首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 To investigate the influence of microlites on lava flow rheology, the viscosity of natural microlite-bearing rhyolitic obsidians of calc-alkaline and peralkaline compositions containing 0.1–0.4 wt.% water was measured at volcanologically relevant temperatures (650–950  °C), stresses (103–105 Pa) and strain rates (10–5 to 10–7 s–1). The glass transition temperatures (T g ) were determined from scanning calorimetric measurements on the melts for a range of cooling/heating rates. Based on the equivalence of enthalpic (calorimetric) and shear (viscosity) relaxation, we calculated the viscosity of the melt in crystal-bearing samples from the T g data. The difference between the calculated viscosity of the melt phase and the measured viscosity for the crystal-bearing samples is interpreted to be the physical effect of microlites on the measured viscosity. The effect of <5 vol.% rod-like microlites on the melt rheology is negligible. Microlite-rich and microlite-poor samples from the same lava flow and with identical bulk chemistry show a difference of 0.6 log10 units viscosity (Pa s), interpreted to be due to differences in melt chemistry caused by the presence of microlites. The only major differences between measured and calculated viscosities were for two samples: a calc-alkaline rhyolite with 1 vol.% branching crystals, and a peralkaline rhyolite containing crystal-rich bands with >45 vol.% crystals. For both of these samples a connectivity factor is apparent, with, for the latter, a close packing framework of crystals which is interpreted to influence the apparent viscosity. Received: 14 March 1996 / Accepted: 30 May 1996  相似文献   

2.
 As a major volatile in volcanic systems, water has a significant influence on the rheological properties of silicic magmas. This is especially so at minor water contents relevant to the emplacement of silicic lavas. To investigate the influence of water on the viscosity of natural rhyolitic obsidians, a novel strategy has been adopted employing parallel-plate and micropenetration techniques. Viscosities have been determined on three types of material: (a) raw water-bearing obsidians; (b) remelted (1650  °C, 1 atm) degassed glasses of the obsidians; and (c) hydrothermally hydrated (1300  °C, 3 kbar) obsidians. Ten natural rhyolitic obsidians (peraluminous, calc-alkaline and peralkaline) were employed: seven originated from lava flows and contained <0.2 wt.% H2O, two samples were F-rich from pyroclastic successions, and one was an obsidian cobble with 1.5 wt.% water also associated with pyroclastic units. Melt compositions and water contents were stable during viscometry. The measured decreases in activation energies of viscous flow and viscosity with small amounts of water are much greater than the Shaw calculation scheme predicts. In addition, a marked non-linear decrease in η exists with increasing water content. In contrast to the case for peralkaline rhyolites, 0.1–0.2 wt.% water decreases activation energies significantly (up to 30%) for calc-alkaline compositions. These results have important implications for the ease of near-surface degassing of silicic magmas during emplacement and permit the testing of calculational models for viscosity, largely based on synthetic systems. Received: 7 July 1997 / Accepted: 6 April 1998  相似文献   

