable and accurate solutions for time steps twice the size of time steps needed for the consistent scheme. A new accuracy based dynamic time step estimate for the two-dimensional overland flow kinematic wave solution is developed for the lumped scheme. The newly developed dynamic time step estimates are functions of the mesh size, and time of concentration of the watershed hydrograph. Due to lack of analytical solutions, the time step was developed by comparing numerical solutions of various levels of discretization to a reference solution using a very fine mesh and a very small time step. The time step criteria were tested on a different set of problems and proved to be adequate for accurate and stable solutions. A sensitivity analysis for the watershed slope, Manning’s roughness coefficient and excess rainfall rate was conducted in order to test the effect of parameter aggregation on the stability and accuracy of the solution. The results of this analysis show that aggregation of the slope data resulted in the highest error. The roughness coefficient had a smaller effect on the solution while the rainfall intensity did not show any significant effect on the flow rate solution for the range of rainfall intensity used. This work pioneers the challenge of providing guidelines for accurate and stable numerical solutions of the two-dimensional kinematic wave equations for overland flow.  相似文献   

7.
8.
Abstract

Based on the kinematic wave equations, formulae for the wave celerity along an overland plane subject to uniform rainfall excess and with a constant upstream inflow together with the corresponding average wave celerity and time to equilibrium for the entire plane are derived. The formulae are further developed in terms of both the Darcy-Weisbach resistance coefficient and the Manning resistance coefficient. By comparing the wave celerities, the average wave celerities and the time to equilibrium for planes with and without upstream inflow show that the upstream inflow causes the wave celerity and the average wave celerity to be faster and the times to equilibrium to be shorter. The effect of upstream inflow is greater with increasing inflow, but the marginal effect decreases with increasing inflow. The effect is greatest for laminar flow and least for turbulent flow. For the wave celerity, the effect is also greatest at the upstream end of the plane and least at the downstream end of the plane.  相似文献   

9.
Abstract

The detention storage in a drainage basin under the equilibrium condition is an important parameter in rainfall-runoff modelling. As this parameter is an efficient measure of the basin response to rainfall, it is commonly used as a basis of approximation of a complex basin by a simpler one. For flows on an overland plane, the equilibrium storage has also been used as a basis of determining the resistance coefficient of the overland surface. A formula is derived, based on the kinematic wave theory, for the equilibrium detention storage for a series of planes. For practical applications, the formula is further developed in terms of the Manning resistance coefficient. The derived formulae are all consistent with the published formulae for a single plane.  相似文献   

10.
Abstract

Due to changes in physical characteristics, the valley side of a drainage basin may be represented by a series of overland planes. In such a situation, the downstream outflow from one plane becomes the upstream inflow for the subsequent plane. Based on the kinematic wave equations, two time of concentration (time to equilibrium) formulae are derived for planes subject to uniform rainfall excess and with a constant upstream inflow. For practical applications, the formulae are further developed in terms of the Manning resistance coefficient. The derived formulae are all consistent with those published for the case of zero upstream inflow.  相似文献   

11.
Tommy S. W. Wong 《水文研究》2008,22(26):5004-5012
Equilibrium detention storage is an important parameter as it has a proportional effect on flood attenuation. In this paper, based on the kinematic wave theory, a working formula for the equilibrium detention storage of an overland plane with upstream inflow has been derived. Since the flow regime over a concrete plane can vary throughout the entire range laminar to turbulent, this case has been selected to examine the effect of flow regime on the equilibrium detention storage. In the examination, the derived formula has been applied to four flow regimes: (a) laminar, (b) transitional, (c) near turbulent, and (d) turbulent. The examination shows that for planes with a small discharge, laminar flow gives the maximum detention storage. For planes with a medium discharge, transitional flow gives the maximum detention storage, and for planes with a large discharge, near turbulent flow gives the maximum detention storage. The flow regime can cause more than two‐fold increase in detention storage. All these results can be attributed to the respective flow resistance, and have been endorsed with analyses of the water surface profile and the rising limb of the hydrograph. Finally, relating the results to real‐life situations, it shows that the flow regime that gives the maximum detention storage is also the dominating flow regime in nature. Hence, extraordinarily, the flow regimes that exist in nature in fact provide maximum flood attenuation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
A rainstorm that caused a severe flash flood on the piedmont plain at the toe positions of two alluvial fans located to the west of the Organ Mountains in Dona Ana County, New Mexico, USA, is analysed. The space–time distributions of rainfall are evaluated from the Next Generation Weather Radar (NEXRAD) and overland flow is modelled as kinematic wave. The spatial distribution of rainfall shows a topographic control. The greatest rainfall depth, duration, and intensity occurred at the higher elevation mountain slopes and decreased with decreasing elevation from the alluvial fans to the piedmont plain. The alluvial fan–piedmont plain system is modelled by coupling divergent and rectangular overland flow planes. Explicit finite difference approximations, hybridized with the analytical method of characteristics, are made to the kinematic wave equations to account for the spatial and temporal distribution of the rainfall and variable boundary conditions. Simulation results indicate that sheet‐flow floodwater elevations rise (1) in a nonlinear fashion from the apex to toe positions of the alluvial fans, and (2) near linearly from the toe positions of the alluvial fans onto the piedmont plains with the formation of kinematic shocks near the middle to the upstream end of the plane at times between the initiation of the rainstorm and the time of concentration of the plane. Thus, the maximum flooding occurs at the middle or upstream sections of the piedmont plains regardless of the pattern of space–time variability of rainfall. These results are in agreement with observed geomorphologic features suggesting that piedmont plains are naturally flood‐prone areas. This case study demonstrates that flood hazards on piedmont plains can exceed those on alluvial fans. The models presented in this study suggest that the flood hazard zones on coupled alluvial fan–piedmont plain landforms should be delineated transverse to the flow directions, as opposed to the flood hazard zones with boundaries in the longitudinal direction of the axis of an alluvial fan. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

