共查询到20条相似文献,搜索用时 15 毫秒
1.
More than 600 double-station photographic recordings of Perseid meteor trails have been obtained at various stations in the period 1937–1985. This large data sample has recently been used to determine the activity profile and mean orbit of the Perseid meteoroid stream (Lindblad and Poruban, 1994). In the present paper the radiant of the Perseid meteoroid stream is studied based on a sample of 592 double-station photographic recordings. The daily motion of the radiant and the change of the size of the radiant area with date is investigated. A daily motion of 1.40° in right ascension and 0.20° in declination is derived. These values are slightly larger than those previously found by other researchers. The contraction of the radiant area at shower maximum previously reported from visual observations is confirmed. In a further study radiant areas derived for the dates of the new and the old Perseid maxima are compared. It is found that the radiant area of the new maximum is smaller than that of the old maximum. 相似文献
2.
M. Hajduková V. G. Kruchinenko A. M. Kazantsev Ju. G. Taranucha A. A. Rozhilo S. S. Yeryomin P. N. Kozak 《Earth, Moon, and Planets》1995,68(1-3):297-301
Some results of the double station television meteor observations provided in Kiev during the Perseid shower period in years 1991 – 1993 are presented. The dependence of the beginning hights of meteors on their initial velocities based on 57 best reduced double station meteors is constructed. Exceptionaly great beginning heights of meteors are discussed, as well as the exceptional case of a Perseid bolide. 相似文献
3.
Peter Brown Robert J. Weryk Daniel K. Wong James Jones 《Earth, Moon, and Planets》2008,102(1-4):209-219
The Canadian Meteor Orbit Radar is a multi-frequency backscatter radar which has been in routine operation since 1999, with
an orbit measurement capability since 2002. In total, CMOR has measured over 2 million orbits of meteoroids with masses greater
than 10 μg, while recording more than 18 million meteor echoes in total. We have applied a two stage comparative technique
for identifying meteor streams in this dataset by making use of clustering in radiants and velocities without employing orbital
element comparisons directly. From the large dataset of single station echoes, combined radiant activity maps have been constructed
by binning and then stacking each years data per degree of solar longitude. Using the single-station mapping technique described
in Jones and Jones (Mon Not R Astron Soc 367:1050–1056, 2006) we have identified probable streams from these single station
observations. Additionally, using individual radiant and velocity data from the multi-station velocity determination routines,
we have utilized a wavelet search algorithm in radiant and velocity space to construct a list of probable streams. These two
lists were then compared and only streams detected by both techniques, on multiple frequencies and in multiple years were
assigned stream status. From this analysis we have identified 45 annual minor and major streams with high reliability. 相似文献
4.
Positions of 17 filaments found inside the Perseid meteoroid stream by method of indices are compared with those of low-order mean-motion resonances with Jupiter and Saturn. By this comparing, the Jupiter and Saturn branches of the Perseid stream were identified. The existence of gaps in the distribution of the semi-major axes of the Perseids is confirmed using the more numerous material of a new version of the IAU Meteor Data Center Catalogue. Our integrations of the motion of particles in the Perseid stream lead to an extraordinary important fact. The found filaments are located in close proximity of strong resonances. They represent, with a high probability, increased numbers of particles gravitationally expelled from a resonant gap and (temporary) settled down in its close proximity. 相似文献
5.
We have compiled and analyzed historical Korean meteor and meteor shower records in three Korean official history books, Samguksagi which covers the three Kingdoms period (57 B.C.-A.D. 935), Goryeosa of Goryeo dynasty (A.D. 918-1392), and Joseonwangjosillok of Joseon dynasty (A.D. 1392-1910). We have found 3861 meteor and 31 meteor shower records. We have confirmed the peaks of Perseids and an excess due to the mixture of Orionids, north-Taurids, or Leonids through the Monte Carlo test. The peaks persist from the period of Goryeo dynasty to that of Joseon dynasty, for almost one thousand years. Korean records show a decrease of Perseids activity and an increase of Orionids/north-Taurids/Leonids activity. We have also analyzed seasonal variation of sporadic meteors from Korean records. We confirm the seasonal variation of sporadic meteors from the records of Joseon dynasty with the maximum number of events being roughly 1.7 times the minimum. The Korean records are compared with Chinese and Japanese records for the same periods. Major features in Chinese meteor shower records are quite consistent with those of Korean records, particularly for the last millennium. Japanese records also show Perseids feature and Orionids/north-Taurids/Leonids feature, although they are less prominent compared to those of Korean or Chinese records. 相似文献
6.