3.
 The Cerro Chascon-Runtu Jarita Complex is a group of ten Late Pleistocene (∼85 ka) lava domes located in the Andean Central Volcanic Zone of Bolivia. These domes display considerable macroscopic and microscopic evidence of magma mixing. Two groups of domes are defined chemically and geographically. A northern group, the Chascon, consists of four lava bodies of dominantly rhyodacite composition. These bodies contain 43–48% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole in a microlite-poor, rhyolitic glass. Rare mafic enclaves and selvages are present. Mineral equilibria yield temperatures from 640 to 750  °C and log ƒO2 of –16. Geochemical data indicate that the pre-eruption magma chamber was zoned from a dominant volume of 68% to minor amounts of 76% SiO2. This zonation is best explained by fractional crystallization and some mixing between rhyodacite and more evolved compositions. The mafic enclaves represent magma that intruded but did not chemically interact much with the evolved magmas. A southern group, the Runtu Jarita, is a linear chain of six small domes (<1 km3 total volume) that probably is the surface expression of a dike. The five most northerly domes are composites of dacitic and rhyolitic compositions. The southernmost dome is dominantly rhyolite with rare mafic enclaves. The composite domes have lower flanks of porphyritic dacite with ∼35 vol.% phenocrysts of plagioclase, orthopyroxene, and hornblende in a microlite-rich, rhyodacitic glass. Sieve-textured plagioclase, mixed populations of disequilibrium plagioclase compositions, xenocrystic quartz, and sanidine with ternary composition reaction rims indicate that the dacite is a hybrid. The central cores of the composite domes are rhyolitic and contain up to 48 vol.% phenocrysts of plagioclase, quartz, sanidine, biotite, and amphibole. This is separated from the dacitic flanks by a banded zone of mingled lava. Macroscopic, microscopic, and petrologic evidence suggest scavenging of phenocrysts from the silicic lava. Mineral equilibria yield temperatures of 625–727  °C and log ƒO2 of –16 for the rhyolite and 926–1000  °C and log ƒO2 of –9.5 for the dacite. The rhyolite is zoned from 73 to 76% SiO2, and fractionation within the rhyolite composition produced this variation. Most of the 63–73% SiO2 compositional range of the lava in this group is the result of mixing between the hybrid dacite and the rhyolite. Eruption of both groups of lavas apparently was triggered by mafic recharge. A paucity of explosive activity suggests that volatile and thermal exchanges between reservoir and recharge magmas were less important than volume increase and the lubricating effects of recharge by mafic magmas. For the Runtu Jarita group, the eruption is best explained by intrusion of a dike of dacite into a chamber of crystal-rich rhyolite close to its solidus. The rhyolite was encapsulated and transported to the surface by the less-viscous dacite magma, which also acted as a lubricant. Simultaneous effusion of the lavas produced the composite domes, and their zonation reflects the subsurface zonation. The role of recharge by hotter, more fluid mafic magma appears to be critical to the eruption of some highly viscous silicic magmas. Received: 23 August 1998 / Accepted: 10 March 1999  相似文献   

4.
 The vesiculation of a peralkaline rhyolite melt (initially containing ∼0.14 wt.% H2O) has been investigated at temperatures above the rheological glass transition (T g≈530  °C) by (a) in situ optical observation of individual bubble growth or dissolution and (b) dilatometric measurements of the volume expansion due to vesiculation. The activation energy of the timescale for bubble growth equals the activation energy of viscous flow at relatively low temperatures (650–790  °C), but decreases and tends towards the value for water diffusion at high temperatures (790–925  °C). The time dependence of volume expansion follows the Avrami equation ΔV (t)∼{1–exp [–(tav) n ]} with the exponent n=2–2.5. The induction time of nucleation and the characteristic timescale (τav) in the Avrami equation have the same activation energy, again equal to the activation energy of viscous flow, which means that in viscous melts (Peclet number <1) the vesiculation (volume expansion), the bubble growth process, and, possibly, the nucleation of vesicles, are controlled by the relaxation of viscous stresses. One of the potential volcanological consequences of such behavior is the existence of a significant time lag between the attainment of a super-saturated state in volatile-bearing rhyolitic magmas and the onset of their expansion. Received: March 20, 1995 / Accepted: October 24, 1995  相似文献   

5.
Paleomagnetic data from lithic clasts collected from Mt. St. Helens, USA, Volcán Láscar, Chile, Volcán de Colima, Mexico and Vesuvius, Italy have been used to determine the emplacement temperature of pyroclastic deposits at these localities and to highlight the usefulness of the paleomagnetic method for determining emplacement temperatures. At Mt. St. Helens, the temperature of the deposits (T dep ) at three sites from the June 12, 1980 eruption was found to be ≥532°C, ≥509°C, and 510–570°C, respectively. One site emplaced on July 22, 1980 was emplaced at ≥577°C. These new paleomagnetic temperatures are in good agreement with previously published direct temperature measurements and paleomagnetic estimates. Lithic clasts from pyroclastic deposits from the 1993 eruption of Láscar were fully remagnetized above the respective Curie temperatures, which yielded a minimum T dep of 397°C. Samples were also collected from deposits thought to be pyroclastics from the 1913, 2004 and 2005 eruptions of Colima. At Colima, the sampled clasts were emplaced cold. This is consistent with the sampled clasts being from lahar deposits, which are common in the area, and illustrates the usefulness of the paleomagnetic method for distinguishing different types of deposit. T dep of the lower section of the lithic rich pyroclastic flow (LRPF) from the 472 A.D. deposits of Vesuvius was ~280–340°C. This is in agreement with other, recently published paleomagnetic measurements. In contrast, the upper section of the LRPF was emplaced at higher temperatures, with T dep ~520°C. This temperature difference is inferred to be the result of different sources of lithic clasts between the upper and lower sections, with the upper section containing a greater proportion of vent-derived material that was initially hot. Our studies of four historical pyroclastic deposits demonstrates the usefulness of paleomagnetism for emplacement temperature estimation.  相似文献   