13.
Influences of spatially heterogeneous roughness on flow hydrographs   总被引:1,自引:0,他引:1  
Spatially uniform roughness, which although may not be adequate in all cases, is often conveniently adopted for rainfall-runoff simulations in conventional watershed hydrology. In this study, effects of spatially heterogeneous roughness on hydrological response were investigated systematically. Three types of surface roughness scenarios, including: roughness decreasing in a downstream direction (Scenario 1), roughness increasing in a downstream direction (Scenario 2) and roughness distributed at random (Scenario 3), were assigned to an overland plane. A non-inertia wave model was developed to generate hydrographs at the end of the overland plane for certain rainstorms. The hydrographs in the three scenarios showed that when rainfall duration was less than the time of concentration of the overland plane, peak discharges generated from the spatially heterogeneous roughness scenarios significantly exceeded those from the spatially uniform roughness condition. The temporal equilibrium discharge which was usually observed on an overland plane under the spatially uniform roughness condition was not found in the present study. The flow peak in Scenario 1 occurred before that in Scenario 2. Nevertheless, the runoff peak could occur at the preceding, the middle or the later part of the hydrograph in Scenario 3, and this depended on the spatial distribution of the roughness. Reasons for the variation of peak discharge and the time to peak discharge were analyzed in detail based on water depth and flow velocity. Spatially heterogeneous roughness had an obviously influence on runoff generation, which ought to be handled with care in hydrological simulations.  相似文献   

14.
Error equations for the kinematic wave and diffusion wave approximations were derived under simplified conditions for space-independent flows occurring on infiltrating planes or channels. These equations specify error as a function of time in the flow hydrograph. The kinematic wave, diffusion wave and dynamic wave solutions were parameterized through a dimensionless parameter γ which is dependent on the initial conditions. This parameter reflects the effect of initial flow depth, channel bed slope, lateral inflow and channel roughness when the initial condition is non-vanishing; it reflects the effect of bed slope, channel roughness, lateral inflow and infiltration when the initial condition is vanishing. The error equations were found to be the Riccati equation.  相似文献   