Ichiro Hasegawa 《Celestial Mechanics and Dynamical Astronomy》1992,54(1-3):129-142
Numbers of meteors recorded in Chinese and Japanese histories are counted. Two distinct maxima in Chinese records are found in the 11th and 15th centuries, and the latter is also recorded in Japan. Of those records, numbers of bright meteors with sound and great fireballs that appeared in the daytime are also investigated.Correlations between the meteor numbers and the apparitions of naked-eye comet likely to be found, and seasonal variations in the meteor flux recorded during nineteen centuries show two maxima in July–August and October–November, the latter may be related to the Taurid complex. 相似文献
7.
Ján Svoreň Luboš Neslušan Zuzana Kaňuchová Vladimír Porubčan 《Earth, Moon, and Planets》2004,95(1-4):69-74
A fine structure of the Perseid stream in the range of photographic magnitudes is studied using the method of indices. A new
completed 2003 version of the IAU Meteor Data Center Catalogue of 4581 photographic orbits is used. The method of indices
is used to acquire a basic data set for the Perseids. Subsequently, the method is applied on the chosen Perseids to study
their structure. Sixty four percent of chosen Perseids taken into account are attached to one of the 17 determined filaments
of orbits. The filaments are not distributed in the space accidentally, but they form a higher structure consisting of at
least four well-defined and distinguished “branches”. 相似文献
8.
A comparative study of meteor ablation in the atmospheres of the Earth and Venus is presented. The classical single body meteor ablation model is extended to incorporate a heat penetration depth estimate allowing the simulation of larger meteoroids, than would an isothermal model. The ablation of icy and rocky meteoroids, with densities of 1.0 and 3.4 g cm−3, respectively, and initial radii of up to for rock and for ice (equivalent to an initial mass of in both cases), was simulated in both atmospheres. In general venusian meteors are brighter than terrestrial equivalents. Large, slow, rocky objects may be up to 0.7 mag brighter on Venus, while small, icy particles with entry speeds in the range 30-60 km s−1, are found to be upwards of 2.7 mag brighter than at the Earth. Venusian meteors reach maximum brightness at greater altitudes than would similar particles at the Earth. Rocky meteoroids have their points of maximum brightness some 15-35 km higher up at Venus, between 90 and 120 km, whereas, for icy particles this altitude difference is about 5-25 km higher up than at the Earth, in the range 100-125 km. These findings agree, for the most part, with recent analytical studies. Venusian meteors, which last from 100 ms to , tend to be shorter-lived than terrestrial meteors, with correspondingly shorter visible trails. Large (), slow () icy particles reach a maximum magnitude of ∼−2 at Venus and remain visible for about one second, with a large section of the smaller faster meteoroids simulated here remaining visible for several hundred milliseconds. In light of recent space-based meteor observations at the Earth [Jenniskens, P., Tedesco, E., Muthry, J., Laux, C.O., Price, S., 2002. Meteorit. Planet. Sci. 37, 1071-1078], such brightness, height and duration estimates as suggested in this work, may be used in developing future observational campaigns to be carried out from Venus orbit. 相似文献
9.
Masahisa Yanagisawa Kouji Ohnishi Hiroshi Masuda Miyoshi Ida Masayuki Ishida 《Icarus》2006,182(2):489-495
The first confirmed lunar impact flash due to a non-Leonid meteoroid is reported. The observed Perseid meteoroid impact occurred at 18h28m27s on August 11, 2004 (UT). The selenographic coordinates of the lunar impact flash are 48±1° N and 72±2° E, and the flash had a visual magnitude of ca. 9.5 with duration of about 1/30 s. The mass of the impactor is estimated to have been 12 g based on a nominal model with conversion efficiency from kinetic to optical energy of 2×10−3. Extrapolation of a power law size-frequency distribution fitting the sub-centimeter Perseid meteoric particles to large meteoroids suggests that several flashes should have been observed at this optical efficiency. The detection of only one flash may indicate that the optical efficiency for Perseid lunar impact is much lower, or that the slope of the size distribution differs between large meteoroids and typical sub-centimeter meteoric particles. 相似文献
10.