6.
 We use a digital elevation model (DEM) derived from interferometrically processed SIR-C radar data to estimate the thickness of massive trachyte lava flows on the east flank of Karisimbi Volcano, Rwanda. The flows are as long as 12 km and average 40–60 m (up to >140 m) in thickness. By calculating and subtracting a reference surface from the DEM, we derived a map of flow thickness, which we used to calculate the volume (up to 1 km3 for an individual flow, and 1.8 km3 for all the identified flows) and yield strength of several flows (23–124 kPa). Using the DEM we estimated apparent viscosity based on the spacing of large folds (1.2×1012 to 5.5×1012 Pa s for surface viscosity, and 7.5×1010 to 5.2×1011 Pa s for interior viscosity, for a strain interval of 24 h). We use shaded-relief images of the DEM to map basic flow structures such as channels, shear zones, and surface folds, as well as flow boundaries. The flow thickness map also proves invaluable in mapping flows where flow boundaries are indistinct and poorly expressed in the radar backscatter and shaded-relief images. Received: 6 September 1997 / Accepted: 15 May 1998  相似文献   

7.
 Volcanic gas and condensate samples were collected in 1993–1994 from fumaroles of Koryaksky and Avachinsky, basaltic andesite volcanoes on the Kamchatka Peninsula near Petropavlovsk–Kamchatsky. The highest-temperature fumarolic discharges, 220  °C at Koryaksky and 473  °C at Avachinsky, are water-rich (940–985 mmol/mol of H2O) and have chemical and isotopic characteristics typical of Kamchatka–Kurile, high- and medium-temperature volcanic gases. The temperature and chemical and water isotopic compositions of the Koryaksky gases have not changed during the past 11 years. They represent an approximate 2 : 1 mixture of magmatic and meteoric end members. Low-temperature, near-boiling-point discharges of Avachinsky Volcano are water poor (≈880 mmol/mol); Their compositions have not changed since the 1991 eruption, and are suggested to be derived from partially condensed magmatic gases at shallow depth. Based on a simple model involving mixing and single-step steam separation, low water and high CO2 contents, as well as the observed Cl concentration and water isotopic composition in low-temperature discharges, are the result of near-surface boiling of a brine composed of the almost pure condensed magmatic gas. High methane content in low-temperature Avachinsky gases and the 220  °C Koryaksky fumarole, low C isotopic ratio in CO2 at Koryaksky (–11.8‰), and water isotope data suggest that the "meteoric" end member contains considerable amounts of the regional methane-rich thermal water discovered in the vicinity of both volcanoes. Received: 2 May 1996 / Accepted: 5 November 1996  相似文献   

8.
Estimates of pyroclastic flow emplacement temperatures in the Cerro Galán ignimbrite and Toconquis Group ignimbrites were determined using thermal remanent magnetization of lithic clasts embedded within the deposits. These ignimbrites belong to the Cerro Galán volcanic system, one of the largest calderas in the world, in the Puna plateau, NW Argentina. Temperature estimates for the 2.08-Ma Cerro Galán ignimbrite are retrieved from 40 sites in 14 localities (176 measured clasts), distributed at different distances from the caldera and different stratigraphic heights. Additionally, temperature estimates were obtained from 27 sample sites (125 measured clasts) from seven ignimbrite units forming the older Toconquis Group (5.60–4.51 Ma), mainly outcropping along a type section at Rio Las Pitas, Vega Real Grande. The paleomagnetic data obtained by progressive thermal demagnetization show that the clasts of the Cerro Galán ignimbrite have one single magnetic component, oriented close to the expected geomagnetic field at the time of emplacement. Results show therefore that most of the clasts acquired a new magnetization oriented parallel to the magnetic field at the moment of the ignimbrite deposition, suggesting that the clasts were heated up to or above the highest blocking temperature (T b) of the magnetic minerals (T b = 580°C for magnetite; T b = 600–630°C for hematite). We obtained similar emplacement temperature estimations for six out of the seven volcanic units belonging to the Toconquis Group, with the exception of one unit (Lower Merihuaca), where we found two distinct magnetic components. The estimation of emplacement temperatures in this latter case is constrained at 580–610°C, which are lower than the other ignimbrites. These estimations are also in agreement with the lowest pre-eruptive magma temperatures calculated for the same unit (i.e., 790°C; hornblende–plagioclase thermometer; Folkes et al. 2011b). We conclude that the Cerro Galán ignimbrite and Toconquis Group ignimbrites were emplaced at temperatures equal to or higher than 620°C, except for Lower Merihuaca unit emplaced at lower temperatures. The homogeneity of high temperatures from proximal to distal facies in the Cerro Galán ignimbrite provides constraints for the emplacement model, marked by a relatively low eruption column, low levels of turbulence, air entrainment, surface–water interaction, and a high level of topographic confinement, all ensuring minimal heat loss.  相似文献   