15.
I. Haltas  M. L. Kavvas 《水文研究》2011,25(23):3659-3665
Fractals are famous for their self‐similar nature at different spatial scales. Similar to fractals, solutions of scale invariant processes are self‐similar at different space–time scales. This unique property of scale‐invariant processes can be utilized to translate the solution of the processes at a much larger or smaller space–time scale (domain) based on the solution calculated on the original space–time scale. This study investigates scale invariance conditions of kinematic wave overland flow process in one‐parameter Lie group of point transformations framework. Scaling (stretching) transformation is one of the one‐parameter Lie group of point transformations and it has a unique importance among the other transformations, as it leads to the scale invariance or scale dependence of a process. Scale invariance of a process yields a self‐similar solution at different space–time scales. However, the conditions for the process to be scale invariant usually dictate various relationships between the scaling coefficients of the dependent and independent variables of the process. Therefore, the scale invariance of a process does not assure a self‐similar solution at any arbitrary space and time scale. The kinematic wave overland flow process is modelled mathematically as initial‐boundary value problem. The conditions to be satisfied by the system of governing equations as well as the initial and boundary conditions of the kinematic wave overland flow process are established in order for the process to be scale invariant. Also, self‐similarity of the solution of the kinematic wave overland flow under the established invariance conditions is demonstrated by various numerical example problems. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
This study integrates a simple overland flow module (isochronous cells model) with the river module of MODFLOW such that temporal and spatial interactions between stream flow and groundwater can be simulated using net rainfall data of a watershed. The isochronous cells model is an efficient travel time runoff approach based on geographic information system (GIS) that considers both spatial and temporal variations of net rainfall through hill slope of the watershed. This overland module is easily coupled with MODFLOW river routing module. Specifically, the stream flow from the isochronous cells model is directly assigned to both sides of river cells of the MODFLOW model. Such an integration of MODFLOW and isochronous cells model is especially useful in watersheds where river flow data are limited. The feasibility of this integrated model was demonstrated using a case study in the middle and downstream regions of the Yitong River watershed, China. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper deals with the derivation of the hydrological response of a hillslope on the assumption of quick runoff by surface runoff generation. By using the simple non‐linear storage based model, first proposed by Horton, an analytical solution of the overland flow equations over a plane hillslope was derived. This solution establishes a generalization for different flow regimes of Horton's original solution, which is valid for the transitional flow regime only. The solution proposed was compared successfully with that of Horton and, for the turbulent flow regime, to the one derived from kinematic wave theory. This solution can be applied easily to both stationary and non‐stationary rainfall excess events. An analytical solution for the instantaneous response function (IRF) was also derived. Finally, simple expressions to compute peak and time to peak of IRF are proposed. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
V. P. Singh 《水文研究》1998,12(1):147-170
Using kinematic wave equations, analytical solutions are derived for flow owing to storms moving up and down a plane. By comparing the flow owing to a moving storm with that to an equivalent stationary storm, the influence of storm direction is investigated. The direction of storm movement exercises a significant influence on the peak flow and time to peak flow, as well as the shape of the overland flow hydrograph. © 1998 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract

A relatively simple process-oriented, physically-based distributed (PBD) hydrological model, the distributed runoff and erosion assessment model (DREAM), is described, and a validation study conducted in the semi-forested watershed of Pathri Rao, in the Garhwal Himalayas, India, is reported. DREAM takes account of watershed heterogeneity as reflected by land use, soil type, topography and rainfall, measured in the field or estimated through remote sensing, and generates estimates of runoff and sediment yield in spatial and temporal domains. The model is based on simultaneous solution of flow dynamics, based on kinematic wave theory, followed by solution of soil erosion dynamics. As the storm rainfall proceeds, the process of overland flow generation is dependent on the interception storage and infiltration rates. The components of the soil erosion model have been modified to provide better prediction of sediment flow rates and sediment yields. The validation study conducted to test the performance of the model in simulating soil erosion and sediment yield during different storm events monitored in the study watershed showed that the model outputs are satisfactory. Details of a sensitivity analysis, model calibration and the statistical evaluation of the results obtained are also presented and discussed. It is noteworthy that the distributed nature of the model combined with the use of geographical information system (GIS) techniques permits the computation and representation of the spatial distribution of sediment yield for simulated storm events, and a map of the spatial distribution of sediment yield for a simulated storm event is presented to highlight this capability.

Citation Ramsankaran, R., Kothyari, U.C., Ghosh, S.K., Malcherek, A., and Murugesan, K., 2013. Physically-based distributed soil erosion and sediment yield model (DREAM) for simulating individual storm events. Hydrological Sciences Journal, 58 (4), 872–891.  相似文献   

20.
The Xinanjiang model, which is a conceptual rainfall‐runoff model and has been successfully and widely applied in humid and semi‐humid regions in China, is coupled by the physically based kinematic wave method based on a digital drainage network. The kinematic wave Xinanjiang model (KWXAJ) uses topography and land use data to simulate runoff and overland flow routing. For the modelling, the catchment is subdivided into numerous hillslopes and consists of a raster grid of flow vectors that define the water flow directions. The Xinanjiang model simulates the runoff yield in each grid cell, and the kinematic wave approach is then applied to a ranked raster network. The grid‐based rainfall‐runoff model was applied to simulate basin‐scale water discharge from an 805‐km2 catchment of the Huaihe River, China. Rainfall and discharge records were available for the years 1984, 1985, 1987, 1998 and 1999. Eight flood events were used to calibrate the model's parameters and three other flood events were used to validate the grid‐based rainfall‐runoff model. A Manning's roughness via a linear flood depth relationship was suggested in this paper for improving flood forecasting. The calibration and validation results show that this model works well. A sensitivity analysis was further performed to evaluate the variation of topography (hillslopes) and land use parameters on catchment discharge. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号