We have carried out double-station TV meteor observations between 1990 and 1994. The orbits of 326 meteors have been determined from doubly observed meteors, and radiant distributions are studied. The mean magnitude of the observed meteors was as faint as +4.7, since I.I. (Image Intensifier) and Video cameras were used. Radiants were widely distributed over the celestial sphere. The velocity distribution showed some similarity with the distribution predicted by the theoretical radiant distribution from comets rather than that from asteroids. In all 13 showers including both major and minor meteor showers were detected from radiant distributions of the observed meteors; from the orbital elements and meteor velocities as well as from the radiant directions. 相似文献
11.
12.
Apostolos A Christou 《Icarus》2004,168(1):23-33
We investigate the possibility of detectable meteor shower activity in the atmosphere of Venus. We compare the Venus-approaching population of known periodic comets, suspected cometary asteroids and meteor streams with that of the Earth. We find that a similar number of Halley-type comets but a substantially lesser population of Jupiter family comets approach Venus. Parent bodies of prominent meteor showers that might occur at Venus have been determined based on minimum orbital distance. These are: Comets 1P/Halley, parent of the η Aquarid and Orionid streams at the Earth; 45P/Honda-Mrkos-Pajdusakova which currently approaches the venusian orbit to 0.0016 AU; three Halley-type comets (12P/Pons-Brooks, 27P/Crommelin and 122P/de Vico), all intercepting the planet's orbit within a 5-day arc in solar longitude; and Asteroid (3200) Phaethon, parent of the December Geminids at the Earth. In addition, several minor streams and a number of cometary asteroid orbits are found to approach the orbit of Venus sufficiently close to raise the possibility of some activity at that planet. Using an analytical approach described in Adolfsson et al. (Icarus 119 (1996) 144) we show that venusian meteors would be as bright or up to 2 magnitudes brighter than their Earth counterparts and reach maximum luminosity at an altitude range of 100-120, 20-30 km higher than at the Earth, in a predominantly clear region of the atmosphere. We discuss the feasibility of observing venusian showers based on current capabilities and conclude that a downward-looking Venus-orbiting meteor detector would be more suitable for these purposes than Earth-based monitoring. The former would detect a shower of an equivalent Zenithal Hourly Rate of at least several tens of meteors. 相似文献
13.
The Marshall Space Flight Center (MSFC) Meteoroid Stream Model simulates particle ejection and subsequent evolution from comets
in order to provide meteor shower forecasts to spacecraft operators for hazard mitigation and planning purposes. The model,
previously detailed in Moser and Cooke (Earth Moon Planets 95, 141 (2004)), has recently been updated; the changes include the implementation of the RADAU integrator, an improved planetary
treatment, and the inclusion of general relativistic effects in the force function. The results of these updates are investigated
with respect to various meteoroid streams and the outcome presented. 相似文献
14.
This paper describes the Canadian Meteor Orbit Radar (CMOR) that has been in operation since late 2001. CMOR is a 3 station meteor radar operating at a frequency of 29.85 MHz near Tavistock, Ont. To avoid bias against fragmenting meteoroids that is inherent in the traditional multi-station method of Gill and Davies (Mon. Not. R Astron. Soc. 116 (1955) 105), we use a completely geometrical method similar to that used in the AMOR system (Quart. J. R. Astron. Soc. 35 (1994) 293) based on the interferometric determination of the echo directions and the time delays of echoes from two remote stations to obtain the trajectories and speeds of meteoroids. We describe the hardware and some of the software and present some preliminary results that provide a good indication of present capabilities of the system. Typically, we can measure 1500 individual trajectories, and hence orbits, per day with a mean accuracy of 6° in direction and about 10% in speed. A small subset of these for which it is possible to measure the speeds using Hocking's (Radio. Sci. 35 (2000) 1205) method yield speeds with a precision of about 5%. The purpose of this paper is to show that the radiants and speeds necessary for the computation of orbits are well measured rather than to discuss any orbital surveys. 相似文献
15.
Miloš Šimek 《Earth, Moon, and Planets》1995,68(1-3):545-553
Diurnal variations of the median echo durations of sporadic meteor echoes during August and December-January periods are discussed. It is shown that differences between seasonal distributions result from the superposition of simultaneous diurnal effects controlling the electron loss processes in the ionized meteor trail. 相似文献
16.
17.