9.
Bubble growth in rhyolitic melts: experimental and numerical investigation   总被引:2,自引:0,他引:2  
 Bubble growth controlled by mass transfer of water from hydrated rhyolitic melts at high pressures and temperatures was studied experimentally and simulated numerically. Rhyolitic melts were hydrated at 150 MPa, 780–850  °C to uniform water content of 5.5–5.3 wt%. The pressure was then dropped and held constant at 15–145 MPa. Upon the drop bubbles nucleated and were allowed to grow for various periods of time before final, rapid quenching of the samples. The size and number density of bubbles in the quenched glasses were recorded. Where number densities were low and run duration short, bubble sizes were in accord with the growth model of Scriven (1959) for solitary bubbles. However, most results did not fit this simple model because of interaction between neighboring bubbles. Hence, the growth model of Proussevitch et al. (1993), which accounts for finite separation between bubbles, was further developed and used to simulate bubble growth. The good agreement between experimental data, numerical simulation, and analytical solutions enables accurate and reliable examination of bubble growth from a limited volume of supersaturated melt. At modest supersaturations bubble growth in hydrated silicic melts (3–6 wt% water, viscosity 104–106 Pa·s) is diffusion controlled. Water diffusion is fast enough to maintain steady-state concentration gradient in the melt. Viscous resistance is important only at the very early stage of growth (t<1 s). Under the above conditions growth is nearly parabolic, R2=2Dtρm(C0–Cf)/ρg until the bubble approaches its final size. In melts with low water content, viscosity is higher and maintains pressure gradients in the melt. Growth may be delayed for longer times, comparable to time scales of melt ascent during eruptions. At high levels of supersaturation, advection of hydrated melt towards the growing bubble becomes significant. Our results indicate that equilibrium degassing is a good approximation for modeling vesiculation in melts with high water concentrations (C0>3 wt%) in the region above the nucleation level. When the melt accelerates and water content decreases, equilibrium can no longer be maintained between bubbles and melt. Supersaturation develops in melt pockets away from bubbles and new bubbles may nucleate. Further acceleration and increase in viscosity cause buildup of internal pressure in the bubbles and may eventually lead to fragmentation of the melt. Received: 19 June 1995 / Accepted: 27 December 1995  相似文献   

10.
 The 1982 eruption of El Chichón volcano ejected more than 1 km3 of anhydrite-bearing trachyandesite pyroclastic material to form a new 1-km-wide and 300-m-deep crater and uncovered the upper 500 m of an active volcano-hydrothermal system. Instead of the weak boiling-point temperature fumaroles of the former lava dome, a vigorously boiling crater spring now discharges  / 20 kg/s of Cl-rich (∼15 000 mg/kg) and sulphur-poor ( / 200 mg/kg of SO4), almost neutral (pH up to 6.7) water with an isotopic composition close to that of subduction-type magmatic water (δD=–15‰, δ18O=+6.5‰). This spring, as well as numerous Cl-free boiling springs discharging a mixture of meteoric water with fumarolic condensates, feed the crater lake, which, compared with values in 1983, is now much more diluted (∼3000 mg/kg of Cl vs 24 030 mg/kg), less acidic (pH=2.6 vs 0.56) and contains much lower amounts of S ( / 200 mg/kg of SO4, vs 3550 mg/kg) with δ34S=0.5–4.2‰ (+17‰ in 1983). Agua Caliente thermal waters, on the southeast slope of the volcano, have an outflow rate of approximately 100 kg/s of 71  °C Na–Ca–Cl water and are five times more concentrated than before the eruption (B. R. Molina, unpublished data). Relative N2, Ar and He gas concentrations suggest extensional tectonics for the El Chichón volcanic centre. The 3He/4He and 4He/20Ne ratios in gases from the crater fumaroles (7.3Ra, 2560) and Agua Caliente hot springs (5.3Ra, 44) indicate a strong magmatic contribution. However, relative concentrations of reactive species are typical of equilibrium in a two-phase boiling aquifer. Sulphur and C isotopic data indicate highly reducing conditions within the system, probably associated with the presence of buried vegetation resulting from the 1982 eruption. All Cl-rich waters at El Chichón have a common source. This water has the appearence of a "partially matured" magmatic fluid: condensed magmatic vapour neutralized by interaction with fresh volcaniclastic deposits and depleted in S due to anhydrite precipitation. Shallow ground waters emerging around the volcano from the thick cover of fresh pumice deposits (Red waters) are Ca–SO4–rich and have a negative oxygen isotopic shift, probably due to ongoing formation of clay at low temperatures. Received: 21 July 1997 / Accepted: 4 December 1997  相似文献   

11.
In this study, we collected 1 156 broadband vertical components records at 22 digital seismic stations in Xinjiang region, ürümqi station, and 7 stations in the adjacent regions during the period of 1999–2003. The records were firstly processed by the stacked spectral ratio method to obtain Q 0 (Q at 1 Hz) and the frequency correlation factor η corresponding to each path. Based on the results, the distribution images of Q 0 and η in 1°×1° grids for Xinjiang region were gained by the back-projection technique. The results indicate that Q 0 is high (300–450) in the Tarim platform and marginal Siberian platform, while Q 0 is low (150–250) in the southern regions as west Kunlun fold system and Songpan-Ganzi fold system. In the northern regions as Junggar fold system and Tianshan fold system, Q 0 is also low (250–300) and η varies between 0.5 and 0.9. Foundation item: National Natural Science Foundation of China (49974012) and Joint Seismological Science Foundation of China (604004).  相似文献   

12.
 The 1963 eruption of Gunung Agung produced 0.95 km3 dense rock equivalent (DRE) of olivine±hornblende-bearing, weakly phyric, basaltic andesite tephra and lava. Evidence for magma mixing in the eruptive products includes whole-rock compatible and incompatible trace element trends, reverse and complex compositional zoning of mineral phases, disequilibrium mineral assemblages, sieve-textured plagioclase phenocrysts, and augite rims on reversely zoned orthopyroxene. Basalt magma mixed with pre-existing andesite magma shortly before eruption to yield basaltic andesite with a temperature of 1040–1100  °C at an assumed pressure of 2 kb, f O2>NNO, and an average melt volatile content (H2O±CO2) of 4.3 wt.%. Magma-mixing end members may have provided some of the S and Cl emitted in the eruption. Glass inclusions in phenocrysts contain an average of 650 ppm S and 3130 ppm Cl as compared with 70 ppm and 2220 ppm, respectively, in the matrix glass. Maximum S and Cl contents of glass inclusions approach 1800 and 5000 ppm, respectively. Application of the petrologic method to products of the 1963 eruption for estimating volatile release yields of 2.5×1012 g (Mt) of SO2 and 3.4 Mt of Cl released from the 0.65 km3 of juvenile tephra which contributed to stratospheric injection of H2SO4 aerosols on 17 March and 16 May, when eruption column heights exceeded 20 km above sea level. An independent estimate of SO2 release from atmospheric aerosol loading (11–12 Mt) suggests that approximately 7 Mt of SO2 was injected into the stratosphere. The difference between the two estimates can be most readily accounted for by the partitioning of S, as well as some Cl, from the magma into a water-rich vapor phase which was released upon eruption. For other recent high-S-release eruptions of more evolved and oxidized magmas (El Chichón, Pinatubo), the petrologic method gives values two orders of magnitude less than independent estimates of SO2 emissions. Results from this study of the Agung 1963 magma and its volatile emissions, and from related studies on eruptions of more mafic magmas, suggest that SO2 emissions from eruptions of higher-S-solubility magma may be more reliably estimated by the petrologic method than may those from more-evolved magma eruptions. Received: 29 June 1994 / Accepted: 25 April 1996  相似文献   