I.P. Williams 《Planetary and Space Science》2009,57(10):1228-1235
Meteor showers have been observed for a considerable time, and the cause, meteoroids from a meteoroid stream ablating in the Earth's atmosphere, has also been understood for centuries. The connection between meteoroid streams and comets was also established 150 years ago. Since that time our ability both to understand the physics and to numerically model the situation has steadily increased. We will review the current state of knowledge. However, just as there are differences between the behaviour of long period comets, Halley family comets and Jupiter family comets, so also differences exist between the associated meteoroid streams. Streams associated with Jupiter family comets show much more variety in their behaviour, driven by the gravitational perturbations from Jupiter. The more interesting showers associated with Jupiter family comets will be discussed individually. 相似文献
18.
Abstract— We report on two surveys conducted during the times of Perseid shower maximum in 1997 and 1998. The first survey entailed the video monitoring of the Moon's disk with the intent of recording the optical flashes that should result when large meteoroids strike the lunar surface. The second survey consisted of a combination video camera and very low frequency (VLF) radiowave receiver system capable of detecting electrophonic meteors during their ablation in the Earth's atmosphere. Using standard ablation theory, we find that for a Perseid meteoroid to be capable of generating electrophonic sounds, it must have an initial mass in excess of 495 kg. We also find, as a result of the surveys, an upper limit of 2 × 10?17 m?2 s?1 to the flux of electrophonic Perseid meteors entering the Earth's atmosphere. Although our study indicates that large, meter-sized meteoroids must, at best, be sparsely distributed within the Perseid stream, we briefly discuss some tantalizing lines of evidence, found from within the astronomical literature, that hint at their true existence. 相似文献
19.
A technique for calculating meteor plasma density and meteoroid mass from radar head echo scattering
Large-aperture radars detect the high-density plasma that forms in the vicinity of a meteoroid and moves approximately at its velocity; reflections from these plasmas are called head echoes. To determine the head plasma density and configuration, we model the interaction of a radar wave with the plasma without using assumptions about plasma density. This paper presents a scattering method that enables us to convert measurements of radar cross-section (RCS) from a head echo into plasma density by applying a spherical scattering model. We use three methods to validate our model. First, we compare the maximum plasma densities determined from the spherical solution using 30 head echoes detected simultaneously at VHF and UHF. Second, we use a head echo detected simultaneously at VHF, UHF and L-band to compare plasma densities at all frequencies. Finally, we apply our spherical solution to 723 VHF head echoes and calculate plasma density, line density and meteoroid mass in order to compare these values with those obtained from a meteoroid ablation and ionization model. In all three comparisons, our results show that the spherical solution produces consistent results across a wide frequency range and agrees well with the single-body ablation model. 相似文献
20.
P. Jenniskens P.S. Gural L. Dynneson B.J. Grigsby K.E. Newman M. Borden M. Koop D. Holman 《Icarus》2011,216(1):40-61
First results are presented from a newly developed meteoroid orbit survey, called CAMS – Cameras for Allsky Meteor Surveillance, which combines meteor detection algorithms for low-light video observations with traditional video surveillance tools. Sixty video cameras at three stations monitor the sky above 31° elevation. Goal of CAMS is to verify meteor showers in search of their parent comets among newly discovered near-Earth objects.This paper outlines the concept of operations, the hardware, and software methods used during operation and in the data reduction pipeline, and accompanies the data release of the first batch of meteoroid orbits. During the month of November 2010, 2169 precisely reduced meteoroid trajectories from 17 nights have an error in the apparent radiant of the trajectory <2° and error in speed <10%. Median values of the error are 0.31° and 0.53 km/s, respectively, sufficient to resolve the intrinsic dispersion of annual meteor showers and resolve minor showers from the sporadic background. The limiting visual magnitude of the cameras is +5.4, recording meteors of +4 magnitude and brighter, bright enough to stand out from the mostly fainter sporadic meteors detected as under dense radar echoes.CAMS readily detected all established showers (6) active during the clear nights in November. Of the showers that needed confirmation, we confirm the theta Aurigids (THA, IAU#390), the chi Taurids (CTA, IAU#388), and the omicron Eridanids (OER, IAU#338). We conclude that the iota November Aurigids (IAR, IAU#248) are in fact the combined activity of the theta Aurigids and chi Taurids, and this shower should be dismissed from the list. Finally, there is also a clustering consistent with the zeta Cancrids (ZCN, IAU#243), but we cannot exclude that this is lower perihelion dust belonging to the Orionid shower.Data are submitted to the IAU Meteor Data Center on a semi-regular basis, and can be accessed also at http://cams.seti.org. 相似文献