13.
 The rates of passive degassing from volcanoes are investigated by modelling the convective overturn of dense degassed and less dense gas-rich magmas in a vertical conduit linking a shallow degassing zone with a deep magma chamber. Laboratory experiments are used to constrain our theoretical model of the overturn rate and to elaborate on the model of this process presented by Kazahaya et al. (1994). We also introduce the effects of a CO2–saturated deep chamber and adiabatic cooling of ascending magma. We find that overturn occurs by concentric flow of the magmas along the conduit, although the details of the flow depend on the magmas' viscosity ratio. Where convective overturn limits the supply of gas-rich magma, then the gas emission rate is proportional to the flow rate of the overturning magmas (proportional to the density difference driving convection, the conduit radius to the fourth power, and inversely proportional to the degassed magma viscosity) and the mass fraction of water that is degassed. Efficient degassing enhances the density difference but increases the magma viscosity, and this dampens convection. Two degassing volcanoes were modelled. At Stromboli, assuming a 2 km deep, 30% crystalline basaltic chamber, containing 0.5 wt.% dissolved water, the ∼700 kg s–1 magmatic water flux can be modelled with a 4–10 m radius conduit, degassing 20–100% of the available water and all of the 1 to 4 vol.% CO2 chamber gas. At Mount St. Helens in June 1980, assuming a 7 km deep, 39% crystalline dacitic chamber, containing 4.6 wt.% dissolved water, the ∼500 kg s–1 magmatic water flux can be modelled with a 22–60 m radius conduit, degassing ∼2–90% of the available water and all of the 0.1 to 3 vol.% CO2 chamber gas. The range of these results is consistent with previous models and observations. Convection driven by degassing provides a plausible mechanism for transferring volatiles from deep magma chambers to the atmosphere, and it can explain the gas fluxes measured at many persistently active volcanoes. Received: 26 September 1997 / Accepted: 11 July 1998  相似文献   

14.
3 [magma volume (DRE): 24 ± 5 km3]. The main phase (ca. 95 vol.%) is represented by comenditic tephra deposited dominantly as widespread fallout blankets and proximal ignimbrites. The eruption column is estimated to have reached ca. 25 km and thus entered the stratosphere. A late phase (5 vol.%) is represented by trachyte emplaced chiefly as moderately welded ignimbrites. The comendites contain  ∼ 3, and the trachytes 10–20 vol.% phenocrysts, mainly anorthoclase, hedenbergite, and fayalite. Primary glassy melt inclusions with no signs of leakage were found only in phenocrysts in the comenditic tephra, whereas those in phenocrysts in the trachytes are devitrified. The comendite magma is interpreted to have been generated by fractional crystallization from a trachyte magma represented by melt inclusions in the phenocrysts in the comendite tephra. The mass of volatiles emitted to the atmosphere during the eruption was estimated using the petrologic method. The average H2O concentration of the comenditic matrix glass is 1.5 wt.% (probably largely secondary) and of the corresponding melt inclusions  ∼ 5.2 wt.%. Melt inclusions in feldspar and quartz present the highest halogen concentrations with a calculated average for chlorine of 4762 ppm and for fluorine of 4294 ppm. The comenditic matrix glasses are represented by a fluorine-rich (3992 ppm F) and fluorine-poor group (2431 ppm F), averaging 3853 ppm for chlorine. Only 20% of all sulfur analyses of the comenditic matrix glasses and melt inclusions are above the detection limit of  ≥ 250 ppm S. The difference between pre- and post-eruptive concentration of H2O is at least 3.7 ± 0.6 wt.% H2O taking into consideration re-hydration of the matrix glass and possible leakage of melt inclusions. The difference between pre- and post-eruptive concentrations of the halogens amounts to 909 ± 90 ppm Cl, and 1863 ± 280 ppm and 302 ± 40 ppm F. The difference for S was estimated based on the average of the maximum S concentrations in the melt inclusions (455 ppm S) and the detection limit, resulting in 205 ± 40 ppm S. The calculated mass of volatiles injected into the atmosphere, based on the erupted magma volume and volatile data, is 1796 ± 453 megatons for H2O, 45 ± 10 megatons for chlorine, 42 ± 11 megatons for fluorine, and 2 ± 0.6 megatons for sulfur. The 969 ± 20 AD eruption of Baitoushan Volcano, one of the largest eruptions of the past 2000 years, is thought to have had a substantial but possibly short-lived effect on climate. Received: 25 July 1998 / Accepted: 8 September 1999  相似文献   

15.
Low temperature eclogite facies metamorphism in Western Tianshan, Xinjiang   总被引:3,自引:0,他引:3  
According to the field occurrences and petrological study, the low temperature eclogite facies metamorphic rocks in Western Tianshan of Xinjiang can be divided into five types: (i) massive glaucophane-epidote eclogites and glaucophane-paragonite eclogites; (ii) schistose or gneissic mica eclogites; (iii) banded calcite eclogites; (iv) pillow glaucophane eclogites; (v) garnet-omphacite quartzites. Their eclogite facies metamorphism has undergone four stages of evolution: (i) pre-peak lawsonite-blueschist facies stage,T = 350–4000°C,P = 0.7–0.9 GPa; (ii) peak eclogite facies stage,T = 530 ± 20°C,P = 1.6–1.9 GPa; (iii) retrograde epidote-blueschist facies stage, T=500–530°C,P = 0.9–1.2 GPa and (iv) retrograde blueschist-greenschist facies stage,T= 450–550°C,P= 0.7–0.8 GPa. The metamorphic PT path of Western Tianshan eclogites is characterized by clockwise ITD resulting from the subduction of Tarim plate northward to Yili-Central Tianshan plate followed by fast uplift to the surface. But there were at least two stages of blueschist facies retrograde metamorphism overprinted during their uplift.  相似文献   

16.
 Approximately 20 km south of Mt. Etna craters, at the contact between volcanic and sedimentary formations, three mud volcanoes discharge CO2-rich gases and Na–Cl brines. The compositions of gas and liquid phases indicate that they are fed by a hydrothermal system for which temperatures of 100–150  °C were estimated by means of both gas and solute geothermometry. The hydrothermal system may be associated with CO2-rich groundwaters over a large area extending from the central part of Etna to the mud volcanoes. Numerous data on the He, CH4, CO2 composition of the gases of the three manifestations, sampled over the past 5 years, indicate clearly that variations are due to separation processes of a CO2-rich gas phase from the liquid. The effects of these processes have to be taken into account in the interpretation of the monitoring data collected for the geochemical surveillance of Etna volcano. Received: 4 September 1995 / Accepted: 14 February 1996  相似文献   

17.
The ~4-ka trachytic Rungwe Pumice (RP) deposit from Rungwe Volcano in South-Western Tanzania is the first Plinian-style deposit from an African volcano to be closely documented focusing on its physical characterization. The RP is a mostly massive fall deposit with an inversely graded base. Empirical models suggest a maximum eruption column height H T of 30.5–35 km with an associated peak mass discharge rate of 2.8–4.8 × 108 kg/s. Analytical calculations result in H T values of 33 ± 4 km (inversion of TEPHRA2 model on grain size data) corresponding to mass discharge ranging from 2.3 to 6.0 × 108 kg/s. Lake-core data allow extrapolation of the deposit thinning trend far beyond onland exposures. Empirical fitting of thickness data yields volume estimates between 3.2 and 5.8 km3 (corresponding to an erupted mass of 1.1–2.0 × 1012 kg), whereas analytical derivation yields an erupted mass of 1.1 × 1012 kg (inversion of TEPHRA2 model). Modelling and dispersal maps are consistent with nearly no-wind conditions during the eruption. The plume corner is estimated to have been ca. 11–12 km from the vent. After an opening phase with gradually increasing intensity, a high discharge rate was maintained throughout the eruption, without fountain collapse as is evidenced by a lack of pyroclastic density current deposits.  相似文献   

18.
 Measurements of CO2 fluxes from open-vent volcanos are rare, yet may offer special capabilities for monitoring volcanos and forecasting activity. The measured fluxes of CO2 and SO2 from Mount St. Helens decreased from July through November 1980, but the record includes variations of CO2/SO2 in the emitted gas and episodes of greatly increased fluxes of CO2. We propose that the CO2 flux variations reflect two gas components: (a) a component whose flux decreased in proportion to 1/ √t with a CO2/SO2 mass ratio of 1.7, and (b) a residual flux of CO2 consisting of short-lived, large peaks with a CO2/SO2 mass ratio of 15. We propose two hypotheses: (a) the 1/ √t dependence was generated by crystallization in a deep magma body at rates governed by diffusion-limited heat transfer, and (b) the gas component with the higher CO2/SO2 was released from ascending magma, which replenished the same magma body. The separation of the total CO2 flux into contributions from known processes permits quantitative inferences about the replenishment and crystallization rates of open-system magma bodies beneath volcanos. The flux separations obtained by using two gas sources with distinct CO2/SO2 ratios and a peak minus background approach to obtain the CO2 contributions from an intermittent source and a continuously emitting source are similar. The flux separation results support the hypothesis that the second component was generated by episodic magma ascent and replenishment of the magma body. The diffusion-limited crystallization hypothesis is supported by the decay of minimum CO2 and SO2 fluxes with 1/ √t after 1 July 1980. We infer that the magma body at Mount St. Helens was replenished at an average rate (2.8×106 m3 d–1) which varied by less than 5% during July, August, and September 1980. The magma body volume (2.4–3.0 km3) in early 1982 was estimated by integrating a crystallization rate function inferred from CO2 fluxes to maximum times (20±4 years) estimated from the increase of sample crystallinity with time. These new volcanic gas flux separation methods and the existence of relations among the CO2 flux, crystallization rates, and magma body replenishment rates yield new information about the dynamics of an open-vent, replenished magma body. Received: 15 February 1995 / Accepted: 30 March 1996  相似文献   

19.
 Samples collected from a lava channel active at Kīlauea Volcano during May 1997 are used to constrain rates of lava cooling and crystallization during early stages of flow. Lava erupted at near-liquidus temperatures (∼1150  °C) cooled and crystallized rapidly in upper parts of the channel. Glass geothermometry indicates cooling by 12–14  °C over the first 2 km of transport. At flow velocities of 1–2 m/s, this translates to cooling rates of 22–50  °C/h. Cooling rates this high can be explained by radiative cooling of a well-stirred flow, consistent with observations of non-steady flow in proximal regions of the channel. Crystallization of plagioclase and pyroxene microlites occurred in response to cooling, with crystallization rates of 20–50% per hour. Crystallization proceeded primarily by nucleation of new crystals, and nucleation rates of ∼104/cm3s are similar to those measured in the 1984 open channel flow from Mauna Loa Volcano. There is no evidence for the large nucleation delays commonly assumed for plagioclase crystallization in basaltic melts, possibly a reflection of enhanced nucleation due to stirring of the flow. The transition of the flow surface morphology from pāhoehoe to 'a'ā occurred at a distance of 1.9 km from the vent. At this point, the flow was thermally stratified, with an interior temperature of ∼1137  °C and crystallinity of ∼15%, and a flow surface temperature of ∼1100  °C and crystallinity of ∼45%. 'A'ā formation initiated along channel margins, where crust was continuously disrupted, and involved tearing and clotting of the flow surface. Both observations suggest that the transition involved crossing of a rheological threshold. We suggest this threshold to be the development of a lava yield strength sufficient to prevent viscous flow of lava at the channel margin. We use this concept to propose that 'a'ā formation in open channels requires both sufficiently high strain rates for continued disruption of surface crusts and sufficient groundmass crystallinity to generate a yield strength equivalent to the imposed stress. In Hawai'i, where lava is typically microlite poor on eruption, these combined requirements help to explain two common observations on 'a'ā formation: (a) 'a'ā flow fields are generated when effusion rates are high (thus promoting crustal disruption); and (b) under most eruption conditions, lava issues from the vent as pāhoehoe and changes to 'a'ā only after flowing some distance, thus permitting sufficient crystallization. Received: 3 September 1998 / Accepted: 12 April 1999  相似文献   

20.
 Simulated gas-driven eruptions using CO2–water-polymer systems are reported. Eruptions are initiated by rapidly decompressing CO2–saturated water containing up to 1.0 wt.% CO2. Both cylindrical test cells and a flask test cell were used to examine the effect of magma chamber/conduit geometry on eruption dynamics. Bubble-growth kinetics are examined quantitatively in experiments using cylindrical test cells. Uninhibited bubble growth can be roughly expressed as dr/dt≈λD(β-1)/(γt 1/3) for a CO2–water-polymer system at 0–22  °C and with viscosities up to 5 Pa·s, where r is the radius of bubbles, λ and D are the Ostwald solubility coefficient and diffusivity of the gas in the liquid, β is the degree of saturation (decompression ratio), and γ characterizes how the boundary layer thickness increases with time and is roughly 1.0×10–5 m/s1/3 in this system. Unlike the radius of cylindrical test cells, which does not affect the eruption threshold and dynamics, the shape of the test cells (flask vs cylindrical) affects the dynamics but not the threshold of eruptions. For cylindrical test cells, the front motion is characterized by constant acceleration with both Δh (the height increase) and ΔV (the volume increase) being proportional to t 2; for the flask test cell, however, neither Δh nor ΔV is proportional to t 2 as the conduit radius varies. Test-cell geometry also affects foam stability. In the flask test cell, as it moves from the wider base chamber into the narrower conduit, the bubbly flow becomes fragmented, affecting the eruption dynamics. The fragmentation may be caused by a sudden increase in acceleration induced by conduit-shape change, or by the presence of obstacles to the bubbly flow. This result may help explain the range in vesicularities of pumice and reticulite. Received: 16 May 1997 / Accepted: 11 October 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号